Ekici, Mehmet Kinky breathers, W-shaped and multi-peak soliton interactions for Kudryashov’s quintuple power-law coupled with dual form of non-local refractive index structure. (English) Zbl 07641540 Chaos Solitons Fractals 159, Article ID 112172, 13 p. (2022). MSC: 35Qxx 35Cxx 78Axx PDF BibTeX XML Cite \textit{M. Ekici}, Chaos Solitons Fractals 159, Article ID 112172, 13 p. (2022; Zbl 07641540) Full Text: DOI OpenURL
Larbi, Lilia; Trabelsi, Nihed Blow-up in coupled solutions for a \(4\)-dimensional semilinear elliptic Kuramoto-Sivashinsky system. (English) Zbl 07624534 Taiwanese J. Math. 26, No. 6, 1163-1201 (2022). MSC: 35J58 35A01 PDF BibTeX XML Cite \textit{L. Larbi} and \textit{N. Trabelsi}, Taiwanese J. Math. 26, No. 6, 1163--1201 (2022; Zbl 07624534) Full Text: DOI OpenURL
Böer, Eduardo De S.; Miyagaki, Olímpio H. The Choquard logarithmic equation involving a nonlinearity with exponential growth. (English) Zbl 1501.35190 Topol. Methods Nonlinear Anal. 60, No. 1, 363-385 (2022). MSC: 35J61 35J15 35B33 35A01 35A15 PDF BibTeX XML Cite \textit{E. De S. Böer} and \textit{O. H. Miyagaki}, Topol. Methods Nonlinear Anal. 60, No. 1, 363--385 (2022; Zbl 1501.35190) Full Text: DOI arXiv Link OpenURL
Tian, Xingliang Kirchhoff type elliptic systems with exponential growth nonlinearities. (English) Zbl 1498.35250 Topol. Methods Nonlinear Anal. 59, No. 2B, 757-777 (2022). MSC: 35J57 35J62 35A01 35A15 PDF BibTeX XML Cite \textit{X. Tian}, Topol. Methods Nonlinear Anal. 59, No. 2B, 757--777 (2022; Zbl 1498.35250) Full Text: DOI OpenURL
Hu, Mengyu; Li, Nian; Zeng, Xiangyong On the differential uniformity and nonlinearity of a class of permutation quadrinomials over \(\mathbb{F}_{2^{2m}} \). (English) Zbl 07570205 Commun. Math. Res. 38, No. 2, 223-245 (2022). MSC: 05A05 11T06 11T23 11T55 PDF BibTeX XML Cite \textit{M. Hu} et al., Commun. Math. Res. 38, No. 2, 223--245 (2022; Zbl 07570205) Full Text: DOI OpenURL
Nguyen, Anh Tuan; Caraballo, Tomás; Tuan, Nguyen Huy On the initial value problem for a class of nonlinear biharmonic equation with time-fractional derivative. (English) Zbl 1501.35443 Proc. R. Soc. Edinb., Sect. A, Math. 152, No. 4, 989-1031 (2022). Reviewer: Ismail Huseynov (Mersin) MSC: 35R11 26A33 33E12 35B40 35K30 35K58 PDF BibTeX XML Cite \textit{A. T. Nguyen} et al., Proc. R. Soc. Edinb., Sect. A, Math. 152, No. 4, 989--1031 (2022; Zbl 1501.35443) Full Text: DOI arXiv OpenURL
Xu, Xiangsheng Partial regularity for an exponential PDE in crystal surface models. (English) Zbl 1495.35066 Nonlinearity 35, No. 8, 4392-4425 (2022). MSC: 35B65 35D30 35J40 35J62 35Q82 35R70 PDF BibTeX XML Cite \textit{X. Xu}, Nonlinearity 35, No. 8, 4392--4425 (2022; Zbl 1495.35066) Full Text: DOI arXiv OpenURL
Deng, Shuo; Li, Jiyong A uniformly accurate exponential wave integrator Fourier pseudo-spectral method with energy-preservation for long-time dynamics of the nonlinear Klein-Gordon equation. (English) Zbl 07533823 Appl. Numer. Math. 178, 166-191 (2022). MSC: 65M70 35Q55 65M12 PDF BibTeX XML Cite \textit{S. Deng} and \textit{J. Li}, Appl. Numer. Math. 178, 166--191 (2022; Zbl 07533823) Full Text: DOI OpenURL
Furioli, Giulia; Kawakami, Tatsuki; Terraneo, Elide Heat equation with an exponential nonlinear boundary condition in the half space. (English) Zbl 1490.35206 SN Partial Differ. Equ. Appl. 3, No. 3, Paper No. 36, 44 p. (2022). MSC: 35K60 35A01 35B40 46E30 PDF BibTeX XML Cite \textit{G. Furioli} et al., SN Partial Differ. Equ. Appl. 3, No. 3, Paper No. 36, 44 p. (2022; Zbl 1490.35206) Full Text: DOI OpenURL
Nguyen, Huy Tuan; Tuan, Nguyen Anh; Yang, Chao Global well-posedness for fractional Sobolev-Galpern type equations. (English) Zbl 1489.35303 Discrete Contin. Dyn. Syst. 42, No. 6, 2637-2665 (2022). MSC: 35R11 35K20 35K58 35K70 PDF BibTeX XML Cite \textit{H. T. Nguyen} et al., Discrete Contin. Dyn. Syst. 42, No. 6, 2637--2665 (2022; Zbl 1489.35303) Full Text: DOI arXiv OpenURL
Deng, Shengbing; Luo, Wenshan On a Kirchhoff Choquard type equation with magnetic field involving exponential critical growth in \(\mathbb{R}^2\). (English) Zbl 1490.35163 Appl. Math. Lett. 131, Article ID 108030, 7 p. (2022). MSC: 35J62 35B33 35A01 35A15 PDF BibTeX XML Cite \textit{S. Deng} and \textit{W. Luo}, Appl. Math. Lett. 131, Article ID 108030, 7 p. (2022; Zbl 1490.35163) Full Text: DOI OpenURL
Hajaiej, Hichem; Stefanov, Atanas G. On the instability of the Ruf-Sani solitons for the NLS with exponential nonlinearity. (English) Zbl 1490.35419 Appl. Math. Lett. 130, Article ID 107988, 8 p. (2022). MSC: 35Q55 35Q41 35C08 35B44 49M41 PDF BibTeX XML Cite \textit{H. Hajaiej} and \textit{A. G. Stefanov}, Appl. Math. Lett. 130, Article ID 107988, 8 p. (2022; Zbl 1490.35419) Full Text: DOI arXiv OpenURL
Tu, Nguyen Xuan Global attractor for a semilinear strongly degenerate parabolic equation with exponential nonlinearity in unbounded domains. (English) Zbl 1487.35104 Commun. Korean Math. Soc. 37, No. 2, 423-443 (2022). MSC: 35B41 35D30 35K15 35K65 PDF BibTeX XML Cite \textit{N. X. Tu}, Commun. Korean Math. Soc. 37, No. 2, 423--443 (2022; Zbl 1487.35104) Full Text: DOI OpenURL
Kumar, Deepak; Rădulescu, Vicenţiu D.; Sreenadh, Konijeti Unbalanced fractional elliptic problems with exponential nonlinearity: subcritical and critical cases. (English) Zbl 1491.35215 Topol. Methods Nonlinear Anal. 59, No. 1, 277-302 (2022). Reviewer: Dumitru Motreanu (Perpignan) MSC: 35J62 35R11 35J75 35A01 35A15 PDF BibTeX XML Cite \textit{D. Kumar} et al., Topol. Methods Nonlinear Anal. 59, No. 1, 277--302 (2022; Zbl 1491.35215) Full Text: DOI arXiv OpenURL
Souplet, Philippe On refined blowup estimates for the exponential reaction-diffusion equation. (English) Zbl 1487.35128 SN Partial Differ. Equ. Appl. 3, No. 1, Paper No. 16, 9 p. (2022). MSC: 35B44 35B40 35K20 35K58 PDF BibTeX XML Cite \textit{P. Souplet}, SN Partial Differ. Equ. Appl. 3, No. 1, Paper No. 16, 9 p. (2022; Zbl 1487.35128) Full Text: DOI arXiv OpenURL
Nguyen, Anh Tuan; Yang, Chao On a time-space fractional diffusion equation with a semilinear source of exponential type. (English) Zbl 1486.35441 Electron Res. Arch. 30, No. 4, 1354-1373 (2022). MSC: 35R11 35K15 PDF BibTeX XML Cite \textit{A. T. Nguyen} and \textit{C. Yang}, Electron Res. Arch. 30, No. 4, 1354--1373 (2022; Zbl 1486.35441) Full Text: DOI OpenURL
Ishige, Kazuhiro; Okabe, Shinya; Sato, Tokushi Thresholds for the existence of solutions to inhomogeneous elliptic equations with general exponential nonlinearity. (English) Zbl 1485.35235 Adv. Nonlinear Anal. 11, 968-992 (2022). MSC: 35J91 35J05 35A01 PDF BibTeX XML Cite \textit{K. Ishige} et al., Adv. Nonlinear Anal. 11, 968--992 (2022; Zbl 1485.35235) Full Text: DOI OpenURL
Duong, Anh Tuan; Nguyen, Van Hoang A Liouville-type theorem for fractional elliptic equation with exponential nonlinearity. (English) Zbl 1485.35090 Mediterr. J. Math. 19, No. 2, Paper No. 91, 16 p. (2022). MSC: 35B53 35B35 35J61 35R11 PDF BibTeX XML Cite \textit{A. T. Duong} and \textit{V. H. Nguyen}, Mediterr. J. Math. 19, No. 2, Paper No. 91, 16 p. (2022; Zbl 1485.35090) Full Text: DOI arXiv OpenURL
Chi, Tran Thi Quynh; Thuy, Le Thi; Tu, Nguyen Xuan Existence and asymptotic behavior of solutions to a class of semilinear degenerate parabolic equations with nonlinearities of arbitrary order. (English) Zbl 1483.35041 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 29, No. 1, 77-89 (2022). MSC: 35B41 35D30 35K20 35K58 35K65 PDF BibTeX XML Cite \textit{T. T. Q. Chi} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 29, No. 1, 77--89 (2022; Zbl 1483.35041) Full Text: Link OpenURL
Santos, Jefferson Abrantes; Severo, Uberlandio B. On a class of quasilinear equations involving critical exponential growth and concave terms in \(\mathbb{R}^N\). (English) Zbl 1481.35215 Ann. Henri Poincaré 23, No. 1, 1-24 (2022). MSC: 35J62 35J92 35B33 35A01 35J20 PDF BibTeX XML Cite \textit{J. A. Santos} and \textit{U. B. Severo}, Ann. Henri Poincaré 23, No. 1, 1--24 (2022; Zbl 1481.35215) Full Text: DOI OpenURL
Diblík, Josef; Khusainov, Denys Ya.; Shatyrko, Andriy; Baštinec, Jaromír; Svoboda, Zdeněk Absolute stability of neutral systems with Lurie type nonlinearity. (English) Zbl 1480.93336 Adv. Nonlinear Anal. 11, 726-740 (2022). MSC: 93D23 93D05 93C23 34K20 93C10 PDF BibTeX XML Cite \textit{J. Diblík} et al., Adv. Nonlinear Anal. 11, 726--740 (2022; Zbl 1480.93336) Full Text: DOI OpenURL
Deng, Shengbing; Xiong, Sihui Existence of ground state solutions for fractional Kirchhoff Choquard problems with critical Trudinger-Moser nonlinearity. (English) Zbl 1499.35283 Comput. Appl. Math. 41, No. 1, Paper No. 21, 18 p. (2022). MSC: 35J62 35J92 35R11 PDF BibTeX XML Cite \textit{S. Deng} and \textit{S. Xiong}, Comput. Appl. Math. 41, No. 1, Paper No. 21, 18 p. (2022; Zbl 1499.35283) Full Text: DOI OpenURL
Figueiredo, Giovany; Montenegro, Marcelo; Stapenhorst, Matheus F. A log-exp elliptic equation in the plane. (English) Zbl 1481.35230 Discrete Contin. Dyn. Syst. 42, No. 1, 481-504 (2022). MSC: 35J91 35J05 35J75 35A01 35A15 PDF BibTeX XML Cite \textit{G. Figueiredo} et al., Discrete Contin. Dyn. Syst. 42, No. 1, 481--504 (2022; Zbl 1481.35230) Full Text: DOI OpenURL
Guo, Zongming; Huang, Xia; Ye, Dong; Zhou, Feng Qualitative properties of Hénon type equations with exponential nonlinearity. (English) Zbl 1480.35114 Nonlinearity 35, No. 1, 492-512 (2022). MSC: 35J05 35J91 35B35 35B08 35B40 PDF BibTeX XML Cite \textit{Z. Guo} et al., Nonlinearity 35, No. 1, 492--512 (2022; Zbl 1480.35114) Full Text: DOI arXiv OpenURL
Price, Brock C.; Xu, Xiangsheng Strong solutions to a fourth order exponential PDE describing epitaxial growth. (English) Zbl 1478.35094 J. Differ. Equations 306, 220-250 (2022). MSC: 35D35 35K35 35K58 35Q82 PDF BibTeX XML Cite \textit{B. C. Price} and \textit{X. Xu}, J. Differ. Equations 306, 220--250 (2022; Zbl 1478.35094) Full Text: DOI arXiv OpenURL
Wang, Chang-Jian; Zheng, Gao-Feng Existence of solutions to a Neumann boundary value problem with exponential nonlinearity. (English) Zbl 1479.35472 J. Math. Anal. Appl. 505, No. 1, Article ID 125458, 33 p. (2022). MSC: 35J91 35B40 PDF BibTeX XML Cite \textit{C.-J. Wang} and \textit{G.-F. Zheng}, J. Math. Anal. Appl. 505, No. 1, Article ID 125458, 33 p. (2022; Zbl 1479.35472) Full Text: DOI OpenURL
Zhang, Yuanyuan; Yang, Yang; Liang, Sihua Least energy sign-changing solution for \(N\)-Laplacian problem with logarithmic and exponential nonlinearities. (English) Zbl 1479.35499 J. Math. Anal. Appl. 505, No. 1, Article ID 125432, 16 p. (2022). MSC: 35J92 35A01 PDF BibTeX XML Cite \textit{Y. Zhang} et al., J. Math. Anal. Appl. 505, No. 1, Article ID 125432, 16 p. (2022; Zbl 1479.35499) Full Text: DOI OpenURL
Petruşel, Adrian; Rus, Ioan A.; Şerban, Marcel Adrian Theoretical and numerical considerations on Bratu-type problems. (English) Zbl 07577401 Stud. Univ. Babeș-Bolyai, Math. 66, No. 1, 29-46 (2021). MSC: 34B18 47H10 65R20 34B27 45G10 35K58 PDF BibTeX XML Cite \textit{A. Petruşel} et al., Stud. Univ. Babeș-Bolyai, Math. 66, No. 1, 29--46 (2021; Zbl 07577401) Full Text: DOI OpenURL
Azouagh, Nabil; El Melhaoui, Said Detecting exponential component in autoregressive models: comparative study between several tests of nonlinearity. (English) Zbl 1497.62228 Commun. Stat., Simulation Comput. 50, No. 11, 3273-3285 (2021). MSC: 62M10 62F05 PDF BibTeX XML Cite \textit{N. Azouagh} and \textit{S. El Melhaoui}, Commun. Stat., Simulation Comput. 50, No. 11, 3273--3285 (2021; Zbl 1497.62228) Full Text: DOI OpenURL
Saanouni, T. Non global solutions for a class of Klein-Gordon equations. (English) Zbl 1485.35075 Azerb. J. Math. 11, No. 2, 39-47 (2021). MSC: 35B44 35L15 35L71 PDF BibTeX XML Cite \textit{T. Saanouni}, Azerb. J. Math. 11, No. 2, 39--47 (2021; Zbl 1485.35075) Full Text: Link OpenURL
Albuquerque, Francisco S. B.; Ferreira, Marcelo C.; Severo, Uberlandio B. Ground state solutions for a nonlocal equation in \(\mathbb{R}^2\) involving vanishing potentials and exponential critical growth. (English) Zbl 1481.35227 Milan J. Math. 89, No. 2, 263-294 (2021). MSC: 35J91 35A01 35A15 PDF BibTeX XML Cite \textit{F. S. B. Albuquerque} et al., Milan J. Math. 89, No. 2, 263--294 (2021; Zbl 1481.35227) Full Text: DOI arXiv OpenURL
Azouagh, Nabil; El Melhaoui, Said Detection of EXPAR nonlinearity in the presence of a nuisance unidentified under the null hypothesis. (English) Zbl 1476.62177 Sankhyā, Ser. B 83, No. 2, 397-429 (2021). MSC: 62M10 62G10 62F05 62F40 PDF BibTeX XML Cite \textit{N. Azouagh} and \textit{S. El Melhaoui}, Sankhyā, Ser. B 83, No. 2, 397--429 (2021; Zbl 1476.62177) Full Text: DOI OpenURL
Hsieh, Chia-Yu; Tai, Ho-Man; Yu, Yong Singular solutions to some semilinear elliptic equations: an approach of Born-Infeld approximation. (English) Zbl 1480.35261 Commun. Math. Sci. 19, No. 2, 557-584 (2021). MSC: 35J91 35J25 35J75 35R30 PDF BibTeX XML Cite \textit{C.-Y. Hsieh} et al., Commun. Math. Sci. 19, No. 2, 557--584 (2021; Zbl 1480.35261) Full Text: DOI OpenURL
Carvalho, J. L.; Figueiredo, G. M.; Furtado, M. F.; Medeiros, E. On a zero-mass \((N,q)\)-Laplacian equation in \(\mathbb{R}^N\) with exponential critical growth. (English) Zbl 1473.35310 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 213, Article ID 112488, 14 p. (2021). MSC: 35J92 35B33 35A01 35A15 PDF BibTeX XML Cite \textit{J. L. Carvalho} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 213, Article ID 112488, 14 p. (2021; Zbl 1473.35310) Full Text: DOI OpenURL
Presoto, Adilson Eduardo The non-uniqueness of the limit solutions of the scalar Chern-Simons equations with signed measures. (English) Zbl 1499.35601 Math. Bohem. 146, No. 3, 235-249 (2021). MSC: 35R06 35J25 35J61 PDF BibTeX XML Cite \textit{A. E. Presoto}, Math. Bohem. 146, No. 3, 235--249 (2021; Zbl 1499.35601) Full Text: DOI OpenURL
Majdoub, Mohamed; Tayachi, Slim Global existence and decay estimates for the heat equation with exponential nonlinearity. (English) Zbl 1472.35226 Funkc. Ekvacioj, Ser. Int. 64, No. 2, 237-259 (2021). MSC: 35K58 35A01 35B40 35K15 PDF BibTeX XML Cite \textit{M. Majdoub} and \textit{S. Tayachi}, Funkc. Ekvacioj, Ser. Int. 64, No. 2, 237--259 (2021; Zbl 1472.35226) Full Text: DOI arXiv OpenURL
Feng, Yue; Yi, Wenfan Uniform error bounds of an exponential wave integrator for the long-time dynamics of the nonlinear Klein-Gordon equation. (English) Zbl 1496.65178 Multiscale Model. Simul. 19, No. 3, 1212-1235 (2021). MSC: 65M70 65M06 65N35 65M12 65M15 35L70 81V10 81-08 PDF BibTeX XML Cite \textit{Y. Feng} and \textit{W. Yi}, Multiscale Model. Simul. 19, No. 3, 1212--1235 (2021; Zbl 1496.65178) Full Text: DOI arXiv OpenURL
Li, Yanan; Yang, Zhijian Robustness of attractors for non-autonomous Kirchhoff wave models with strong nonlinear damping. (English) Zbl 1480.37083 Appl. Math. Optim. 84, No. 1, 245-272 (2021). Reviewer: Bixiang Wang (Socorro) MSC: 37L15 35L05 37L30 35B20 35B33 35B40 PDF BibTeX XML Cite \textit{Y. Li} and \textit{Z. Yang}, Appl. Math. Optim. 84, No. 1, 245--272 (2021; Zbl 1480.37083) Full Text: DOI OpenURL
Le, Thi Thuy; Nguyen, Duong Toan Uniform attractors of nonclassical diffusion equations on \(\mathbb{R}^N\) with memory and singularly oscillating external forces. (English) Zbl 1469.35049 Math. Methods Appl. Sci. 44, No. 1, 820-852 (2021). MSC: 35B41 35D30 35K15 35K58 35R09 45K05 76R50 PDF BibTeX XML Cite \textit{T. T. Le} and \textit{D. T. Nguyen}, Math. Methods Appl. Sci. 44, No. 1, 820--852 (2021; Zbl 1469.35049) Full Text: DOI OpenURL
Foss, Frederick J. II; Glowinski, Roland When Bingham meets Bratu: mathematical and computational investigations. (English) Zbl 1481.65216 ESAIM, Control Optim. Calc. Var. 27, Paper No. 27, 42 p. (2021). MSC: 65N25 65M60 65M06 65N30 35P30 49M15 49M41 65K15 65H10 76A05 74C10 76M10 74S05 PDF BibTeX XML Cite \textit{F. J. Foss II} and \textit{R. Glowinski}, ESAIM, Control Optim. Calc. Var. 27, Paper No. 27, 42 p. (2021; Zbl 1481.65216) Full Text: DOI OpenURL
Choi, Sun-Ho; Seo, Hyowon Synchronization in a power balance system with inertia and nonlinear derivatives. (English) Zbl 1471.34110 SIAM J. Appl. Math. 81, No. 3, 1202-1225 (2021). Reviewer: Carlo Laing (Auckland) MSC: 34D06 34A34 34C15 PDF BibTeX XML Cite \textit{S.-H. Choi} and \textit{H. Seo}, SIAM J. Appl. Math. 81, No. 3, 1202--1225 (2021; Zbl 1471.34110) Full Text: DOI OpenURL
Ji, Chao; Rădulescu, Vicenţiu D. Multi-bump solutions for the nonlinear magnetic Schrödinger equation with exponential critical growth in \(\mathbb{R}^2 \). (English) Zbl 1458.35171 Manuscr. Math. 164, No. 3-4, 509-542 (2021). Reviewer: Patrick Winkert (Berlin) MSC: 35J60 35Q55 35B33 PDF BibTeX XML Cite \textit{C. Ji} and \textit{V. D. Rădulescu}, Manuscr. Math. 164, No. 3--4, 509--542 (2021; Zbl 1458.35171) Full Text: DOI OpenURL
Zhu, Mao Chun; Wang, Jun; Qian, Xiao Yong Existence of solutions to nonlinear Schrödinger equations involving \(N\)-Laplacian and potentials vanishing at infinity. (English) Zbl 1465.35145 Acta Math. Sin., Engl. Ser. 36, No. 10, 1151-1170 (2020). MSC: 35J10 35Q55 35B33 35A01 PDF BibTeX XML Cite \textit{M. C. Zhu} et al., Acta Math. Sin., Engl. Ser. 36, No. 10, 1151--1170 (2020; Zbl 1465.35145) Full Text: DOI OpenURL
Felix, Diego D.; Furtado, Marcelo F.; Medeiros, Everaldo S. Semilinear elliptic problems involving exponential critical growth in the half-space. (English) Zbl 1460.35167 Commun. Pure Appl. Anal. 19, No. 10, 4937-4953 (2020). MSC: 35J91 35J25 35A01 35J20 PDF BibTeX XML Cite \textit{D. D. Felix} et al., Commun. Pure Appl. Anal. 19, No. 10, 4937--4953 (2020; Zbl 1460.35167) Full Text: DOI OpenURL
Aouaoui, Sami; Jlel, Rahma On some elliptic equation in the whole Euclidean space \(\mathbb{R}^2\) with nonlinearities having new exponential growth condition. (English) Zbl 1464.35118 Commun. Pure Appl. Anal. 19, No. 10, 4771-4796 (2020). MSC: 35J61 35A01 PDF BibTeX XML Cite \textit{S. Aouaoui} and \textit{R. Jlel}, Commun. Pure Appl. Anal. 19, No. 10, 4771--4796 (2020; Zbl 1464.35118) Full Text: DOI OpenURL
Dinh, Van Duong; Keraani, Sahbi; Majdoub, Mohamed Long time dynamics for the focusing nonlinear Schrödinger equation with exponential nonlinearities. (English) Zbl 1454.35335 Dyn. Partial Differ. Equ. 17, No. 4, 329-360 (2020). MSC: 35Q55 35Q41 35P25 35B44 35B40 35A01 PDF BibTeX XML Cite \textit{V. D. Dinh} et al., Dyn. Partial Differ. Equ. 17, No. 4, 329--360 (2020; Zbl 1454.35335) Full Text: DOI arXiv OpenURL
Wang, Xiaojie An efficient explicit full-discrete scheme for strong approximation of stochastic Allen-Cahn equation. (English) Zbl 07243121 Stochastic Processes Appl. 130, No. 10, 6271-6299 (2020). MSC: 65C30 60H35 60H15 PDF BibTeX XML Cite \textit{X. Wang}, Stochastic Processes Appl. 130, No. 10, 6271--6299 (2020; Zbl 07243121) Full Text: DOI OpenURL
Ye, Yaojun Global solution and blow-up of logarithmic Klein-Gordon equation. (English) Zbl 1445.35088 Bull. Korean Math. Soc. 57, No. 2, 281-294 (2020). MSC: 35B44 35L71 35L20 35B40 PDF BibTeX XML Cite \textit{Y. Ye}, Bull. Korean Math. Soc. 57, No. 2, 281--294 (2020; Zbl 1445.35088) Full Text: DOI OpenURL
Panin, A. A.; Shlyapugin, G. I. Local solvability and global unsolvability of a model of ion-sound waves in a plasma. (English. Russian original) Zbl 1442.35442 Math. Notes 107, No. 3, 464-477 (2020); translation from Mat. Zametki 107, No. 3, 426-441 (2020). MSC: 35Q60 35B44 78A15 76X05 82D10 PDF BibTeX XML Cite \textit{A. A. Panin} and \textit{G. I. Shlyapugin}, Math. Notes 107, No. 3, 464--477 (2020; Zbl 1442.35442); translation from Mat. Zametki 107, No. 3, 426--441 (2020) Full Text: DOI OpenURL
Guo, Siyan; Yang, Yanbing High energy blow up for two-dimensional generalized exponential-type Boussinesq equation. (English) Zbl 1439.35087 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111864, 9 p. (2020). MSC: 35B44 35Q35 PDF BibTeX XML Cite \textit{S. Guo} and \textit{Y. Yang}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111864, 9 p. (2020; Zbl 1439.35087) Full Text: DOI OpenURL
Bchatnia, Ahmed; Mehenaoui, Naima Decay of the local energy for the solutions of the critical Klein-Gordon equation. (English) Zbl 1458.35050 Semigroup Forum 100, No. 3, 698-716 (2020). MSC: 35B40 35L15 35L71 47D06 PDF BibTeX XML Cite \textit{A. Bchatnia} and \textit{N. Mehenaoui}, Semigroup Forum 100, No. 3, 698--716 (2020; Zbl 1458.35050) Full Text: DOI arXiv OpenURL
Xu, Na; Ma, Shiwang; Xing, Rong Existence and asymptotic behavior of vector solutions for linearly coupled Choquard-type systems. (English) Zbl 1447.35154 Appl. Math. Lett. 104, Article ID 106249, 7 p. (2020). Reviewer: Fukun Zhao (Kunming) MSC: 35J61 35J47 35J50 35B08 PDF BibTeX XML Cite \textit{N. Xu} et al., Appl. Math. Lett. 104, Article ID 106249, 7 p. (2020; Zbl 1447.35154) Full Text: DOI OpenURL
Matsue, Kaname; Takayasu, Akitoshi Rigorous numerics of blow-up solutions for ODEs with exponential nonlinearity. (English) Zbl 1436.34029 J. Comput. Appl. Math. 374, Article ID 112607, 11 p. (2020). MSC: 34C11 65G99 PDF BibTeX XML Cite \textit{K. Matsue} and \textit{A. Takayasu}, J. Comput. Appl. Math. 374, Article ID 112607, 11 p. (2020; Zbl 1436.34029) Full Text: DOI arXiv OpenURL
Bartolucci, Daniele; Wolansky, Gershon Maximal entropy solutions under prescribed mass and energy. (English) Zbl 1444.35069 J. Differ. Equations 268, No. 11, 6646-6665 (2020). Reviewer: Dian K. Palagachev (Bari) MSC: 35J61 35A01 35A02 PDF BibTeX XML Cite \textit{D. Bartolucci} and \textit{G. Wolansky}, J. Differ. Equations 268, No. 11, 6646--6665 (2020; Zbl 1444.35069) Full Text: DOI OpenURL
Gyulov, Tihomir B.; Koleva, Miglena N.; Vulkov, Lubin G. Efficient finite difference method for optimal portfolio in a power utility regime-switching model. (English) Zbl 1499.65391 Int. J. Comput. Math. 96, No. 11, 2115-2134 (2019). MSC: 65M06 35K51 91G10 PDF BibTeX XML Cite \textit{T. B. Gyulov} et al., Int. J. Comput. Math. 96, No. 11, 2115--2134 (2019; Zbl 1499.65391) Full Text: DOI OpenURL
Bensouilah, Abdelwahab; Dinh, Van Duong; Majdoub, Mohamed Scattering in the weighted \( L^2 \)-space for a 2D nonlinear Schrödinger equation with inhomogeneous exponential nonlinearity. (English) Zbl 1483.35198 Commun. Pure Appl. Anal. 18, No. 5, 2735-2755 (2019). MSC: 35Q55 35L70 35B40 35B33 37K06 37L50 PDF BibTeX XML Cite \textit{A. Bensouilah} et al., Commun. Pure Appl. Anal. 18, No. 5, 2735--2755 (2019; Zbl 1483.35198) Full Text: DOI arXiv OpenURL
Lu, Linlin; Sun, Peng; Xu, Linsen; Luo, Minzhou Adaptive robust motion control for linear induction motor with electromagnetic nonlinearity compensation. (English) Zbl 1432.93172 Asian J. Control 21, No. 5, 2441-2450 (2019). MSC: 93C40 93B35 93D23 93C10 93C95 PDF BibTeX XML Cite \textit{L. Lu} et al., Asian J. Control 21, No. 5, 2441--2450 (2019; Zbl 1432.93172) Full Text: DOI OpenURL
Guo, Hongxia; Guo, Zongming; Wan, Fangshu Radial symmetry of non-maximal entire solutions of a bi-harmonic equation with exponential nonlinearity. (English) Zbl 1437.35389 Proc. R. Soc. Edinb., Sect. A, Math. 149, No. 6, 1603-1625 (2019). MSC: 35J91 31B30 35B08 PDF BibTeX XML Cite \textit{H. Guo} et al., Proc. R. Soc. Edinb., Sect. A, Math. 149, No. 6, 1603--1625 (2019; Zbl 1437.35389) Full Text: DOI OpenURL
Chang, Xiuling; Gao, Wenjie An evolution \(p\)-Kirchhoff equation with power exponential nonlinearity and its steady state form. (Chinese. English summary) Zbl 1449.35258 J. Jilin Univ., Sci. 57, No. 4, 729-735 (2019). MSC: 35K55 35K90 35B40 PDF BibTeX XML Cite \textit{X. Chang} and \textit{W. Gao}, J. Jilin Univ., Sci. 57, No. 4, 729--735 (2019; Zbl 1449.35258) Full Text: DOI OpenURL
Hyder, Ali Structure of conformal metrics on \(\mathbb{R}^n\) with constant \(Q\)-curvature. (English) Zbl 1474.35268 Differ. Integral Equ. 32, No. 7-8, 423-454 (2019). MSC: 35J30 53A31 35R11 PDF BibTeX XML Cite \textit{A. Hyder}, Differ. Integral Equ. 32, No. 7--8, 423--454 (2019; Zbl 1474.35268) Full Text: arXiv OpenURL
Bae, Soohyun Infinite multiplicity of stable entire solutions for a semilinear elliptic equation with exponential nonlinearity. (English) Zbl 1435.35168 Proc. R. Soc. Edinb., Sect. A, Math. 149, No. 5, 1371-1404 (2019). Reviewer: Fukun Zhao (Kunming) MSC: 35J61 35B08 35B35 35B40 PDF BibTeX XML Cite \textit{S. Bae}, Proc. R. Soc. Edinb., Sect. A, Math. 149, No. 5, 1371--1404 (2019; Zbl 1435.35168) Full Text: DOI OpenURL
Zhang, Fanghong; Bai, Lihong Attractors for the nonclassical diffusion equations of Kirchhoff type with critical nonlinearity on unbounded domain. (English) Zbl 1428.35410 Dyn. Syst. 34, No. 4, 640-667 (2019). MSC: 35Q35 35B40 35B41 PDF BibTeX XML Cite \textit{F. Zhang} and \textit{L. Bai}, Dyn. Syst. 34, No. 4, 640--667 (2019; Zbl 1428.35410) Full Text: DOI OpenURL
Azouagh, Nabil; El Melhaoui, Said An exponential autoregressive model for the forecasting of annual sunspots number. (English) Zbl 1438.62156 Electron. J. Math. Anal. Appl. 7, No. 3, 17-23 (2019). MSC: 62M10 62M20 62P35 85A25 PDF BibTeX XML Cite \textit{N. Azouagh} and \textit{S. El Melhaoui}, Electron. J. Math. Anal. Appl. 7, No. 3, 17--23 (2019; Zbl 1438.62156) Full Text: Link OpenURL
Wang, Qichun; Stănică, Pantelimon Transparency order for Boolean functions: analysis and construction. (English) Zbl 1419.94051 Des. Codes Cryptography 87, No. 9, 2043-2059 (2019). MSC: 94A60 11T71 11T23 PDF BibTeX XML Cite \textit{Q. Wang} and \textit{P. Stănică}, Des. Codes Cryptography 87, No. 9, 2043--2059 (2019; Zbl 1419.94051) Full Text: DOI OpenURL
Barannyk, T. A. Nonclassical symmetries of a system of nonlinear reaction-diffusion equations. (English. Ukrainian original) Zbl 1420.35022 J. Math. Sci., New York 238, No. 3, 207-214 (2019); translation from Neliniĭni Kolyvannya 20, No. 4, 451-457 (2017). MSC: 35B06 35K57 35C05 PDF BibTeX XML Cite \textit{T. A. Barannyk}, J. Math. Sci., New York 238, No. 3, 207--214 (2019; Zbl 1420.35022); translation from Neliniĭni Kolyvannya 20, No. 4, 451--457 (2017) Full Text: DOI OpenURL
Wang, Qichun; Stănică, Pantelimon A trigonometric sum sharp estimate and new bounds on the nonlinearity of some cryptographic Boolean functions. (English) Zbl 1453.94123 Des. Codes Cryptography 87, No. 8, 1749-1763 (2019). MSC: 94A60 11T71 11L03 PDF BibTeX XML Cite \textit{Q. Wang} and \textit{P. Stănică}, Des. Codes Cryptography 87, No. 8, 1749--1763 (2019; Zbl 1453.94123) Full Text: DOI OpenURL
Ji, Ruihong; Li, Shan; Chen, Hui Nonexistence of type II blowup for heat equation with exponential nonlinearity. (English) Zbl 1409.35108 Chin. Ann. Math., Ser. B 40, No. 2, 309-320 (2019). MSC: 35K55 35B44 35K05 PDF BibTeX XML Cite \textit{R. Ji} et al., Chin. Ann. Math., Ser. B 40, No. 2, 309--320 (2019; Zbl 1409.35108) Full Text: DOI OpenURL
Ding, Pengyan; Yang, Zhijian Attractors of the strongly damped Kirchhoff wave equation on \(\mathbb{R}^{N}\). (English) Zbl 1497.37096 Commun. Pure Appl. Anal. 18, No. 2, 825-843 (2019). MSC: 37L30 35B33 35B40 35B41 35L30 PDF BibTeX XML Cite \textit{P. Ding} and \textit{Z. Yang}, Commun. Pure Appl. Anal. 18, No. 2, 825--843 (2019; Zbl 1497.37096) Full Text: DOI OpenURL
Blanco-Murillo, J. L.; Yagüe-Jiménez, Virginia A method for informed selection of memory-length and nonlinearity-order parameters in Volterra-Wiener systems from exponential sweep excitations. (English) Zbl 1458.93052 Multidimensional Syst. Signal Process. 29, No. 4, 1861-1893 (2018). MSC: 93B30 93C10 PDF BibTeX XML Cite \textit{J. L. Blanco-Murillo} and \textit{V. Yagüe-Jiménez}, Multidimensional Syst. Signal Process. 29, No. 4, 1861--1893 (2018; Zbl 1458.93052) Full Text: DOI OpenURL
Cherniha, Roman; Serov, Mykola; Pliukhin, Oleksii Lie and \(Q\)-conditional symmetries of reaction-diffusion-convection equations with exponential nonlinearities and their application for finding exact solutions. (English) Zbl 1423.35195 Symmetry 10, No. 4, Paper No. 123, 33 p. (2018). MSC: 35K57 35K55 35C05 92D25 PDF BibTeX XML Cite \textit{R. Cherniha} et al., Symmetry 10, No. 4, Paper No. 123, 33 p. (2018; Zbl 1423.35195) Full Text: DOI OpenURL
Bensouilah, Abdelwahab; Draouil, Dhouha; Majdoub, Mohamed Energy critical Schrödinger equation with weighted exponential nonlinearity: local and global well-posedness. (English) Zbl 1428.35482 J. Hyperbolic Differ. Equ. 15, No. 4, 599-621 (2018). MSC: 35Q55 35A01 37L05 35Q41 35A02 PDF BibTeX XML Cite \textit{A. Bensouilah} et al., J. Hyperbolic Differ. Equ. 15, No. 4, 599--621 (2018; Zbl 1428.35482) Full Text: DOI arXiv OpenURL
Shaikhet, Leonid Multi-condition of stability for nonlinear stochastic non-autonomous delay differential equation. (English) Zbl 1456.34078 Mod. Stoch., Theory Appl. 5, No. 3, 337-351 (2018). MSC: 34K50 34K20 60G55 37C60 PDF BibTeX XML Cite \textit{L. Shaikhet}, Mod. Stoch., Theory Appl. 5, No. 3, 337--351 (2018; Zbl 1456.34078) Full Text: DOI arXiv OpenURL
Liu, Linna; Deng, Feiqi \(p\)th moment exponential stability of highly nonlinear neutral pantograph stochastic differential equations driven by Lévy noise. (English) Zbl 1408.34062 Appl. Math. Lett. 86, 313-319 (2018). MSC: 34K50 34K40 34K20 PDF BibTeX XML Cite \textit{L. Liu} and \textit{F. Deng}, Appl. Math. Lett. 86, 313--319 (2018; Zbl 1408.34062) Full Text: DOI OpenURL
Soares, Sérgio H. Monari; Leuyacc, Yony Raul Santaria Hamiltonian elliptic systems in dimension two with potentials which can vanish at infinity. (English) Zbl 1404.35159 Commun. Contemp. Math. 20, No. 8, Article ID 1750053, 37 p. (2018). MSC: 35J47 35J61 PDF BibTeX XML Cite \textit{S. H. M. Soares} and \textit{Y. R. S. Leuyacc}, Commun. Contemp. Math. 20, No. 8, Article ID 1750053, 37 p. (2018; Zbl 1404.35159) Full Text: DOI OpenURL
Pany, Ambit K.; Kundu, Sudeep Optimal error estimates for semidiscrete Galerkin approximations to multi-dimensional Sobolev equations with Burgers’ type nonlinearity. (English) Zbl 1405.65124 Al-Baali, Mehiddin (ed.) et al., Numerical analysis and optimization. Selected papers based on the presentations at the 4th international conference, NAO-IV, Muscat, Oman, January 2–5, 2017. Cham: Springer (ISBN 978-3-319-90025-4/hbk; 978-3-319-90026-1/ebook). Springer Proceedings in Mathematics & Statistics 235, 209-227 (2018). MSC: 65M60 35Q35 76S05 35B45 65M15 PDF BibTeX XML Cite \textit{A. K. Pany} and \textit{S. Kundu}, Springer Proc. Math. Stat. 235, 209--227 (2018; Zbl 1405.65124) Full Text: DOI OpenURL
Azzam, A. Adam Scattering for the two dimensional NLS with (full) exponential nonlinearity. (English) Zbl 1458.35382 Commun. Pure Appl. Anal. 17, No. 3, 1071-1101 (2018). MSC: 35Q55 35P25 35B25 35A01 35A02 PDF BibTeX XML Cite \textit{A. A. Azzam}, Commun. Pure Appl. Anal. 17, No. 3, 1071--1101 (2018; Zbl 1458.35382) Full Text: DOI arXiv OpenURL
Bae, Soohyun; Naito, Yūki Separation structure of radial solutions for semilinear elliptic equations with exponential nonlinearity. (English) Zbl 1398.35087 Discrete Contin. Dyn. Syst. 38, No. 9, 4537-4554 (2018). MSC: 35J91 35B06 PDF BibTeX XML Cite \textit{S. Bae} and \textit{Y. Naito}, Discrete Contin. Dyn. Syst. 38, No. 9, 4537--4554 (2018; Zbl 1398.35087) Full Text: DOI OpenURL
Yang, Zhijian; Li, Yanan Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous Kirchhoff wave models. (English) Zbl 1398.37085 Discrete Contin. Dyn. Syst. 38, No. 5, 2629-2653 (2018). Reviewer: Rodica Luca (Iaşi) MSC: 37L15 37L30 35B40 35B41 PDF BibTeX XML Cite \textit{Z. Yang} and \textit{Y. Li}, Discrete Contin. Dyn. Syst. 38, No. 5, 2629--2653 (2018; Zbl 1398.37085) Full Text: DOI OpenURL
Shomberg, Joseph L. Attractors for damped semilinear wave equations with singularly perturbed acoustic boundary conditions. (English) Zbl 1397.35038 Electron. J. Differ. Equ. 2018, Paper No. 152, 33 p. (2018). MSC: 35B41 35B25 35L20 35L71 35Q40 35Q70 PDF BibTeX XML Cite \textit{J. L. Shomberg}, Electron. J. Differ. Equ. 2018, Paper No. 152, 33 p. (2018; Zbl 1397.35038) Full Text: arXiv Link OpenURL
Yang, Minbo Semiclassical ground state solutions for a Choquard type equation in \(\mathbb{R}^{2}\) with critical exponential growth. (English) Zbl 1400.35086 ESAIM, Control Optim. Calc. Var. 24, No. 1, 177-209 (2018). MSC: 35J15 35J60 35A01 PDF BibTeX XML Cite \textit{M. Yang}, ESAIM, Control Optim. Calc. Var. 24, No. 1, 177--209 (2018; Zbl 1400.35086) Full Text: DOI OpenURL
Anh, Cung The; Tinh, Le Tran; Toi, Vu Manh Global attractors for nonlocal parabolic equations with a new class of nonlinearities. (English) Zbl 1415.35055 J. Korean Math. Soc. 55, No. 3, 531-551 (2018). Reviewer: Bixiang Wang (Socorro) MSC: 35B41 35D30 35K65 35K20 PDF BibTeX XML Cite \textit{C. T. Anh} et al., J. Korean Math. Soc. 55, No. 3, 531--551 (2018; Zbl 1415.35055) Full Text: Link OpenURL
Fujishima, Yohei Global existence and blow-up of solutions for the heat equation with exponential nonlinearity. (English) Zbl 1428.35152 J. Differ. Equations 264, No. 11, 6809-6842 (2018). Reviewer: Yuanyuan Ke (Beijing) MSC: 35K15 35B44 35K57 35B40 35C06 PDF BibTeX XML Cite \textit{Y. Fujishima}, J. Differ. Equations 264, No. 11, 6809--6842 (2018; Zbl 1428.35152) Full Text: DOI OpenURL
Perera, Kanishka; Squassina, Marco Bifurcation results for problems with fractional Trudinger-Moser nonlinearity. (English) Zbl 1374.35185 Discrete Contin. Dyn. Syst., Ser. S 11, No. 3, 561-576 (2018). MSC: 35J92 35P30 PDF BibTeX XML Cite \textit{K. Perera} and \textit{M. Squassina}, Discrete Contin. Dyn. Syst., Ser. S 11, No. 3, 561--576 (2018; Zbl 1374.35185) Full Text: DOI arXiv OpenURL
Barile, Sara; Figueiredo, Giovany M. An existence result for Schrödinger equations with magnetic fields and exponential critical growth. (English) Zbl 1387.35134 J. Elliptic Parabol. Equ. 3, No. 1-2, 105-125 (2017). MSC: 35J10 35B33 PDF BibTeX XML Cite \textit{S. Barile} and \textit{G. M. Figueiredo}, J. Elliptic Parabol. Equ. 3, No. 1--2, 105--125 (2017; Zbl 1387.35134) Full Text: DOI OpenURL
Korpusov, M. O.; Panin, A. A. On the nonextendable solution and blow-up of the solution of the one-dimensional equation of ion-sound waves in a plasma. (English. Russian original) Zbl 1380.35029 Math. Notes 102, No. 3, 350-360 (2017); translation from Mat. Zametki 102, No. 3, 383-395 (2017). MSC: 35B44 35L72 35Q60 PDF BibTeX XML Cite \textit{M. O. Korpusov} and \textit{A. A. Panin}, Math. Notes 102, No. 3, 350--360 (2017; Zbl 1380.35029); translation from Mat. Zametki 102, No. 3, 383--395 (2017) Full Text: DOI OpenURL
Korpusov, Maksim Olegovich; Luk’yanenko, Dmitriĭ Vital’evich; Ovsyannikov, Evgeniĭ Alekseevich; Panin, Aleksandr Anatol’evich Local solvability and decay of the solution of an equation with quadratic noncoercive nonlineatity. (Russian. English summary) Zbl 1382.35288 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 10, No. 2, 107-123 (2017). MSC: 35Q60 35G31 65L04 65L12 35B44 76X05 PDF BibTeX XML Cite \textit{M. O. Korpusov} et al., Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 10, No. 2, 107--123 (2017; Zbl 1382.35288) Full Text: DOI MNR OpenURL
Dao Trong Quyet; Le Thi Thuy; Nguyen Xuan Tu Semilinear strongly degenerate parabolic equations with a new class of nonlinearities. (English) Zbl 1371.35012 Vietnam J. Math. 45, No. 3, 507-517 (2017). MSC: 35B41 35D30 35K65 PDF BibTeX XML Cite \textit{Dao Trong Quyet} et al., Vietnam J. Math. 45, No. 3, 507--517 (2017; Zbl 1371.35012) Full Text: DOI OpenURL
Al-Gharabli, Mohammad M.; Messaoudi, Salim A. The existence and the asymptotic behavior of a plate equation with frictional damping and a logarithmic source term. (English) Zbl 1379.35020 J. Math. Anal. Appl. 454, No. 2, 1114-1128 (2017). MSC: 35B40 35L35 74K20 35R09 PDF BibTeX XML Cite \textit{M. M. Al-Gharabli} and \textit{S. A. Messaoudi}, J. Math. Anal. Appl. 454, No. 2, 1114--1128 (2017; Zbl 1379.35020) Full Text: DOI OpenURL
Anh, Cung The; Thanh, Dang Thi Phuong; Toan, Nguyen Duong Global attractors for nonclassical diffusion equations with hereditary memory and a new class of nonlinearities. (English) Zbl 1386.35026 Ann. Pol. Math. 119, No. 1, 1-21 (2017). MSC: 35B41 45K05 76R50 35D30 PDF BibTeX XML Cite \textit{C. T. Anh} et al., Ann. Pol. Math. 119, No. 1, 1--21 (2017; Zbl 1386.35026) Full Text: DOI OpenURL
Furtado, Marcelo F.; Medeiros, Everaldo S.; Severo, Uberlandio B. On a class of semilinear elliptic eigenvalue problems in \(\mathbb{R}^2\). (English) Zbl 1368.35121 Proc. Edinb. Math. Soc., II. Ser. 60, No. 1, 107-126 (2017). Reviewer: Dian K. Palagachev (Bari) MSC: 35J61 35J50 PDF BibTeX XML Cite \textit{M. F. Furtado} et al., Proc. Edinb. Math. Soc., II. Ser. 60, No. 1, 107--126 (2017; Zbl 1368.35121) Full Text: DOI OpenURL
Cramer, Ronald; Xing, Chaoping An improvement to the Hasse-Weil bound and applications to character sums, cryptography and coding. (English) Zbl 1361.11043 Adv. Math. 309, 238-253 (2017). Reviewer: Fernando Torres (Campinas) MSC: 11G20 11G10 11T23 94B05 PDF BibTeX XML Cite \textit{R. Cramer} and \textit{C. Xing}, Adv. Math. 309, 238--253 (2017; Zbl 1361.11043) Full Text: DOI arXiv OpenURL
Bahrouni, Anouar Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. (English) Zbl 1359.35208 Commun. Pure Appl. Anal. 16, No. 1, 243-252 (2017). MSC: 35R09 35R11 35J61 58E30 PDF BibTeX XML Cite \textit{A. Bahrouni}, Commun. Pure Appl. Anal. 16, No. 1, 243--252 (2017; Zbl 1359.35208) Full Text: DOI OpenURL
Furioli, Giulia; Kawakami, Tatsuki; Ruf, Bernhard; Terraneo, Elide Asymptotic behavior and decay estimates of the solutions for a nonlinear parabolic equation with exponential nonlinearity. (English) Zbl 1361.35069 J. Differ. Equations 262, No. 1, 145-180 (2017). Reviewer: Lubomira Softova (Aversa) MSC: 35K20 35K58 PDF BibTeX XML Cite \textit{G. Furioli} et al., J. Differ. Equations 262, No. 1, 145--180 (2017; Zbl 1361.35069) Full Text: DOI arXiv OpenURL
Andrews, Isaiah; Mikusheva, Anna A geometric approach to nonlinear econometric models. (English) Zbl 1410.62194 Econometrica 84, No. 3, 1249-1264 (2016). MSC: 62P20 62F03 PDF BibTeX XML Cite \textit{I. Andrews} and \textit{A. Mikusheva}, Econometrica 84, No. 3, 1249--1264 (2016; Zbl 1410.62194) Full Text: DOI OpenURL
Ouni, Taieb; Baraket, Sami; Khtaifi, Moufida Singular limits for 4-dimensional general stationary q-Kuramoto-Sivashinsky equation (q-KSE) with exponential nonlinearity. (English) Zbl 1389.35152 An. Științ. Univ. “Ovidius” Constanța, Ser. Mat. 24, No. 3, 295-337 (2016). MSC: 35J40 35J60 35J75 35D30 PDF BibTeX XML Cite \textit{T. Ouni} et al., An. Științ. Univ. ``Ovidius'' Constanța, Ser. Mat. 24, No. 3, 295--337 (2016; Zbl 1389.35152) Full Text: DOI OpenURL
Yang, Yang; Perera, Kanishka \(N\)-Laplacian problems with critical Trudinger-Moser nonlinearities. (English) Zbl 1359.35083 Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 16, No. 4, 1123-1138 (2016). MSC: 35J92 35B33 58E05 PDF BibTeX XML Cite \textit{Y. Yang} and \textit{K. Perera}, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 16, No. 4, 1123--1138 (2016; Zbl 1359.35083) Full Text: DOI arXiv OpenURL
Le, Phuong Nonexistence of stable solutions to \(p\)-Laplace equations with exponential nonlinearities. (English) Zbl 1353.35006 Electron. J. Differ. Equ. 2016, Paper No. 326, 5 p. (2016). MSC: 35A01 35B06 35B35 35J92 PDF BibTeX XML Cite \textit{P. Le}, Electron. J. Differ. Equ. 2016, Paper No. 326, 5 p. (2016; Zbl 1353.35006) Full Text: Link OpenURL
Alves, Claudianor O.; Santos, Jefferson A. Multivalued elliptic equation with exponential critical growth in \(\mathbb{R}^2\). (English) Zbl 1350.35078 J. Differ. Equations 261, No. 9, 4758-4788 (2016). Reviewer: Dian K. Palagachev (Bari) MSC: 35J25 35A15 34A36 PDF BibTeX XML Cite \textit{C. O. Alves} and \textit{J. A. Santos}, J. Differ. Equations 261, No. 9, 4758--4788 (2016; Zbl 1350.35078) Full Text: DOI arXiv OpenURL
Sack, Martin; Struwe, Michael Scattering for a critical nonlinear wave equation in two space dimensions. (English) Zbl 1357.35228 Math. Ann. 365, No. 3-4, 969-985 (2016). MSC: 35L71 35B40 35L15 PDF BibTeX XML Cite \textit{M. Sack} and \textit{M. Struwe}, Math. Ann. 365, No. 3--4, 969--985 (2016; Zbl 1357.35228) Full Text: DOI OpenURL
Giacomoni, J.; Mishra, Pawan Kumar; Sreenadh, K. Critical growth fractional elliptic systems with exponential nonlinearity. (English) Zbl 1335.35277 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 136, 117-135 (2016). MSC: 35R11 35A01 35B09 35B33 35J46 35J47 PDF BibTeX XML Cite \textit{J. Giacomoni} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 136, 117--135 (2016; Zbl 1335.35277) Full Text: DOI OpenURL