Cheema, Ammara Nawaz; Aslam, Muhammad Bayesian analysis for 3-component mixture of exponentiated Weibull distribution assuming non-informative priors. (English) Zbl 07194302 J. Stat. Comput. Simulation 90, No. 4, 586-605 (2020). MSC: 62 PDF BibTeX XML Cite \textit{A. N. Cheema} and \textit{M. Aslam}, J. Stat. Comput. Simulation 90, No. 4, 586--605 (2020; Zbl 07194302) Full Text: DOI
Bao, Zhenhua; Song, Yujing; Song, Xiaolin Generalized Weibull distribution and its properties based on quadratic rank transmutation approach. (Chinese. English summary) Zbl 1449.62024 J. Liaoning Norm. Univ., Nat. Sci. 42, No. 3, 289-294 (2019). MSC: 62E10 62F10 62N05 PDF BibTeX XML Cite \textit{Z. Bao} et al., J. Liaoning Norm. Univ., Nat. Sci. 42, No. 3, 289--294 (2019; Zbl 1449.62024) Full Text: DOI
Ortega, Edwin M. M.; Lemonte, Artur J.; Cordeiro, Gauss M.; Cancho, Vicente G.; Mialhe, Fábio L. Heteroscedastic log-exponentiated Weibull regression model. (English) Zbl 07282435 J. Appl. Stat. 45, No. 3, 384-408 (2018). MSC: 62F10 62J05 62J20 PDF BibTeX XML Cite \textit{E. M. M. Ortega} et al., J. Appl. Stat. 45, No. 3, 384--408 (2018; Zbl 07282435) Full Text: DOI
Doostmoradi, Ali; Zadkarami, Mohammad Reza; Akhoond, Mohammad Reza A new Entezar distribution for lifetime modeling. (English) Zbl 1391.60031 Iran. J. Sci. Technol., Trans. A, Sci. 42, No. 1, 129-139 (2018). MSC: 60E05 PDF BibTeX XML Cite \textit{A. Doostmoradi} et al., Iran. J. Sci. Technol., Trans. A, Sci. 42, No. 1, 129--139 (2018; Zbl 1391.60031) Full Text: DOI
Khan, Shahedul A. Exponentiated Weibull regression for time-to-event data. (English) Zbl 06891888 Lifetime Data Anal. 24, No. 2, 328-354 (2018). MSC: 62N 62P10 PDF BibTeX XML Cite \textit{S. A. Khan}, Lifetime Data Anal. 24, No. 2, 328--354 (2018; Zbl 06891888) Full Text: DOI
Alghamdi, Safar M.; Percy, David F. Reliability equivalence factors for a series-parallel system of components with exponentiated Weibull lifetimes. (English) Zbl 07067551 IMA J. Manag. Math. 28, No. 3, 339-358 (2017). MSC: 90 91 PDF BibTeX XML Cite \textit{S. M. Alghamdi} and \textit{D. F. Percy}, IMA J. Manag. Math. 28, No. 3, 339--358 (2017; Zbl 07067551) Full Text: DOI
Asubonteng, Kobby; Mudholkar, Govind S.; Hutson, Alan A transformation for the analysis of unimodal hazard rate lifetimes data. (English) Zbl 1402.62234 Adhikari, Avishek (ed.) et al., Mathematical and statistical applications in life sciences and engineering. Singapore: Springer (ISBN 978-981-10-5369-6/hbk; 978-981-10-5370-2/ebook). 121-139 (2017). MSC: 62N05 62F03 62F10 62G07 62P20 62P10 PDF BibTeX XML Cite \textit{K. Asubonteng} et al., in: Mathematical and statistical applications in life sciences and engineering. Singapore: Springer. 121--139 (2017; Zbl 1402.62234) Full Text: DOI
Rathie, Pushpa N.; Silva, Paulo H. D. On the generalized gamma-generated distributions and applications. (English) Zbl 1394.60012 J. Ramanujan Soc. Math. Math. Sci. 6, No. 1, 07-24 (2017). MSC: 60E05 62B15 33C60 60E10 PDF BibTeX XML Cite \textit{P. N. Rathie} and \textit{P. H. D. Silva}, J. Ramanujan Soc. Math. Math. Sci. 6, No. 1, 07--24 (2017; Zbl 1394.60012) Full Text: Link
Elgarhy, M.; Shakil, M.; Golam Kibria, B. M. Exponentiated Weibull-exponential distribution with applications. (English) Zbl 1392.62045 Appl. Appl. Math. 12, No. 2, 710-725 (2017). MSC: 62E15 60E05 62G30 62N05 PDF BibTeX XML Cite \textit{M. Elgarhy} et al., Appl. Appl. Math. 12, No. 2, 710--725 (2017; Zbl 1392.62045) Full Text: Link
Barmalzan, Ghobad; Najafabadi, Amir T. Payandeh; Balakrishnan, Narayanaswamy Orderings for series and parallel systems comprising heterogeneous exponentiated Weibull-geometric components. (English) Zbl 1386.60071 Commun. Stat., Theory Methods 46, No. 20, 9869-9880 (2017). MSC: 60E15 90B25 PDF BibTeX XML Cite \textit{G. Barmalzan} et al., Commun. Stat., Theory Methods 46, No. 20, 9869--9880 (2017; Zbl 1386.60071) Full Text: DOI
Fattah, Ahmed A.; Nadarajah, Saralees; Ahmed, A-Hadi N. The exponentiated transmuted Weibull geometric distribution with application in survival analysis. (English) Zbl 1377.62058 Commun. Stat., Simulation Comput. 46, No. 6, 4244-4263 (2017). MSC: 62E15 62N05 62P10 60E05 PDF BibTeX XML Cite \textit{A. A. Fattah} et al., Commun. Stat., Simulation Comput. 46, No. 6, 4244--4263 (2017; Zbl 1377.62058) Full Text: DOI
Rao, G. Srinivasa; Aslam, Muhammad; Arif, Osama H. Estimation of reliability in multicomponent stress-strength based on two parameter exponentiated Weibull distribution. (English) Zbl 1373.62505 Commun. Stat., Theory Methods 46, No. 15, 7495-7502 (2017). MSC: 62N05 62F10 62F12 90B25 62E20 PDF BibTeX XML Cite \textit{G. S. Rao} et al., Commun. Stat., Theory Methods 46, No. 15, 7495--7502 (2017; Zbl 1373.62505) Full Text: DOI
Al-Babtain, Abdulhakim; Fattah, Ahmed A.; Ahmed, A-Hadi N.; Merovci, Faton The Kumaraswamy-transmuted exponentiated modified Weibull distribution. (English) Zbl 1369.62017 Commun. Stat., Simulation Comput. 46, No. 5, 3812-3832 (2017). MSC: 62E10 62N01 62N02 PDF BibTeX XML Cite \textit{A. Al-Babtain} et al., Commun. Stat., Simulation Comput. 46, No. 5, 3812--3832 (2017; Zbl 1369.62017) Full Text: DOI
Ghnimi, Soumaya; Gasmi, Soufiane; Nasr, Arwa Reliability parameters estimation for parallel systems under imperfect repair. (English) Zbl 1362.60076 Metrika 80, No. 3, 273-288 (2017). MSC: 60K10 62F10 90B25 PDF BibTeX XML Cite \textit{S. Ghnimi} et al., Metrika 80, No. 3, 273--288 (2017; Zbl 1362.60076) Full Text: DOI
Al Sobhi, Mashail M.; Soliman, Ahmed A. Estimation for the exponentiated Weibull model with adaptive type-II progressive censored schemes. (English) Zbl 1446.62259 Appl. Math. Modelling 40, No. 2, 1180-1192 (2016). MSC: 62N05 62E15 62F15 62N01 PDF BibTeX XML Cite \textit{M. M. Al Sobhi} and \textit{A. A. Soliman}, Appl. Math. Modelling 40, No. 2, 1180--1192 (2016; Zbl 1446.62259) Full Text: DOI
Saghir, Aamir; Tazeem, Sadaf; Ahmad, Ishfaq The length-biased weighted exponentiated inverted Weibull distribution. (English) Zbl 1426.62069 Cogent Math. 3, Article ID 1267299, 18 p. (2016). MSC: 62E15 62N05 62E10 60E05 PDF BibTeX XML Cite \textit{A. Saghir} et al., Cogent Math. 3, Article ID 1267299, 18 p. (2016; Zbl 1426.62069) Full Text: DOI
Pogány, Tibor K.; Saboor, Abdus The gamma exponentiated exponential-Weibull distribution. (English) Zbl 06749956 Filomat 30, No. 12, 3159-3170 (2016). MSC: 60E05 62E15 62F10 33C15 PDF BibTeX XML Cite \textit{T. K. Pogány} and \textit{A. Saboor}, Filomat 30, No. 12, 3159--3170 (2016; Zbl 06749956) Full Text: DOI
Insuk, Tipagorn; Bodhisuwan, Winai; Jaroengeratikun, Uraiwan Reliability analysis of the beta exponentiated Weibull Poisson distribution. (English) Zbl 1365.62385 Thail. Stat. 14, No. 2, 129-146 (2016). MSC: 62N05 60E05 PDF BibTeX XML Cite \textit{T. Insuk} et al., Thail. Stat. 14, No. 2, 129--146 (2016; Zbl 1365.62385)
Saboor, Abdus; Elbatal, Ibrahim; Cordeiro, Gauss M. The transmuted exponentiated Weibull geometric distribution: theory and applications. (English) Zbl 1359.62056 Hacet. J. Math. Stat. 45, No. 3, 973-987 (2016). MSC: 62E15 60E05 62G30 62N05 PDF BibTeX XML Cite \textit{A. Saboor} et al., Hacet. J. Math. Stat. 45, No. 3, 973--987 (2016; Zbl 1359.62056) Full Text: DOI
Ahmad, Abd EL-Baset A.; Soliman, Ahmed A.; Yousef, Manal M. Bayesian estimation of exponentiated Weibull distribution under partially acceleration life tests. (English) Zbl 1419.62277 Bull. Malays. Math. Sci. Soc. (2) 39, No. 1, 227-244 (2016). MSC: 62N05 62F10 62F15 62F25 PDF BibTeX XML Cite \textit{A. E. B. A. Ahmad} et al., Bull. Malays. Math. Sci. Soc. (2) 39, No. 1, 227--244 (2016; Zbl 1419.62277) Full Text: DOI
Hashimoto, Elizabeth M.; Ortega, Edwin M. M.; Cordeiro, Gauss M.; Pascoa, Marcelino A. R. The McDonald extended Weibull distribution. (English) Zbl 1423.62130 J. Stat. Theory Pract. 9, No. 3, 608-632 (2015). MSC: 62N05 62G08 62E15 PDF BibTeX XML Cite \textit{E. M. Hashimoto} et al., J. Stat. Theory Pract. 9, No. 3, 608--632 (2015; Zbl 1423.62130) Full Text: DOI
Khan, Hafiz M. R.; Saxena, Anshul; Das, Sankalp; Ross, Elizabeth Inference from the exponentiated Weibull model with applications to real data. (English) Zbl 1341.62283 Commun. Stat., Theory Methods 44, No. 22, 4679-4695 (2015). MSC: 62N02 62N05 62F15 62M20 PDF BibTeX XML Cite \textit{H. M. R. Khan} et al., Commun. Stat., Theory Methods 44, No. 22, 4679--4695 (2015; Zbl 1341.62283) Full Text: DOI
Rashwan, Nasr Ibrahim Estimation of the parameters of mixed exponentiated Weibull and exponentiated exponential from censored type I samples. (English) Zbl 1333.62247 Adv. Appl. Stat. 47, No. 1, 1-18 (2015). MSC: 62N05 62N02 PDF BibTeX XML Cite \textit{N. I. Rashwan}, Adv. Appl. Stat. 47, No. 1, 1--18 (2015; Zbl 1333.62247) Full Text: DOI Link
Jones, M. C.; Noufaily, Angela Log-location-scale-log-concave distributions for survival and reliability analysis. (English) Zbl 1329.62409 Electron. J. Stat. 9, No. 2, 2732-2750 (2015). MSC: 62N99 60E05 62N05 PDF BibTeX XML Cite \textit{M. C. Jones} and \textit{A. Noufaily}, Electron. J. Stat. 9, No. 2, 2732--2750 (2015; Zbl 1329.62409) Full Text: DOI Euclid
Castellares, Fredy; Lemonte, Artur J. A new generalized Weibull distribution generated by gamma random variables. (English) Zbl 1328.60033 J. Egypt. Math. Soc. 23, No. 2, 382-390 (2015). MSC: 60E05 62E15 62F10 PDF BibTeX XML Cite \textit{F. Castellares} and \textit{A. J. Lemonte}, J. Egypt. Math. Soc. 23, No. 2, 382--390 (2015; Zbl 1328.60033) Full Text: DOI
Nekoukhou, Vahid; Bidram, Hamid The exponentiated discrete Weibull distribution. (English) Zbl 1322.60009 SORT 39, No. 1, 127-146 (2015). MSC: 60E05 62E10 PDF BibTeX XML Cite \textit{V. Nekoukhou} and \textit{H. Bidram}, SORT 39, No. 1, 127--146 (2015; Zbl 1322.60009) Full Text: Link
Alizadeh, M.; Bagheri, S. F.; Baloui Jamkhaneh, E.; Nadarajah, S. Estimates of the PDF and the CDF of the exponentiated Weibull distribution. (English) Zbl 1326.62032 Braz. J. Probab. Stat. 29, No. 3, 695-716 (2015). MSC: 62E17 PDF BibTeX XML Cite \textit{M. Alizadeh} et al., Braz. J. Probab. Stat. 29, No. 3, 695--716 (2015; Zbl 1326.62032) Full Text: DOI Euclid
Bidram, H.; Alamatsaz, M. H.; Nekoukhou, V. On an extension of the exponentiated Weibull distribution. (English) Zbl 1319.60023 Commun. Stat., Simulation Comput. 44, No. 6, 1389-1404 (2015). MSC: 60E05 62E10 PDF BibTeX XML Cite \textit{H. Bidram} et al., Commun. Stat., Simulation Comput. 44, No. 6, 1389--1404 (2015; Zbl 1319.60023) Full Text: DOI
Chakraborty, Subrata; Gupta, Rameshwar D. Exponentiated geometric distribution: another generalization of geometric distribution. (English) Zbl 1325.62036 Commun. Stat., Theory Methods 44, No. 6, 1143-1157 (2015). MSC: 62E15 PDF BibTeX XML Cite \textit{S. Chakraborty} and \textit{R. D. Gupta}, Commun. Stat., Theory Methods 44, No. 6, 1143--1157 (2015; Zbl 1325.62036) Full Text: DOI
Barmalzan, Ghobad; Payandeh Najafabadi, Amir T.; Balakrishnan, Narayanaswamy Stochastic comparison of aggregate claim amounts between two heterogeneous portfolios and its applications. (English) Zbl 1314.91188 Insur. Math. Econ. 61, 235-241 (2015). MSC: 91G10 60E15 PDF BibTeX XML Cite \textit{G. Barmalzan} et al., Insur. Math. Econ. 61, 235--241 (2015; Zbl 1314.91188) Full Text: DOI
Fang, Longxiang; Zhang, Xinsheng Stochastic comparisons of parallel systems with exponentiated Weibull components. (English) Zbl 1314.60063 Stat. Probab. Lett. 97, 25-31 (2015). MSC: 60E15 62N05 62G30 62D05 PDF BibTeX XML Cite \textit{L. Fang} and \textit{X. Zhang}, Stat. Probab. Lett. 97, 25--31 (2015; Zbl 1314.60063) Full Text: DOI
Cordeiro, Gauss M.; Ortega, Edwin M. M.; Silva, Giovana O. The Kumaraswamy modified Weibull distribution: theory and applications. (English) Zbl 07178425 J. Stat. Comput. Simulation 84, No. 7, 1387-1411 (2014). MSC: 62E10 62N05 62F10 PDF BibTeX XML Cite \textit{G. M. Cordeiro} et al., J. Stat. Comput. Simulation 84, No. 7, 1387--1411 (2014; Zbl 07178425) Full Text: DOI
Bakouch, Hassan S.; Aghababaei Jazi, Mansour; Nadarajah, Saralees; Dolati, Ali; Roozegar, Rasool A lifetime model with increasing failure rate. (English) Zbl 1428.62064 Appl. Math. Modelling 38, No. 23, 5392-5406 (2014). MSC: 62E10 62N05 PDF BibTeX XML Cite \textit{H. S. Bakouch} et al., Appl. Math. Modelling 38, No. 23, 5392--5406 (2014; Zbl 1428.62064) Full Text: DOI
Kumar, Devendra Relations for moments of lower generalized order statistics from exponentiated inverted Weibull distribution. (English) Zbl 1343.62032 Tamsui Oxf. J. Inf. Math. Sci. 30, 1-21 (2014). MSC: 62G30 62E10 PDF BibTeX XML Cite \textit{D. Kumar}, Tamsui Oxf. J. Inf. Math. Sci. 30, 1--21 (2014; Zbl 1343.62032)
Zeng, Yan; Xiang, Li; Yan, Yuxian Life test sampling plans for exponentiated Weibull distribution based on the expected total cost minimum. (Chinese. English summary) Zbl 1340.62124 Math. Pract. Theory 44, No. 13, 201-209 (2014). MSC: 62N05 62D05 PDF BibTeX XML Cite \textit{Y. Zeng} et al., Math. Pract. Theory 44, No. 13, 201--209 (2014; Zbl 1340.62124)
Chung, Younshik; Kang, Yongbeen The exponentiated Weibull-geometric distribution: properties and estimations. (English) Zbl 1305.62075 Commun. Stat. Appl. Methods 21, No. 2, 147-160 (2014). MSC: 62E15 62F10 62P10 62P12 65C40 PDF BibTeX XML Cite \textit{Y. Chung} and \textit{Y. Kang}, Commun. Stat. Appl. Methods 21, No. 2, 147--160 (2014; Zbl 1305.62075) Full Text: DOI
Seenoi, Palakorn; Supapakorn, Thidaporn; Bodhisuwan, Winai The length-biased exponentiated inverted Weibull distribution. (English) Zbl 1296.60031 Int. J. Pure Appl. Math. 92, No. 2, 191-206 (2014). Reviewer: Fabrizio Durante (Bozen-Bolzano) MSC: 60E05 PDF BibTeX XML Cite \textit{P. Seenoi} et al., Int. J. Pure Appl. Math. 92, No. 2, 191--206 (2014; Zbl 1296.60031) Full Text: DOI Link
Balakrishnan, Narayanaswamy; Barmalzan, Ghobad; Haidari, Abedin On usual multivariate stochastic ordering of order statistics from heterogeneous beta variables. (English) Zbl 1302.60040 J. Multivariate Anal. 127, 147-150 (2014). Reviewer: Moshe Shaked (Tucson) MSC: 60E15 62G30 62E10 PDF BibTeX XML Cite \textit{N. Balakrishnan} et al., J. Multivariate Anal. 127, 147--150 (2014; Zbl 1302.60040) Full Text: DOI
Mahmoudi, Eisa; Sepahdar, Afsaneh Exponentiated Weibull-Poisson distribution: model, properties and applications. (English) Zbl 07310429 Math. Comput. Simul. 92, 76-97 (2013). MSC: 60E05 62F10 62P99 PDF BibTeX XML Cite \textit{E. Mahmoudi} and \textit{A. Sepahdar}, Math. Comput. Simul. 92, 76--97 (2013; Zbl 07310429) Full Text: DOI
A. A.-Rahman, Ali On characterization some mixtures of probability distributions. (English) Zbl 06367795 J. Appl. Math. Bioinform. 3, No. 3, 153-172 (2013). MSC: 62E10 PDF BibTeX XML Cite \textit{A. A. A. -Rahman}, J. Appl. Math. Bioinform. 3, No. 3, 153--172 (2013; Zbl 06367795)
Nadarajah, Saralees; Cordeiro, Gauss M.; Ortega, Edwin M. M. The exponentiated Weibull distribution: a survey. (English) Zbl 1307.62033 Stat. Pap. 54, No. 3, 839-877 (2013). MSC: 62E15 62-02 62F10 62J02 62N05 PDF BibTeX XML Cite \textit{S. Nadarajah} et al., Stat. Pap. 54, No. 3, 839--877 (2013; Zbl 1307.62033) Full Text: DOI
Cordeiro, Gauss M.; Gomes, Antonio Eduardo; Da-Silva, Cibele Queiroz; Ortega, Edwin M. M. The beta exponentiated Weibull distribution. (English) Zbl 1348.62038 J. Stat. Comput. Simulation 83, No. 1, 114-138 (2013). MSC: 62E15 60E05 62G30 62N05 PDF BibTeX XML Cite \textit{G. M. Cordeiro} et al., J. Stat. Comput. Simulation 83, No. 1, 114--138 (2013; Zbl 1348.62038) Full Text: DOI
Achcar, Jorge A.; Coelho-Barros, Emílio A.; Cordeiro, Gauss M. Beta generalized distributions and related exponentiated models: a Bayesian approach. (English) Zbl 1319.62027 Braz. J. Probab. Stat. 27, No. 1, 1-19 (2013). MSC: 62E15 62F15 62N05 PDF BibTeX XML Cite \textit{J. A. Achcar} et al., Braz. J. Probab. Stat. 27, No. 1, 1--19 (2013; Zbl 1319.62027) Full Text: DOI Euclid
Qian, Lianfen The Fisher information matrix for a three-parameter exponentiated Weibull distribution under type II censoring. (English) Zbl 1365.62367 Stat. Methodol. 9, No. 3, 320-329 (2012). MSC: 62N01 62N02 62F10 PDF BibTeX XML Cite \textit{L. Qian}, Stat. Methodol. 9, No. 3, 320--329 (2012; Zbl 1365.62367) Full Text: DOI
Nadarajah, Saralees; Cordeiro, Gauss M.; Ortega, Edwin M. M. General results for the beta-modified Weibull distribution. (English) Zbl 1431.62048 J. Stat. Comput. Simulation 81, No. 10, 1211-1232 (2011). MSC: 62E10 62N05 62E15 PDF BibTeX XML Cite \textit{S. Nadarajah} et al., J. Stat. Comput. Simulation 81, No. 10, 1211--1232 (2011; Zbl 1431.62048) Full Text: DOI
Kim, Chansoo; Jung, Jinhyouk; Chung, Younshik Bayesian estimation for the exponentiated Weibull model under type II progressive censoring. (English) Zbl 1247.62090 Stat. Pap. 52, No. 1, 53-70 (2011). MSC: 62F15 62C10 62N01 62N05 65C05 PDF BibTeX XML Cite \textit{C. Kim} et al., Stat. Pap. 52, No. 1, 53--70 (2011; Zbl 1247.62090) Full Text: DOI
Preda, Vasile; Mierlus-Mazilu, Ion Inferences for the exponentiated Weibull distribution based on record statistics. (English) Zbl 1265.60001 Math. Rep., Bucur. 13(63), No. 3, 299-315 (2011). Reviewer: Nicko G. Gamkrelidze (Moskva) MSC: 60-08 62D05 65C60 PDF BibTeX XML Cite \textit{V. Preda} and \textit{I. Mierlus-Mazilu}, Math. Rep., Buchar. 13(63), No. 3, 299--315 (2011; Zbl 1265.60001)
Elbatal, I. Exponentiated modified Weibull distribution. (English) Zbl 1274.62119 Econ. Qual. Control 26, No. 2, 189-200 (2011). MSC: 62E15 PDF BibTeX XML Cite \textit{I. Elbatal}, Econ. Qual. Control 26, No. 2, 189--200 (2011; Zbl 1274.62119) Full Text: DOI
Nadarajah, Saralees; Haghighi, Firoozeh An extension of the exponential distribution. (English) Zbl 1228.62018 Statistics 45, No. 6, 543-558 (2011). MSC: 62E10 62N02 PDF BibTeX XML Cite \textit{S. Nadarajah} and \textit{F. Haghighi}, Statistics 45, No. 6, 543--558 (2011; Zbl 1228.62018) Full Text: DOI
Raja, T. A.; Mir, A. H. On extension of some exponentiated distributions with application. (English) Zbl 1225.62023 Int. J. Contemp. Math. Sci. 6, No. 5-8, 393-400 (2011). MSC: 62E10 62F10 PDF BibTeX XML Cite \textit{T. A. Raja} and \textit{A. H. Mir}, Int. J. Contemp. Math. Sci. 6, No. 5--8, 393--400 (2011; Zbl 1225.62023) Full Text: Link
Cordeiro, Gauss M.; Ortega, Edwin M. M.; Silva, Giovana O. The exponentiated generalized gamma distribution with application to lifetime data. (English) Zbl 1219.62021 J. Stat. Comput. Simulation 81, No. 7, 827-842 (2011). MSC: 62E10 62N05 62F10 65G30 PDF BibTeX XML Cite \textit{G. M. Cordeiro} et al., J. Stat. Comput. Simulation 81, No. 7, 827--842 (2011; Zbl 1219.62021) Full Text: DOI
Jaheen, Zeinhum F.; Harbi, Mashail M. Al Bayesian estimation for the exponentiated Weibull model via Markov chain Monte Carlo simulation. (English) Zbl 1217.62033 Commun. Stat., Simulation Comput. 40, No. 4, 532-543 (2011). MSC: 62F15 62F10 62G30 65C40 62N05 62N01 65C05 PDF BibTeX XML Cite \textit{Z. F. Jaheen} and \textit{M. M. A. Harbi}, Commun. Stat., Simulation Comput. 40, No. 4, 532--543 (2011; Zbl 1217.62033) Full Text: DOI
Silva, Giovana O.; Ortega, Edwin M. M.; Cordeiro, Gauss M. The beta modified Weibull distribution. (English) Zbl 1322.62071 Lifetime Data Anal. 16, No. 3, 409-430 (2010). MSC: 62E10 62N05 62F10 PDF BibTeX XML Cite \textit{G. O. Silva} et al., Lifetime Data Anal. 16, No. 3, 409--430 (2010; Zbl 1322.62071) Full Text: DOI
Mudholkar, Govind S.; Asubonteng, Kobby O. Data-transformation approach to lifetimes data analysis: an overview. (English) Zbl 1191.62171 J. Stat. Plann. Inference 140, No. 10, 2904-2917 (2010). MSC: 62N05 62N02 62P20 PDF BibTeX XML Cite \textit{G. S. Mudholkar} and \textit{K. O. Asubonteng}, J. Stat. Plann. Inference 140, No. 10, 2904--2917 (2010; Zbl 1191.62171) Full Text: DOI
Barghout, May An exponentiated Weibull software reliability model. (English) Zbl 1186.68050 Adv. Appl. Stat. 13, No. 1, 111-130 (2009). MSC: 68M15 68N99 PDF BibTeX XML Cite \textit{M. Barghout}, Adv. Appl. Stat. 13, No. 1, 111--130 (2009; Zbl 1186.68050) Full Text: Link
Malinowska, Iwona; Szynal, Dominik On characterization of certain distributions of \(k\)th lower (upper) record values. (English) Zbl 1147.60304 Appl. Math. Comput. 202, No. 1, 338-347 (2008). MSC: 60E05 PDF BibTeX XML Cite \textit{I. Malinowska} and \textit{D. Szynal}, Appl. Math. Comput. 202, No. 1, 338--347 (2008; Zbl 1147.60304) Full Text: DOI
Vieira, Denilton da Silva; Achcar, Jorge Alberto; Cancho, Vicente Garibay Use of Bayesian methods in accelerated life tests assuming an exponentiated-Weibull distribution and a power inverse law model. (Portuguese. English summary) Zbl 1413.62173 Rev. Mat. Estat. 24, No. 2, 17-36 (2006). MSC: 62N05 62E15 PDF BibTeX XML Cite \textit{D. da S. Vieira} et al., Rev. Mat. Estat. 24, No. 2, 17--36 (2006; Zbl 1413.62173) Full Text: Link
Ortega, Edwin M. M.; Cancho, Vicente G.; Bolfarine, Heleno Influence diagnostics in exponentiated-Weibull regression models with censored data. (English) Zbl 1274.62357 SORT 30, No. 2, 171-192 (2006). MSC: 62H10 62J20 62N01 PDF BibTeX XML Cite \textit{E. M. M. Ortega} et al., SORT 30, No. 2, 171--192 (2006; Zbl 1274.62357) Full Text: Link EuDML
Choudhury, Amit A simple derivation of moments of the exponentiated Weibull distribution. (English) Zbl 1079.62023 Metrika 62, No. 1, 17-22 (2005). MSC: 62E15 62N05 62E10 PDF BibTeX XML Cite \textit{A. Choudhury}, Metrika 62, No. 1, 17--22 (2005; Zbl 1079.62023) Full Text: DOI
Nadarajah, Saralees; Gupta, Arjun K. On the moments of the exponentiated Weibull distribution. (English) Zbl 1137.62308 Commun. Stat., Theory Methods 34, No. 2, 253-256 (2005). MSC: 62E15 62E10 PDF BibTeX XML Cite \textit{S. Nadarajah} and \textit{A. K. Gupta}, Commun. Stat., Theory Methods 34, No. 2, 253--256 (2005; Zbl 1137.62308) Full Text: DOI
Surles, J. G.; Padgett, W. J. Some properties of a scaled Burr type X distribution. (English) Zbl 1058.62017 J. Stat. Plann. Inference 128, No. 1, 271-280 (2005). MSC: 62E10 62F12 62N05 62E15 PDF BibTeX XML Cite \textit{J. G. Surles} and \textit{W. J. Padgett}, J. Stat. Plann. Inference 128, No. 1, 271--280 (2005; Zbl 1058.62017) Full Text: DOI
Kundu, Debasis; Gupta, Rameshwar D. Characterizations of the proportional (reversed) hazard model. (English) Zbl 1087.62018 Commun. Stat., Theory Methods 33, No. 11-12, 3095-3102 (2004). MSC: 62E10 62N05 62N99 PDF BibTeX XML Cite \textit{D. Kundu} and \textit{R. D. Gupta}, Commun. Stat., Theory Methods 33, No. 11--12, 3095--3102 (2004; Zbl 1087.62018) Full Text: DOI
Singh, Umesh; Gupta, Pramod K.; Upadhyay, S. K. Estimation of exponentiated Weibull shape parameters under linex loss function. (English) Zbl 1079.62507 Commun. Stat., Simulation Comput. 31, No. 4, 523-537 (2002). MSC: 62F15 62F10 PDF BibTeX XML Cite \textit{U. Singh} et al., Commun. Stat., Simulation Comput. 31, No. 4, 523--537 (2002; Zbl 1079.62507) Full Text: DOI
Cancho, Vicente G.; Bolfarine, Heleno; Achcar, Jorge A. A Bayesian analysis for the exponentiated-Weibull distribution. (English) Zbl 0924.62029 J. Appl. Stat. Sci. 8, No. 4, 227-242 (1999). MSC: 62F15 62F10 PDF BibTeX XML Cite \textit{V. G. Cancho} et al., J. Appl. Stat. Sci. 8, No. 4, 227--242 (1999; Zbl 0924.62029)
Gupta, Rameshwar D.; Kundu, Debasis Generalized exponential distributions. (English) Zbl 1007.62503 Aust. N. Z. J. Stat. 41, No. 2, 173-188 (1999). MSC: 62E10 62E15 62N05 PDF BibTeX XML Cite \textit{R. D. Gupta} and \textit{D. Kundu}, Aust. N. Z. J. Stat. 41, No. 2, 173--188 (1999; Zbl 1007.62503) Full Text: DOI
Gupta, Ramesh C.; Gupta, Rameshwar D.; Gupta, Pushpa L. Modeling failure time data by Lehman alternatives. (English) Zbl 0900.62534 Commun. Stat., Theory Methods 27, No. 4, 887-904 (1998). MSC: 62N05 PDF BibTeX XML Cite \textit{R. C. Gupta} et al., Commun. Stat., Theory Methods 27, No. 4, 887--904 (1998; Zbl 0900.62534) Full Text: DOI