×

Improvement of transient performance in MRAC by memory regressor extension. (English) Zbl 1466.93046

Summary: The paper addresses the problem of transient performance improvement of direct model reference adaptive control (MRAC) of discrete linear time-invariant (LTI) plants. Two solutions to the problem are proposed and use the certainty equivalence principle and the idea of regressor recording over a past period of time. The first solution is based on the principle of augmented error, while the second one uses new scheme of high order tuner generating predicted values of adjustable parameters. The recording of the past regressor is provided by application of a special SISO filter (linear operators with “memory”) to the closed-loop error model. It is proven and demonstrated by numerical examples that the proposed solutions can provide asymptotic (not exponential) convergence of the adjustable parameters under some simple condition which is weaker than the persistent excitation one. The proposed solution can be considered as a generalization of the identification/adaptation algorithm proposed by Kreisselmeier for continuous systems [G. Kreisselmeier and D. Joos, IEEE Trans. Autom. Control 27, 710–713 (1982; Zbl 0483.93064); M. Krstić et al., Nonlinear and adaptive control design. New York, NY: Wiley (1995)].

MSC:

93B45 Model predictive control
93C40 Adaptive control/observation systems

Citations:

Zbl 0483.93064
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] (See also arXiv:1509.02763). · Zbl 1370.93250
[2] Astrom, K.; Wittenmark, B., On self-tuning regulators, Automatica, 9, 185-199 (1973) · Zbl 0249.93049
[3] Chen, J.; Li, Z. P.; Zhang, G. Z.; Gan, M. G., Adaptive robust dynamic surface control with composite adaptation laws, Int. J. Adapt. Control Signal Process., 24, 12, 1036-1050 (2010) · Zbl 1213.93099
[4] Cho, N.; Shin, H.; Kim, Y.; Tsourdos, A., Composite MRAC with parameter convergence under finite excitation, IEEE Trans. Autom. Control, 63, 3, 811-818 (2018) · Zbl 1390.93427
[5] Chowdhary, G.; Yucelen, T.; Muhlegg, M.; Johnson, E., Concurrent learning adaptive control of linear systems with exponentially convergent bounds, Int. J. Adapt. Control Signal Process., 27, 4, 280-301 (2013) · Zbl 1272.93069
[6] Duarte, M. A.; Ponce, R. F., Discrete-time combined model reference adaptive control, Int. J. Adapt. Control Signal Process., 11, 6, 501-517 (1997) · Zbl 0883.93036
[7] Feuer, A.; Barmish, B. R.; Morse, A. S., An unstable dynamical system associated with model reference adaptive control, IEEE Trans. Autom. Control, 23, 499-500 (1978) · Zbl 0377.93039
[8] Feuer, A.; Morse, A. S., Adaptive control of single-input, single-output linear systems, IEEE Trans. Autom. Control, 23, 557-569 (1978) · Zbl 0384.93028
[9] Gerasimov, D.; Ortega, R.; Nikiforov, V., Relaxing the high-frequency gain sign assumption in direct model reference adaptive control, European Journal of Control, 43, 12-19 (2018) · Zbl 1402.93154
[10] Gerasimov, D. N.; Belyaev, M. E.; Nikiforov, V. O., Performance improvement of discrete MRAC by dynamic and memory regressor extension, Proceedings of the European Control Conference, Naples, Italy, 2950-2956 (2019)
[11] (presented)
[12] Gerasimov, D. N.; Nikiforov, V. O.; Belyaev, M. E., Performance improvement of MRAC by dynamic regressor extension, Proceedings of the IEEE Conference on Decision and Control (CDC), 3032-3037 (2018), USA, FL, Miami
[13] Gerasimov, D. N.; Pashenko, A. V.; Nikiforov, V. O., Improved adaptive compensation of unmatched multisinusoidal disturbances in uncertain nonlinear plants, IEEE Trans. Autom. Control, 626-632 (2020)
[14] (presented)
[15] Goodwin, G. C.; Sin, K. S., Adaptive Filtering Prediction and Control (1984), Dover Publication · Zbl 0653.93001
[16] Hovakimyan, N.; Cao, C., \( \mathcal{L}_1\) Adaptive Control Theory - Guaranteed Robustness with Fast Adaptation (2010), Philadelphia: SIAM · Zbl 1214.93004
[17] Ioannou, P.; Sun, J., Robust Adaptive Control (1996), Prentice-Hall, NJ · Zbl 0839.93002
[18] Ionescu, T.; Monopoli, R., Discrete model reference adaptive control with an augmented error signal, Automatica, 13, 507-517 (1997) · Zbl 0412.93045
[19] Kamalapurkar, R.; Reish, B.; Chowdhary, G.; Dixon, W. E., Concurrent learning for parameter estimation using dynamic state-derivative estimators, IEEE Trans. Autom. Control, 62, 7, 3594-3601 (2017) · Zbl 1370.93090
[20] Kreisselmeier, G., Adaptive observers with exponential rate of convergence, IEEE Trans. Autom. Control, 22, 1, 2-8 (1977) · Zbl 0346.93043
[21] Kreisselmeier, G.; Joos, D., Rate of convergence in model reference adaptive control, IEEE Trans. Autom. Control, 27, 710-713 (1982) · Zbl 0483.93064
[22] Krstić, M.; Kanellakopoulos, I.; Kokotović, P. V., Nonlinear and Adaptive Control Design (1995), Wiley: Wiley New York · Zbl 0763.93043
[23] Lion, P. M., Rapid identification of linear and nonlinear systems, AIAA J., 5, 1835-1842 (1967)
[24] Ljung, L.; Soderstrom, T., Theory and Practice of Recursive Identification (1985), M.I.T. Press: M.I.T. Press Cambridge, MA
[25] Miller, D. E., Classical Pole Placement Adaptive Control Revisited: Exponential Stabilization, Proceedings of the IEEE Conference on Control Technology and Applications (CCTA), 1975-1980 (2017)
[26] Monopoli, R. V., Model reference adaptive control with an augmented error, IEEE Trans. Autom. Control, 19, 4, 474-484 (1974) · Zbl 0288.93022
[27] Morse, A. S., High-order parameter tuners for the adaptive control of linear and nonlinear systems, (Isidori, A.; Tarneds, T. J., Systems, Models and Feedback: Theory and Applications (1992), Basel: BirkhaKuser), 339-364 · Zbl 0778.93066
[28] Narendra, K.; Annaswamy, A., Stable Adaptive Systems (1989), Prentice Hall: Prentice Hall New Jersey · Zbl 0758.93039
[29] Narendra, K.; Xiang, C., Adaptive control of discrete-time systems using multiple models, IEEE Trans. Autom. Control, 45, 9, 1669-1686 (2000) · Zbl 0988.93042
[30] Nikiforov, V. O., Robust high-order tuner of simplified structure, Automatica, 35, 8, 1409-1415 (1999) · Zbl 0938.93032
[31] Ortega, R., On Morse’s new adaptive controller: parameter convergence and transient performance, IEEE Trans. Autom. Control, 38, 1191-1202 (1993) · Zbl 0784.93057
[32] A. Parikh, R. Kamalapurkar, W.E. Dixon, Integral concurrent learning: adaptive control with parameter convergence without PE or state derivatives, 2015. (See also arXiv:1512.03464.
[33] Patre, P. M.; MacKunis, W.; Johnson, M.; Dixon, W. E., Composite adaptive control for euler-lagrange systems with additive disturbances, Automatica, 46, 1, 140-147 (2010) · Zbl 1213.93104
[34] Tao, G., Adaptive Control Design and Analysis, 618 (2003), John Wiley & Sons · Zbl 1061.93004
[35] Weiss, A.; Mitra, D., Digital adaptive filters: conditions for convergence, rates of convergence, effects of noise and errors arising from the implementation, IEEE Trans. Autom. Control, 25, 6, 637-652 (1979) · Zbl 0425.93044
[36] Wen, C., A robust adaptive controller with minimal modifications for discrete time-varying systems, IEEE Trans. Autom. Control, 39, 5, 987-991 (1994) · Zbl 0807.93057
[37] Zhu, Y.; Krstic, M.; Su, H.; Xu, C., Linear backstepping output feedback control for uncertain linear systems, Int. J. Adapt. Control Signal Process., 30, 1080-1098 (2016) · Zbl 1348.93179
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.