×

A new approach for adaptive blind equalization of chaotic communication: the optimal linearization technique. (English) Zbl 1189.94013

Summary: Together with the optimal linearization technique, a blind-channel equalization for the extended-Kalman-filter-based chaotic communication is proposed in this paper. First, the optimal linearization technique is utilized to find the exact linear models of the chaotic system at operating states of interest. The proposed blind-channel equalization is formulated as a mixed nonlinear parameter and state estimation problem by an autoregressive (AR) model. The channel coefficients of a fading and multipath channel can be represented by an AR process. Then, an extended Kalman filter algorithm is utilized to reduce the effect of channel noise. By using the extended Kalman filter, the channel coefficients and the state of the system, which is the signal before going through the channel, can be estimated. The stability problem of the proposed blind-channel equalization is also addressed. Numerical examples and simulations are given to show the effectiveness and speed of convergence for the proposed methodology.

MSC:

94A05 Communication theory
90B18 Communication networks in operations research

Software:

Simulink
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Leung, H.; Lo, T., Chaotic radar signal processing over the sea, IEEE J. Ocean. Eng., 18, 287-295 (1993)
[2] Petrov, V.; Showalter, K., Nonlinear control of dynamical systems from time series, Phys. Rev. Lett., 76, 3312-3315 (1996)
[3] Elmirghani, J. M.H.; Milner, S. H.; Cryan, R. A., Experimental evaluation of echo path modeling with chaotic coded speech, IEEE Trans. Signal Process., 43, 2600-2604 (1997)
[4] Ogorzalek, M. J., Taming chaos—Part I: Synchronization, IEEE Trans. Circuits Syst. I, 40, 693-699 (1993) · Zbl 0850.93353
[5] Cuomo, K. M.; Oppenheim, A. V.; Strogatz, S. H., Synchronization of Lorenz-based chaotic circuits with applications to communications, IEEE Trans. Circuits Syst. I, 40, 626-633 (1993)
[6] Halle, K. S.; Wu, C. W.; Itoh, M.; Chua, L. O., Spread spectrum communications through modulation of chaos, Internat. J. Bifur. Chaos, 3, 469-477 (1993) · Zbl 0870.94002
[7] Sharma, N.; Ott, E., Combating channel distortions in communication with chaotic systems, Phys. Lett. A, 248, 347-352 (1998)
[8] K.M. Cuomo, A.V. Oppenheim, R.J. Barron, Channel equalization for self-synchronizing chaotic systems, in: Proc. ICASSP 3, 1996, pp. 1605-1608; K.M. Cuomo, A.V. Oppenheim, R.J. Barron, Channel equalization for self-synchronizing chaotic systems, in: Proc. ICASSP 3, 1996, pp. 1605-1608
[9] Chua, L. O.; Yang, T.; Zhong, G. Q.; Wu, C. W., Synchronization of Chua’s circuits with time-varying channels and parameters, IEEE Trans. Circuits Syst. I, 43, 862-868 (1996)
[10] Leung, H., System identification using chaos with application to equalization of a chaotic modulation system, IEEE Trans. Circuits Syst. I, 45, 314-320 (1998)
[11] Fowler, T. B., Application of stochastic control techniques to chaotic nonlinear systems, IEEE Trans. Automat. Control, 34, 201-205 (1989) · Zbl 0677.93072
[12] Cruz, C.; Nijmeijer, H., Synchronization through filtering, Internat. J. Bifurcation Chaos, 10, 763-775 (2000) · Zbl 1090.37570
[13] Leung, H.; Lam, J., Design of demodulator for the chaotic modulation communication system, IEEE Trans. Circuits Syst. I, 44, 262-267 (1997)
[14] Sobiski, D. J.; Thorp, J. S., PDMA-1: Chaotic communication via the extended Kalman Filter, IEEE Trans. Circuits Syst. I, 45, 194-197 (1998)
[15] Iltis, R. A.; Fuxjaeger, A. W., A digital DS spread-spectrum receiver with joint channel and Doppler shift estimation, IEEE Trans. Commun., 39, 1255-1267 (1991)
[16] Howard, S. I.; Pahlavan, K., Autoregressive modeling of wide-band indoor radio propagation, IEEE Trans. Commun., 40, 1540-1552 (1992)
[17] Dabney, J. B.; Harman, T. L., Mastering SIMULINK 2 (1998), Prentice-Hall: Prentice-Hall New Jersey
[18] Teixeira, M. C.M.; Zak, S. H., Stabilizing controller design for uncertain nonlinear systems using fuzzy models, IEEE Trans. Fuzzy Syst., 7, 133-142 (1999)
[19] Goodwin, G. C.; Sin, K. S., Adaptive Filtering Prediction and Control (1984), Prentice-Hall: Prentice-Hall London, U.K · Zbl 0653.93001
[20] Leung, H.; Zhu, Z.; Ding, Z., An aperiodic phenomenon of the extended Kalman filter in filtering noisy chaotic signals, IEEE Trans. Signal Process., 48, 1807-1810 (2000) · Zbl 1370.94167
[21] Liavas, A. P.; Regalia, P. A.; Delmas, J. P., Robustness of least-squares subspace methods for blind-channel identification/equalization with respect to effective channel undermodeling/overmodeling, IEEE Trans. Signal Process., 47, 1636-1645 (1999)
[22] Reif, K.; Gunther, S.; Yaz, E.; Unbehauen, R., Stochastic stability of the discrete-time extended Kalman filter, IEEE Trans. Automat. Control, 44, 714-728 (1999) · Zbl 0967.93090
[23] Elmirghani, J. M.H.; Cryan, R. A., New chaotic based communication technique with multiuser provision, Electron. Lett, 30, 1206-1207 (1994)
[24] Mazzini, G.; Setti, G.; Rovatti, R., Chaotic complex spreading sequences for asynchronous DS-CDMA, IEEE Trans. Circuits Syst. I, 44, 937-947 (1997)
[25] M.P. Kennedy, Determination of main system parameters of FM-DCSK telecommunications system, in: ISCAS, 2000 IV, 2000, pp. 429-432; M.P. Kennedy, Determination of main system parameters of FM-DCSK telecommunications system, in: ISCAS, 2000 IV, 2000, pp. 429-432
[26] Guo, S. M.; Shien, L. S.; Chen, G.; Lin, C. F., Effective chaotic orbit tracker: A prediction-based digital redesign approach, IEEE Trans. Circuits Syst. I, 47, 1557-1570 (2000) · Zbl 0999.93024
[27] Zhu, Z. W.; Leung, H., Adaptive blind equalization for chaotic communication system using extended-Kalman filter, IEEE Trans. Circuits Syst. I, 48, 979-989 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.