×

A branching random walk seen from the tip. (English) Zbl 1219.82095

Summary: We show that all the time-dependent statistical properties of the rightmost points of a branching Brownian motion can be extracted from the traveling wave solutions of the Fisher-KPP equation. The distribution of all the distances between the rightmost points has a long time limit which can be understood as the delay of the Fisher-KPP traveling waves when the initial condition is modified. The limiting measure exhibits the surprising property of superposability: the statistical properties of the distances between the rightmost points of the union of two realizations of the branching Brownian motion shifted by arbitrary amounts are the same as those of a single realization. We discuss the extension of our results to more general branching random walks.

MSC:

82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
60J65 Brownian motion
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aïdékon, E.: Convergence in law of the minimum of a branching random walk. arXiv:1101.1810 [math.PR] (2011)
[2] Aizenman, M., Sims, R., Starr, S.L.: Mean-field spin glass models from the cavity-ROSt perspective. Contemp. Math. 437, 1–30 (2007) · Zbl 1175.82033 · doi:10.1090/conm/437/08422
[3] Arguin, L.P.: Spin glass computations and Ruelle’s probability cascades. J. Stat. Phys. 126, 951–976 (2007) · Zbl 1115.82035 · doi:10.1007/s10955-006-9207-7
[4] Arguin, L.P., Bovier, A., Kistler, N.: The genealogy of extremal particles of branching Brownian motion. arXiv:1008.4386 [math.PR] (2010) · Zbl 1236.60081
[5] Arguin, L.P., Bovier, A., Kistler, N.: Poissonian statistics in the extremal process of branching Brownian motion. arXiv:1010.2376 [math.PR] (2010) · Zbl 1255.60152
[6] Bachmann, M.: Limit theorems for the minimal position in a branching random walk with independent logconcave displacements. Adv. Appl. Probab. 32, 159–176 (2000) · Zbl 0973.60098 · doi:10.1239/aap/1013540028
[7] Bolthausen, E., Sznitman, A.S.: On Ruelle’s probability cascades and an abstract cavity method. Commun. Math. Phys. 197, 247–276 (1998) · Zbl 0927.60071 · doi:10.1007/s002200050450
[8] Bouchaud, J.P., Mézard, M.: Universality classes for extreme-value statistics. J. Phys. A 30, 7997–8015 (1997) · Zbl 0953.60040 · doi:10.1088/0305-4470/30/23/004
[9] Bovier, A., Kurkova, I.: A tomography of the GREM: Beyond the REM conjecture. Commun. Math. Phys. 263, 535–552 (2006) · Zbl 1104.82027 · doi:10.1007/s00220-005-1517-0
[10] Bovier, A., Kurkova, I.: Local energy statistics in spin glasses. J. Stat. Phys. 126, 933–949 (2007) · Zbl 1122.82047 · doi:10.1007/s10955-006-9141-8
[11] Bramson, M.D.: Convergence of Solutions of the Kolmogorov Equation to Traveling Waves. Mem. Am. Math. Soc. vol. 44(285) (1983) · Zbl 0517.60083
[12] Brunet, É., Derrida, B.: Statistics at the tip of a branching random walk and the delay of traveling waves. Europhys. Lett. 87, 60010 (2009) · doi:10.1209/0295-5075/87/60010
[13] Burkhardt, T.W., Györgyi, G., Moloney, N.R., Racz, Z.: Extreme statistics for time series: distribution of the maximum relative to the initial value. Phys. Rev. E 76, 041119 (2007) · doi:10.1103/PhysRevE.76.041119
[14] Chauvin, B., Rouault, A.: Supercritical branching Brownian motion and K-P-P Equation in the critical speed-area. Math. Nachr. 149, 41–59 (1990) · Zbl 0724.60091 · doi:10.1002/mana.19901490104
[15] Chauvin, B., Rouault, A.: Boltzmann-Gibbs weights in the branching random walk. IMA Vol. Math. Its Appl. 84, 41–50 (1997) · Zbl 0866.60074 · doi:10.1007/978-1-4612-1862-3_3
[16] Dean, D.S., Majumdar, S.N.: Extreme-value statistics of hierarchically correlated variables deviation from Gumbel statistics and anomalous persistence. Phys. Rev. E 64, 046121 (2001)
[17] Derrida, B.: Random-energy model: an exactly solvable model of disordered systems. Phys. Rev. B 24, 2613–2626 (1981) · Zbl 1323.60134 · doi:10.1103/PhysRevB.24.2613
[18] Derrida, B.: A generalization of the random energy model which includes correlations between energies. J. Phys. Lett. 46, L401–L407 (1985)
[19] Derrida, B., Spohn, H.: Polymers on disordered trees, spin glasses and traveling waves. J. Stat. Phys. 51(5/6), 817–840 (1988) · Zbl 1036.82522 · doi:10.1007/BF01014886
[20] Ebert, U., van Saarloos, W.: Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts. Physica D 146, 1–99 (2000) · Zbl 0984.35030 · doi:10.1016/S0167-2789(00)00068-3
[21] Fisher, R.A.: The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369 (1937) · JFM 63.1111.04 · doi:10.1111/j.1469-1809.1937.tb02153.x
[22] Fyodorov, Y.V., Bouchaud, J.-P.: Freezing and extreme-value statistics in a random energy model with logarithmically correlated potential. J. Phys. A 41(37), 372001–372012 (2008) · Zbl 1214.82016 · doi:10.1088/1751-8113/41/37/372001
[23] Golding, I., Kozlovsky, Y., Cohen, I., Ben-Jacob, E.: Studies of bacterial branching growth using reaction-diffusion models for colonial development. Physica A 260, 510–554 (1998) · doi:10.1016/S0378-4371(98)00345-8
[24] Györgyi, G., Moloney, N.R., Ozogany, K., Racz, Z.: Finite-size scaling in extreme statistics. Phys. Rev. Lett. 100, 210601 (2008) · doi:10.1103/PhysRevLett.100.210601
[25] Hu, Y., Shi, Z.: Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees. Ann. Probab. 37(2), 742–789 (2009) · Zbl 1169.60021 · doi:10.1214/08-AOP419
[26] Igloi, F., Monthus, C.: Strong disorder RG approach of random systems. Phys. Rep. 412, 277–431 (2005) · doi:10.1016/j.physrep.2005.02.006
[27] Kessler, D.A., Levine, H., Ridgway, D., Tsimring, L.: Evolution on a smooth landscape. J. Stat. Phys. 87(3/4), 519–544 (1997) · Zbl 0920.92018 · doi:10.1007/BF02181235
[28] Kolmogorov, A., Petrovsky, I., Piscounov, N.: Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bull. Univ. État Mosc. A 1(6), 1–25 (1937)
[29] Lalley, S.P., Sellke, T.: A conditional limit theorem for the frontier of a branching Brownian motion. Ann. Probab. 15, 1052–1061 (1987) · Zbl 0622.60085 · doi:10.1214/aop/1176992080
[30] Maillard, P.: A characterisation of superposable random measures. arXiv:1102.1888 [math.PR] (2011)
[31] Majumdar, S.N., Dean, D.S., Krapivsky, P.L.: Understanding search trees via statistical physics. Pramana J. Phys. 64(6) (2005)
[32] Majumdar, S.N., Krapivsky, P.L.: Extreme value statistics and traveling fronts: application to computer science. Phys. Rev. E 65, 036127 (2002)
[33] McKean, H.P.: Applications of Brownian motion to the equation of Kolmogorov-Petrovski-Piscounov. Commun. Pure Appl. Math. 28, 323–331 (1975) · Zbl 0316.35053 · doi:10.1002/cpa.3160280302
[34] Mézard, M., Parisi, G., Sourlas, N., Toulouse, G., Virasoro, M.A.: Replica symmetry-breaking and the nature of the spin-glass phase. J. Phys. 45, 843–854 (1984) · Zbl 0968.82528 · doi:10.1051/jphys:01984004505084300
[35] Monthus, C., Garel, T.: On the critical weight statistics of the random energy model and of the directed polymer on the Cayley tree. Phys. Rev. E 75(5), 051119 (2007) · Zbl 1136.82318
[36] Roberts, M.I.: Almost sure asymptotics for the random binary search tree. arXiv:1002.3896 [math.PR] (2010)
[37] Ruelle, D.: A mathematical reformulation of Derrida’s REM and GREM. Commun. Math. Phys. 108, 225–239 (1987) · Zbl 0617.60100 · doi:10.1007/BF01210613
[38] Ruzmaikina, A., Aizenman, M.: Characterization of invariant measures at the leading edge for competing particle systems. Ann. Probab. 33, 82–113 (2005) · Zbl 1096.60042 · doi:10.1214/009117904000000865
[39] van Saarloos, W.: Front propagation into unstable states. Phys. Rep. 386(2–6), 29–222 (2003) · Zbl 1042.74029 · doi:10.1016/j.physrep.2003.08.001
[40] Sabhapandit, S., Majumdar, S.N.: Density of near-extreme events. Phys. Rev. Lett. 98, 140201 (2007) · doi:10.1103/PhysRevLett.98.140201
[41] Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151–175 (1994) · Zbl 0789.35152 · doi:10.1007/BF02100489
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.