×

A conversation with Larry Brown. (English) Zbl 1188.01016

Summary: Lawrence D. Brown was born on December 16, 1940 in Los Angeles, California. He obtained his Ph.D. in mathematics from Cornell University in 1964. He has been on the faculty of the University of California, Berkeley, Cornell University, Rutgers University and, most recently, the Wharton School of the University of Pennsylvania, where he holds the Miers Busch Professorship of Statistics. Professor Brown was President of the Institute of Mathematical Statistics in 1992–1993, Coeditor of The Annals of Statistics for 1995–1997 and gave the prestigious Wald Memorial Lectures in 1985. In 1990, Professor Brown was elected to the U.S. National Academy of Sciences. In 1993, Purdue University awarded him an honorary D.Sc. degree in recognition of his distinguished achievements, and in 2002 he was named winner of the Wilks Memorial Award of the American Statistical Association.
Professor Brown is probably best known for his extensive work on the admissibility of estimators of one or more parameters. He has also published research on a broad variety of other topics including general decision theory, sequential analysis, properties of exponential families, foundations of statistical inference, conditional confidence, interval estimation and Edgeworth expansions, and bioequivalence. His current interests include functional nonparametrics, analysis of census data and queuing theory as involved in the analysis of call-center data.

MSC:

01A70 Biographies, obituaries, personalia, bibliographies
62-03 History of statistics

Biographic References:

Brown, Lawrence David
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Apostol, T. M. (1961). Calculus . Blaisdell, New York.
[2] Berger, J. (1976a). Tail minimaxity in location vector problems and its applications. Ann. Statist. 4 33–50. JSTOR: · Zbl 0322.62008 · doi:10.1214/aos/1176343346
[3] Berger, J. (1976b). Inadmissibility results for generalized Bayes estimators of coordinates of a location vector. Ann. Statist. 4 302–333. JSTOR: · Zbl 0323.62004 · doi:10.1214/aos/1176343409
[4] Berger, J. (1976c). Admissibility results for generalized Bayes estimators of coordinates of a location vector. Ann. Statist. 4 334–356. JSTOR: · Zbl 0323.62005 · doi:10.1214/aos/1176343410
[5] Blackwell, D. (1951). On the translation parameter problem for discrete variables. Ann. Math. Statist. 22 393–399. · Zbl 0043.13802 · doi:10.1214/aoms/1177729585
[6] Breiman, L. (1998). Arcing classifiers (with discussion). Ann. Statist. 26 801–849. · Zbl 0934.62064 · doi:10.1214/aos/1024691079
[7] Brown, L. (1965). Optimal policies for a sequential decision process. J. Soc. Indust. Appl. Math. 13 37–46. · Zbl 0134.35904 · doi:10.1137/0113003
[8] Brown, L. (1966). On the admissibility of invariant estimators of one or more location parameters. Ann. Math. Statist. 37 1087–1136. · Zbl 0156.39401 · doi:10.1214/aoms/1177699259
[9] Brown, L. (1967). The conditional level of Student’s \(t\) test. Ann. Math. Statist. 38 1068–1071. · Zbl 0171.16703 · doi:10.1214/aoms/1177698776
[10] Brown, L. (1971). Admissible estimators, recurrent diffusions, and insoluble boundary value problems. Ann. Math. Statist. 42 855–903. · Zbl 0246.62016 · doi:10.1214/aoms/1177693318
[11] Brown, L. (1982). A proof of the central limit theorem motivated by the Cramér–Rao inequality. In Statistics and Probability : Essays in Honor of C. R. Rao (G. Kallianpur, P. R. Krishnaiah and J. K. Ghosh, eds.) 141–148. North-Holland, Amsterdam. · Zbl 0484.60019
[12] Brown, L. (1986). Fundamentals of Statistical Exponential Families with Applications in Statistical Decision Theory . IMS, Hayward, CA. · Zbl 0685.62002
[13] Brown, L. (1994). Minimaxity, more or less. In Statistical Decision Theory and Related Topics V (J. Berger and S. S. Gupta, eds.) 1–18. Springer, New York. · Zbl 0787.62002
[14] Brown, L. (2000). An essay on statistical decision theory. J. Amer. Statist. Assoc. 95 1277–1281. · Zbl 1009.62502 · doi:10.2307/2669769
[15] Brown, L., Cai, T. and DasGupta, A. (2001). Interval estimation for a binomial proportion (with discussion). Statist. Sci. 16 101–133. · Zbl 1059.62533 · doi:10.1214/ss/1009213286
[16] Brown, L., Cai, T. and DasGupta, A. (2002). Confidence intervals for a binomial proportion and asymptotic expansions. Ann. Statist. 30 160–201. · Zbl 1012.62026 · doi:10.1214/aos/1015362189
[17] Brown, L., Cai, T. and DasGupta, A. (2003). Interval estimation in exponential families. Statist. Sinica 13 19–49. · Zbl 1017.62027
[18] Brown, L. et al. (1999). Statistical controversies in Census 2000. Jurimetrics Journal 39 347–375.
[19] Brown, L. and Farrell, R. (1990). A lower bound for the risk in estimating the value of a probability density. J. Amer. Statist. Assoc. 85 1147–1153. · Zbl 0717.62031 · doi:10.2307/2289614
[20] Brown, L. and Gajek, L. (1990). Information inequalities for the Bayes risk. Ann. Statist. 18 1578–1594. JSTOR: · Zbl 0722.62003 · doi:10.1214/aos/1176347867
[21] Brown, L. and Low, M. (1996). A constrained risk inequality with applications to nonparametric function estimation. Ann. Statist. 24 2524–2535. · Zbl 0867.62023 · doi:10.1214/aos/1032181166
[22] Brown, L., Olkin, I., Sacks, J. and Wynn, H., eds. (1985). Jack Carl Kiefer Collected Papers 1 – 3 . Springer, New York.
[23] Brown, L., Olkin, I., Sacks, J. and Wynn, H., eds. (1986). Jack Carl Kiefer Collected Papers Suppl . Springer, New York. · Zbl 0596.62001
[24] Brown, L. and Rinott, Y. (1988). Inequalities for multivariate infinitely divisible processes. Ann. Probab. 16 642–657. JSTOR: · Zbl 0646.60018 · doi:10.1214/aop/1176991777
[25] Cox, D. and Lewis, P. A. W. (1966). Statistical Analysis of Series of Events . Methuen, London. · Zbl 0148.14005
[26] Donoho, D. and Liu, R. (1991). Geometrizing rates of convergence, II, III. Ann. Statist. 19 633–667, 668–701. · Zbl 0754.62028
[27] Donoho, D., Liu, R. and MacGibbon, B. (1990). Minimax risk over hyperrectangles, and implications. Ann. Statist. 18 1416–1437. JSTOR: · Zbl 0705.62018 · doi:10.1214/aos/1176347758
[28] Eaton, M. L. (1992). A statistical diptych: Admissible inferences—recurrence of symmetric Markov chains. Ann. Statist. 20 1147–1179. JSTOR: · Zbl 0767.62002 · doi:10.1214/aos/1176348764
[29] Eaton, M. L. (2001). Markov chain conditions for admissibility in estimation problems with quadratic loss. In State of the Art in Probability and Statistics. Festschrift for Willem R. van Zwet (M. de Gunst, C. Klaassen and A. van der Vaart, eds.) 223–243. IMS, Beachwood, OH. · Zbl 1373.62037
[30] Efromovich, S. and Pinsker, M. (1996). Sharp-optimal and adaptive estimation for heteroscedastic nonparametric regression. Statist. Sinica 6 925–942. · Zbl 0857.62037
[31] Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Ann. Statist. 7 1–26. JSTOR: · Zbl 0406.62024 · doi:10.1214/aos/1176344552
[32] Farrell, R. (1972). On the best obtainable asymptotic rates of convergence in estimation of a density function at a point. Ann. Math. Statist. 43 170–180. · Zbl 0238.62049 · doi:10.1214/aoms/1177692711
[33] Gelfand, A. and Smith, A. F. M. (1990). Sampling based approaches to calculating marginal densities. J. Amer. Statist. Assoc. 85 398–409. · Zbl 0702.62020 · doi:10.2307/2289776
[34] Hodges, J. L., Jr. and Lehmann, E. L. (1951). Some applications of the Cramér–Rao inequality. Proc. Second Berkeley Symp. Math. Statist. Probab. 13–22. Univ. California Press, Berkeley. · Zbl 0044.14404
[35] Huber, P. J. (1964). Robust estimation of a location parameter. Ann. Math. Statist. 35 73–101. · Zbl 0136.39805 · doi:10.1214/aoms/1177703732
[36] James, W. and Stein, C. (1961). Estimation with quadratic loss. Proc. Fourth Berkeley Symp. Math. Statist. Probab. 1 361–379. Univ. California Press, Berkeley. · Zbl 1281.62026
[37] Kiefer, J. (1957). Invariance, minimax sequential estimation and continuous times processes. Ann. Math. Statist. 28 573–601. · Zbl 0080.13004 · doi:10.1214/aoms/1177706874
[38] Lehmann, E. L. (1959). Testing Statistical Hypothesis . Wiley, New York. · Zbl 0089.14102
[39] Li, X. (2003). Infinitely divisible time series models. Ph.D. dissertation, Univ. Pennsylvania, Philadelphia.
[40] Parzen, E. (1962). On the estimation of a probability density function and mode. Ann. Math. Statist. 33 1065–1076. · Zbl 0116.11302 · doi:10.1214/aoms/1177704472
[41] Rosenblatt, M. (1956). Some remarks on some nonparametric estimates of a density function. Ann. Math. Statist. 27 832–837. · Zbl 0073.14602 · doi:10.1214/aoms/1177728190
[42] Stein, C. (1955). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. Proc. Third Berkeley Symp. Math. Statist. Probab. 1 197–206. Univ. California Press, Berkeley. · Zbl 0073.35602
[43] Stein, C. (1959). The admissibility of Pitman’s estimator of a single location parameter. Ann. Math. Statist. 30 970–979. · Zbl 0087.15101 · doi:10.1214/aoms/1177706080
[44] Stein, C. (1981). Estimation of the mean of a multivariate normal distribution. Ann. Statist. 9 1135–1151. JSTOR: · Zbl 0476.62035 · doi:10.1214/aos/1176345632
[45] Strawderman, W. E. (1971). Proper Bayes minimax estimators of the multivariate normal mean. Ann. Math. Statist. 42 385–388. · Zbl 0222.62006 · doi:10.1214/aoms/1177693528
[46] Zhao, L. (2000). Bayesian aspects of some nonparametric problems. Ann. Statist. 28 532–552. · Zbl 1010.62025 · doi:10.1214/aos/1016218229
[47] Zhao, Z. (2003). Analysis of dual system estimation in the 2000 Decennial Census. Ph.D. dissertation, Univ. Pennsylvania, Philadelphia.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.