Umrzaqov, S. M. Local derivations of null-filiform and filiform Zinbiel algebras. (English) Zbl 07720375 Uzb. Math. J. 67, No. 2, 172-180 (2023). MSC: 16W25 46L57 47B47 17C65 PDF BibTeX XML Cite \textit{S. M. Umrzaqov}, Uzb. Math. J. 67, No. 2, 172--180 (2023; Zbl 07720375) Full Text: DOI
Bahturin, Yuri; Olshanskii, Alexander Nilpotent algebras, implicit function theorem, and polynomial quasigroups. (English) Zbl 07710357 J. Algebra 632, 154-193 (2023). MSC: 17B30 20N05 06F25 17B01 22E60 PDF BibTeX XML Cite \textit{Y. Bahturin} and \textit{A. Olshanskii}, J. Algebra 632, 154--193 (2023; Zbl 07710357) Full Text: DOI arXiv
de Jesus, Vanderlei Lopes; Schneider, Csaba The center and invariants of standard filiform Lie algebras. (English) Zbl 1515.17028 J. Algebra 628, 584-612 (2023). Reviewer: Ernest L. Stitzinger (Raleigh) MSC: 17B35 17B30 16U70 16W22 17-08 PDF BibTeX XML Cite \textit{V. L. de Jesus} and \textit{C. Schneider}, J. Algebra 628, 584--612 (2023; Zbl 1515.17028) Full Text: DOI arXiv
Figula, Agota; Abbas, Sameer Annon Isometry groups of six-dimensional filiform nilmanifolds. (English) Zbl 07648616 Int. J. Group Theory 12, No. 2, 67-80 (2023). MSC: 22E25 17B30 57M60 53C30 PDF BibTeX XML Cite \textit{A. Figula} and \textit{S. A. Abbas}, Int. J. Group Theory 12, No. 2, 67--80 (2023; Zbl 07648616) Full Text: DOI
Boarotto, Francesco; Nalon, Luca; Vittone, Davide The Sard problem in step 2 and in filiform Carnot groups. (English) Zbl 1515.53026 ESAIM, Control Optim. Calc. Var. 28, Paper No. 75, 20 p. (2022). Reviewer: Nathaniel Eldredge (Greeley) MSC: 53C17 22E25 17B45 PDF BibTeX XML Cite \textit{F. Boarotto} et al., ESAIM, Control Optim. Calc. Var. 28, Paper No. 75, 20 p. (2022; Zbl 1515.53026) Full Text: DOI arXiv
Yuan, Ji Xia; Chen, Liang Yun; Cao, Yan Restricted cohomology of restricted Lie superalgebras. (English) Zbl 1507.17039 Acta Math. Sin., Engl. Ser. 38, No. 11, 2115-2130 (2022). Reviewer: Yin Chen (Changchun) MSC: 17B50 17B55 17B56 PDF BibTeX XML Cite \textit{J. X. Yuan} et al., Acta Math. Sin., Engl. Ser. 38, No. 11, 2115--2130 (2022; Zbl 1507.17039) Full Text: DOI arXiv
Barreiro, Elisabete; Benayadi, Saïd; Navarro, Rosa M.; Sánchez, José M. On Lie superalgebras with a filiform module as an odd part. (English) Zbl 1521.17021 J. Lie Theory 32, No. 4, 917-936 (2022). MSC: 17B30 17B05 PDF BibTeX XML Cite \textit{E. Barreiro} et al., J. Lie Theory 32, No. 4, 917--936 (2022; Zbl 1521.17021) Full Text: Link
Barreiro, Elisabete; Benayadi, Saïd; Navarro, Rosa M.; Sánchez, José M. Odd-quadratic Lie superalgebras with a weak filiform module as an odd part. (English) Zbl 1511.17023 Linear Algebra Appl. 649, 22-46 (2022). MSC: 17B30 17A70 17B05 PDF BibTeX XML Cite \textit{E. Barreiro} et al., Linear Algebra Appl. 649, 22--46 (2022; Zbl 1511.17023) Full Text: DOI
Khudoyberdiyev, A. Kh.; Sheraliyeva, S. A. Central extension of solvable Lie algebras with model filiform nilradical of maximal codimension. (English) Zbl 1499.17013 Uzb. Math. J. 66, No. 1, 107-116 (2022). MSC: 17B30 17B01 17B66 PDF BibTeX XML Cite \textit{A. Kh. Khudoyberdiyev} and \textit{S. A. Sheraliyeva}, Uzb. Math. J. 66, No. 1, 107--116 (2022; Zbl 1499.17013)
Herrera-Granada, Joan Felipe; Marquez, Oscar; Vera, Sonia Degenerations to filiform Lie algebras of dimension 9. (English) Zbl 1508.17015 Commun. Algebra 50, No. 2, 836-847 (2022). Reviewer: Giovanni Falcone (Udine) MSC: 17B30 PDF BibTeX XML Cite \textit{J. F. Herrera-Granada} et al., Commun. Algebra 50, No. 2, 836--847 (2022; Zbl 1508.17015) Full Text: DOI arXiv
Gutiérrez, María Valeria On Ricci negative derivations. (English) Zbl 1496.17007 Adv. Geom. 22, No. 2, 199-214 (2022). Reviewer: Andreas Arvanitoyeorgos (Patras) MSC: 17B30 53C30 PDF BibTeX XML Cite \textit{M. V. Gutiérrez}, Adv. Geom. 22, No. 2, 199--214 (2022; Zbl 1496.17007) Full Text: DOI arXiv
Edwards, John; Krome, Cameron; Payne, Tracy L. Computation of positively graded filiform nilpotent Lie algebras in low dimensions. (English) Zbl 1472.17044 J. Symb. Comput. 108, 73-90 (2022). Reviewer: Andrea Caranti (Trento) MSC: 17B30 17B70 PDF BibTeX XML Cite \textit{J. Edwards} et al., J. Symb. Comput. 108, 73--90 (2022; Zbl 1472.17044) Full Text: DOI
Liu, Li Na; Tang, Li Ming Automorphism groups of a series of filiform Lie algebras \(Q_n\). (Chinese. English summary) Zbl 1513.17014 Acta Math. Sin., Chin. Ser. 64, No. 6, 959-966 (2021). MSC: 17B40 17B30 PDF BibTeX XML Cite \textit{L. N. Liu} and \textit{L. M. Tang}, Acta Math. Sin., Chin. Ser. 64, No. 6, 959--966 (2021; Zbl 1513.17014) Full Text: Link
Liu, Wende; Miao, Xingxue Multipliers, covers, and stem extensions for Lie superalgebras. (English) Zbl 1507.17009 Front. Math. China 16, No. 4, 979-995 (2021). Reviewer: Alice Fialowski (Budapest) MSC: 17B05 17B30 17B56 PDF BibTeX XML Cite \textit{W. Liu} and \textit{X. Miao}, Front. Math. China 16, No. 4, 979--995 (2021; Zbl 1507.17009) Full Text: DOI arXiv
Darabi, Hamid; Eshrati, Mehdi; Jabbar Nezhad, Babak On the multiplier of filiform Filippov algebras. (English) Zbl 1503.17012 Result. Math. 76, No. 4, Paper No. 190, 9 p. (2021). Reviewer: Ernest L. Stitzinger (Raleigh) MSC: 17B05 17B30 PDF BibTeX XML Cite \textit{H. Darabi} et al., Result. Math. 76, No. 4, Paper No. 190, 9 p. (2021; Zbl 1503.17012) Full Text: DOI
Adashev, J. Q.; Camacho, L. M.; Omirov, B. A. Solvable Leibniz algebras with naturally graded non-Lie \(p\)-filiform nilradicals whose maximal complemented space of its nilradical. (English) Zbl 1475.17003 Linear Multilinear Algebra 69, No. 8, 1500-1520 (2021). Reviewer: Hesam Safa (Bojnord) MSC: 17A32 17A36 17B30 17B56 PDF BibTeX XML Cite \textit{J. Q. Adashev} et al., Linear Multilinear Algebra 69, No. 8, 1500--1520 (2021; Zbl 1475.17003) Full Text: DOI arXiv
Makhlouf, Abdenacer; Mehidi, Mourad On classification of filiform Hom-Lie algebras. (English) Zbl 1479.17038 Silvestrov, Sergei (ed.) et al., Algebraic structures and applications. Selected papers based on the presentations at the international conference on stochastic processes and algebraic structures – from theory towards applications, SPAS 2017, Västerås and Stockholm, Sweden, October 4–6, 2017. Cham: Springer. Springer Proc. Math. Stat. 317, 189-221 (2020). MSC: 17B61 17B30 PDF BibTeX XML Cite \textit{A. Makhlouf} and \textit{M. Mehidi}, Springer Proc. Math. Stat. 317, 189--221 (2020; Zbl 1479.17038) Full Text: DOI arXiv
Zhou, Mengmeng; Yuan, Jixia Superderivations and local superderivations of model filiform Lie superalgebras. (Chinese. English summary) Zbl 1474.17022 J. Nat. Sci. Heilongjiang Univ. 37, No. 4, 405-410 (2020). MSC: 17B40 17B30 PDF BibTeX XML Cite \textit{M. Zhou} and \textit{J. Yuan}, J. Nat. Sci. Heilongjiang Univ. 37, No. 4, 405--410 (2020; Zbl 1474.17022) Full Text: DOI
Castro-Jiménez, F. J.; Ceballos, M.; Núñez-Valdés, J. Filiform Lie algebras with low derived length. (English) Zbl 1493.17011 Mediterr. J. Math. 17, No. 6, Paper No. 198, 18 p. (2020). Reviewer: Peyman Niroomand (Dāmghān) MSC: 17B30 PDF BibTeX XML Cite \textit{F. J. Castro-Jiménez} et al., Mediterr. J. Math. 17, No. 6, Paper No. 198, 18 p. (2020; Zbl 1493.17011) Full Text: DOI arXiv
Herrera-Granada, Joan Felipe; Tirao, Paulo; Vera, Sonia A distinguished example of filiform deformation. (English) Zbl 1486.17021 J. Algebra Appl. 19, No. 9, Article ID 2050168, 13 p. (2020). MSC: 17B30 17B99 PDF BibTeX XML Cite \textit{J. F. Herrera-Granada} et al., J. Algebra Appl. 19, No. 9, Article ID 2050168, 13 p. (2020; Zbl 1486.17021) Full Text: DOI arXiv
Ayupov, Sh. A.; Kudaibergenov, K. K.; Yusupov, B. B. Local and 2-local derivations of \(p\)-filiform Leibniz algebras. (English. Russian original) Zbl 1464.17003 J. Math. Sci., New York 245, No. 3, 359-367 (2020); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 144, 65-73 (2018). Reviewer: Alexandre P. Pojidaev (Novosibirsk) MSC: 17A32 17B10 17B20 PDF BibTeX XML Cite \textit{Sh. A. Ayupov} et al., J. Math. Sci., New York 245, No. 3, 359--367 (2020; Zbl 1464.17003); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 144, 65--73 (2018) Full Text: DOI
Muratova, Kh. A.; Ladra, M.; Omirov, B. A.; Sattarov, A. M. Solvable Leibniz algebras with quasi-filiform Lie algebras of maximum length nilradicals. (English) Zbl 1475.17005 Commun. Algebra 48, No. 8, 3525-3542 (2020). Reviewer: Hesam Safa (Bojnord) MSC: 17A32 17A36 17B30 17B56 PDF BibTeX XML Cite \textit{Kh. A. Muratova} et al., Commun. Algebra 48, No. 8, 3525--3542 (2020; Zbl 1475.17005) Full Text: DOI arXiv
Gorbatsevich, V. V. Computational experiments with nilpotent Lie algebras. (English. Russian original) Zbl 1459.17025 Math. Notes 107, No. 1, 20-26 (2020); translation from Mat. Zametki 107, No. 1, 23-31 (2020). MSC: 17B30 17-08 PDF BibTeX XML Cite \textit{V. V. Gorbatsevich}, Math. Notes 107, No. 1, 20--26 (2020; Zbl 1459.17025); translation from Mat. Zametki 107, No. 1, 23--31 (2020) Full Text: DOI arXiv
Bernik, Janez Quasi-filiform Lie algebras of maximum length revisited. (English) Zbl 1469.17010 J. Algebra 541, 146-173 (2020). MSC: 17B30 17B70 PDF BibTeX XML Cite \textit{J. Bernik}, J. Algebra 541, 146--173 (2020; Zbl 1469.17010) Full Text: DOI
Zhu, Kaixiao; Wu, Mingzhong Lie triple derivations of filiform Lie algebra \({R_n}\). (Chinese. English summary) Zbl 1449.17033 Math. Pract. Theory 49, No. 23, 198-203 (2019). MSC: 17B40 17B30 PDF BibTeX XML Cite \textit{K. Zhu} and \textit{M. Wu}, Math. Pract. Theory 49, No. 23, 198--203 (2019; Zbl 1449.17033)
Evans, Tyler J.; Fialowski, Alice Cohomology of restricted filiform Lie algebras \(\mathfrak m_2^\lambda(p)\). (English) Zbl 1447.17014 SIGMA, Symmetry Integrability Geom. Methods Appl. 15, Paper 095, 11 p. (2019). Reviewer: Andrea Caranti (Trento) MSC: 17B50 17B56 PDF BibTeX XML Cite \textit{T. J. Evans} and \textit{A. Fialowski}, SIGMA, Symmetry Integrability Geom. Methods Appl. 15, Paper 095, 11 p. (2019; Zbl 1447.17014) Full Text: DOI arXiv
Alvarez, María A.; Rodríguez-Vallarte, María C.; Salgado, Gil Low dimensional contact Lie algebras. (English) Zbl 1458.17006 J. Lie Theory 29, No. 3, 811-838 (2019). Reviewer: V. V. Gorbatsevich (Moskva) MSC: 17B30 53D10 PDF BibTeX XML Cite \textit{M. A. Alvarez} et al., J. Lie Theory 29, No. 3, 811--838 (2019; Zbl 1458.17006) Full Text: Link
Karimjanov, I. A.; Ladra, M. Minimal representations of filiform Lie algebras and their application for construction of Leibniz algebras. (English) Zbl 1432.17003 J. Geom. Phys. 144, 235-244 (2019). MSC: 17A32 17B30 17B10 PDF BibTeX XML Cite \textit{I. A. Karimjanov} and \textit{M. Ladra}, J. Geom. Phys. 144, 235--244 (2019; Zbl 1432.17003) Full Text: DOI arXiv
Abdurasulov, Kobiljon K.; Adashev, Jobir Q.; Casas, José M.; Omirov, Bakhrom A. Solvable Leibniz algebras whose nilradical is a quasi-filiform Leibniz algebra of maximum length. (English) Zbl 1471.17008 Commun. Algebra 47, No. 4, 1578-1594 (2019). MSC: 17A32 17A36 17B30 17B56 PDF BibTeX XML Cite \textit{K. K. Abdurasulov} et al., Commun. Algebra 47, No. 4, 1578--1594 (2019; Zbl 1471.17008) Full Text: DOI arXiv
Tirao, Paulo; Vera, Sonia There are no rigid filiform Lie algebras of low dimension. (English) Zbl 1439.17015 J. Lie Theory 29, No. 2, 391-412 (2019). MSC: 17B30 17B40 PDF BibTeX XML Cite \textit{P. Tirao} and \textit{S. Vera}, J. Lie Theory 29, No. 2, 391--412 (2019; Zbl 1439.17015) Full Text: arXiv Link
Evans, Tyler J.; Fialowski, Alice Restricted one-dimensional central extensions of the restricted filiform Lie algebras \(\mathfrak{m}_0^\lambda(p)\). (English) Zbl 1418.17046 Linear Algebra Appl. 565, 244-257 (2019). MSC: 17B56 17B50 PDF BibTeX XML Cite \textit{T. J. Evans} and \textit{A. Fialowski}, Linear Algebra Appl. 565, 244--257 (2019; Zbl 1418.17046) Full Text: DOI arXiv
Gaybullaev, R. K.; Khalkulova, Kh. A.; Adashev, J. Q. The rigidity of some solvable Lie algebras. (English) Zbl 1474.17013 Uzb. Math. J. 2018, No. 2, 43-49 (2018). MSC: 17B30 17B56 PDF BibTeX XML Cite \textit{R. K. Gaybullaev} et al., Uzb. Math. J. 2018, No. 2, 43--49 (2018; Zbl 1474.17013) Full Text: DOI
Remm, Elisabeth On filiform Lie algebras. Geometric and algebraic studies. (English) Zbl 1424.17019 Rev. Roum. Math. Pures Appl. 63, No. 2, 179-209 (2018). Reviewer: Daniel Beltiţă (Bucureşti) MSC: 17B30 53D05 53D10 PDF BibTeX XML Cite \textit{E. Remm}, Rev. Roum. Math. Pures Appl. 63, No. 2, 179--209 (2018; Zbl 1424.17019) Full Text: arXiv
Escobar, José M.; Núñez Valdés, Juan; Pérez-Fernández, Pedro Graded contractions of filiform Lie algebras. (English) Zbl 1405.17023 Math. Methods Appl. Sci. 41, No. 17, 7195-7201 (2018). MSC: 17B30 17B40 PDF BibTeX XML Cite \textit{J. M. Escobar} et al., Math. Methods Appl. Sci. 41, No. 17, 7195--7201 (2018; Zbl 1405.17023) Full Text: DOI
Yang, Yong; Liu, Wende On cohomology of filiform Lie superalgebras. (English) Zbl 1435.17018 J. Geom. Phys. 134, 212-234 (2018). MSC: 17B30 17B56 PDF BibTeX XML Cite \textit{Y. Yang} and \textit{W. Liu}, J. Geom. Phys. 134, 212--234 (2018; Zbl 1435.17018) Full Text: DOI arXiv
Wang, Ying; Du, Fengli Hom-structures and the multiplicative Hom-structures of \( (n - 3)\)-filiform Lie algebras. (Chinese. English summary) Zbl 1413.17020 J. Henan Norm. Univ., Nat. Sci. 46, No. 3, 1-5 (2018). MSC: 17B99 17B30 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{F. Du}, J. Henan Norm. Univ., Nat. Sci. 46, No. 3, 1--5 (2018; Zbl 1413.17020) Full Text: DOI
Bernik, Janez; Šivic, Klemen On certain graded representations of filiform Lie algebras. (English) Zbl 1459.17024 Linear Multilinear Algebra 66, No. 11, 2305-2327 (2018). MSC: 17B30 17B70 20G20 15A30 PDF BibTeX XML Cite \textit{J. Bernik} and \textit{K. Šivic}, Linear Multilinear Algebra 66, No. 11, 2305--2327 (2018; Zbl 1459.17024) Full Text: DOI
Figula, Ágota; Nagy, Péter T. Isometry classes of simply connected nilmanifolds. (English) Zbl 1439.22019 J. Geom. Phys. 132, 370-381 (2018). MSC: 22E25 17B30 53C30 PDF BibTeX XML Cite \textit{Á. Figula} and \textit{P. T. Nagy}, J. Geom. Phys. 132, 370--381 (2018; Zbl 1439.22019) Full Text: DOI
Escobar, J. M.; Núñez, J.; Pérez-Fernández, Pedro Invariant functions and contractions of certain types of Lie algebras of lower dimensions. (English) Zbl 1417.17013 J. Nonlinear Math. Phys. 25, No. 3, 358-374 (2018). MSC: 17B30 17B40 17B81 PDF BibTeX XML Cite \textit{J. M. Escobar} et al., J. Nonlinear Math. Phys. 25, No. 3, 358--374 (2018; Zbl 1417.17013) Full Text: DOI
de Morais Costa, Otto Augusto; Petrogradsky, Victor Fractal just infinite nil Lie superalgebra of finite width. (English) Zbl 1422.16019 J. Algebra 504, 291-335 (2018). Reviewer: Andrea Caranti (Trento) MSC: 16P90 16N40 16S32 17B50 17B65 17B66 17B70 PDF BibTeX XML Cite \textit{O. A. de Morais Costa} and \textit{V. Petrogradsky}, J. Algebra 504, 291--335 (2018; Zbl 1422.16019) Full Text: DOI arXiv
Liu, Wende; Yang, Yong Cohomology of model filiform Lie superalgebras. (English) Zbl 1390.17022 J. Algebra Appl. 17, No. 4, Article ID 1850074, 13 p. (2018). MSC: 17B30 17B56 PDF BibTeX XML Cite \textit{W. Liu} and \textit{Y. Yang}, J. Algebra Appl. 17, No. 4, Article ID 1850074, 13 p. (2018; Zbl 1390.17022) Full Text: DOI
Pan, Meixin; Liu, Wende Rota-Baxter operators of weight 1 filiform Lie superalgebras of dimension four. (Chinese. English summary) Zbl 1389.17013 Math. Pract. Theory 47, No. 9, 268-275 (2017). MSC: 17B30 PDF BibTeX XML Cite \textit{M. Pan} and \textit{W. Liu}, Math. Pract. Theory 47, No. 9, 268--275 (2017; Zbl 1389.17013)
Camacho, L. M.; Omirov, B. A.; Masutova, K. K.; Rikhsiboev, I. M. Solvable Leibniz algebras with \(NF_n\bigoplus F_m^1\) nilradical. (English) Zbl 1430.17004 Open Math. 15, 1371-1388 (2017). MSC: 17A32 17A65 17B30 PDF BibTeX XML Cite \textit{L. M. Camacho} et al., Open Math. 15, 1371--1388 (2017; Zbl 1430.17004) Full Text: DOI
Rakhimov, I. S.; Khudoyberdiyev, A. Kh.; Omirov, B. A.; Mohd Atan, K. A. On isomorphism criterion for a subclass of complex filiform Leibniz algebras. (English) Zbl 1386.17003 Int. J. Algebra Comput. 27, No. 7, 953-972 (2017). MSC: 17A32 17A60 17B30 PDF BibTeX XML Cite \textit{I. S. Rakhimov} et al., Int. J. Algebra Comput. 27, No. 7, 953--972 (2017; Zbl 1386.17003) Full Text: DOI
Falcón, O. J.; Falcón, R. M.; Núñez, J. Isomorphism and isotopism classes of filiform Lie algebras of dimension up to seven over finite fields. (English) Zbl 1400.17011 Result. Math. 71, No. 3-4, 1151-1166 (2017). MSC: 17B60 17B05 PDF BibTeX XML Cite \textit{O. J. Falcón} et al., Result. Math. 71, No. 3--4, 1151--1166 (2017; Zbl 1400.17011) Full Text: DOI arXiv
Adashev, J. Q.; Ladra, M.; Omirov, B. A. Solvable Leibniz algebras with naturally graded non-Lie \(p\)-filiform nilradicals. (English) Zbl 1427.17005 Commun. Algebra 45, No. 10, 4329-4347 (2017). MSC: 17A32 17A36 17B30 17B56 PDF BibTeX XML Cite \textit{J. Q. Adashev} et al., Commun. Algebra 45, No. 10, 4329--4347 (2017; Zbl 1427.17005) Full Text: DOI arXiv
Tsartsaflis, Ioannis On the Betti numbers of filiform Lie algebras over fields of characteristic two. (English) Zbl 1365.17011 Rev. Unión Mat. Argent. 58, No. 1, 95-106 (2017). MSC: 17B56 17B30 PDF BibTeX XML Cite \textit{I. Tsartsaflis}, Rev. Unión Mat. Argent. 58, No. 1, 95--106 (2017; Zbl 1365.17011) Full Text: arXiv Link
Ceballos, M.; Núñez, J.; Tenorio, Á. F. New results in the classification of filiform Lie algebras. (English) Zbl 1415.17012 Bull. Malays. Math. Sci. Soc. (2) 40, No. 1, 409-437 (2017). MSC: 17B30 17B05 17-08 68W30 68W40 PDF BibTeX XML Cite \textit{M. Ceballos} et al., Bull. Malays. Math. Sci. Soc. (2) 40, No. 1, 409--437 (2017; Zbl 1415.17012) Full Text: DOI
Arabyani, H.; Safa, H.; Saeedi, F. On characterizing pairs of non-abelian nilpotent and filiform Lie algebras by their Schur multipliers. (English) Zbl 1459.17023 J. Math. Ext. 10, No. 4, 61-73 (2016). MSC: 17B30 17B60 17B99 PDF BibTeX XML Cite \textit{H. Arabyani} et al., J. Math. Ext. 10, No. 4, 61--73 (2016; Zbl 1459.17023)
Falcón, Óscar J.; Falcón, Raúl M.; Núñez, Juan; Pacheco, Ana M.; Villar, M. Trinidad Classification of filiform Lie algebras up to dimension 7 over finite fields. (English) Zbl 1389.17011 An. Științ. Univ. “Ovidius” Constanța, Ser. Mat. 24, No. 2, 185-204 (2016). MSC: 17B30 05C90 PDF BibTeX XML Cite \textit{Ó. J. Falcón} et al., An. Științ. Univ. ``Ovidius'' Constanța, Ser. Mat. 24, No. 2, 185--204 (2016; Zbl 1389.17011) Full Text: DOI
Yang, Yong; Liu, Wende The Yang-Baxter equation of the filiform Lie superalgebras \(L_{n,m}\). (Chinese. English summary) Zbl 1374.16088 Pure Appl. Math. 32, No. 5, 536-545 (2016). MSC: 16T25 17B30 PDF BibTeX XML Cite \textit{Y. Yang} and \textit{W. Liu}, Pure Appl. Math. 32, No. 5, 536--545 (2016; Zbl 1374.16088) Full Text: DOI
Yang, Yong; Liu, Wende The Yang-Baxter equations of four dimensional filiform Lie superalgebras. (Chinese. English summary) Zbl 1363.17011 Math. Pract. Theory 46, No. 8, 220-227 (2016). MSC: 17B30 16T25 PDF BibTeX XML Cite \textit{Y. Yang} and \textit{W. Liu}, Math. Pract. Theory 46, No. 8, 220--227 (2016; Zbl 1363.17011)
Kato, Naoki Filiform Lie algebras without rational structures. (English) Zbl 1404.17022 J. Lie Theory 26, No. 4, 991-1000 (2016). MSC: 17B30 17B05 PDF BibTeX XML Cite \textit{N. Kato}, J. Lie Theory 26, No. 4, 991--1000 (2016; Zbl 1404.17022) Full Text: Link
Navarro, Rosa María Classification of filiform Lie algebras of order 3. (English) Zbl 1384.17015 J. Geom. Phys. 110, 248-258 (2016). MSC: 17B30 17B99 PDF BibTeX XML Cite \textit{R. M. Navarro}, J. Geom. Phys. 110, 248--258 (2016; Zbl 1384.17015) Full Text: DOI
Navarro, R. M. Low-dimensional filiform Lie superalgebras. (English) Zbl 1387.17024 J. Geom. Phys. 108, 71-82 (2016). MSC: 17B30 17B56 PDF BibTeX XML Cite \textit{R. M. Navarro}, J. Geom. Phys. 108, 71--82 (2016; Zbl 1387.17024) Full Text: DOI
Dubovik, P. A. Hermitian \(f\)-structures on 6-dimensional filiform Lie groups. (English. Russian original) Zbl 1353.53034 Russ. Math. 60, No. 7, 29-36 (2016); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2016, No. 7, 34-43 (2016). Reviewer: Neda Bokan (Beograd) MSC: 53C15 53C30 17B30 PDF BibTeX XML Cite \textit{P. A. Dubovik}, Russ. Math. 60, No. 7, 29--36 (2016; Zbl 1353.53034); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2016, No. 7, 34--43 (2016) Full Text: DOI
Camacho, L. M.; Cañete, E. M.; Gómez, J. R.; Omirov, B. A. 3-filiform Leibniz algebras of maximum length. (English. Russian original) Zbl 1404.17002 Sib. Math. J. 57, No. 1, 24-35 (2016); translation from Sib. Mat. Zh. 57, No. 1, 33-46 (2016). MSC: 17A32 PDF BibTeX XML Cite \textit{L. M. Camacho} et al., Sib. Math. J. 57, No. 1, 24--35 (2016; Zbl 1404.17002); translation from Sib. Mat. Zh. 57, No. 1, 33--46 (2016) Full Text: DOI arXiv
Tvalavadze, Marina Lie algebras of maximal class with polynomial multiplication. (English) Zbl 1404.17044 J. Lie Theory 26, No. 1, 181-192 (2016). MSC: 17B70 17B65 PDF BibTeX XML Cite \textit{M. Tvalavadze}, J. Lie Theory 26, No. 1, 181--192 (2016; Zbl 1404.17044) Full Text: Link
Bahturin, Yuri; Goze, Michel; Remm, Elisabeth Group gradings on filiform Lie algebras. (English) Zbl 1400.17005 Commun. Algebra 44, No. 1, 40-62 (2016). MSC: 17B30 17B40 17B70 PDF BibTeX XML Cite \textit{Y. Bahturin} et al., Commun. Algebra 44, No. 1, 40--62 (2016; Zbl 1400.17005) Full Text: DOI
Camacho, L. M.; Omirov, B. A.; Masutova, K. K. Solvable Leibniz algebras with filiform nilradical. (English) Zbl 1382.17002 Bull. Malays. Math. Sci. Soc. (2) 39, No. 1, 283-303 (2016). MSC: 17A32 17A65 17B30 PDF BibTeX XML Cite \textit{L. M. Camacho} et al., Bull. Malays. Math. Sci. Soc. (2) 39, No. 1, 283--303 (2016; Zbl 1382.17002) Full Text: DOI arXiv
Ayupov, Shavkat; Kudaybergenov, Karimbergen Local derivations on finite-dimensional Lie algebras. (English) Zbl 1395.17032 Linear Algebra Appl. 493, 381-398 (2016). MSC: 17B40 17B20 17B30 PDF BibTeX XML Cite \textit{S. Ayupov} and \textit{K. Kudaybergenov}, Linear Algebra Appl. 493, 381--398 (2016; Zbl 1395.17032) Full Text: DOI arXiv
Wu, Mingzhong Solvable Lie algebras with \(N(R_n,m,r)\) nilradical. (English) Zbl 1373.17018 Bull. Iran. Math. Soc. 41, No. 4, 955-970 (2015). MSC: 17B30 17B05 PDF BibTeX XML Cite \textit{M. Wu}, Bull. Iran. Math. Soc. 41, No. 4, 955--970 (2015; Zbl 1373.17018) Full Text: Link
Pérez, Mercedes; Pérez, Francisco; Jiménez, Emilio Symbolic and iterative computation of quasi-filiform nilpotent Lie algebras of dimension nine. (English) Zbl 1423.17001 Symmetry 7, No. 4, 1788-1802 (2015). MSC: 17-08 17B30 PDF BibTeX XML Cite \textit{M. Pérez} et al., Symmetry 7, No. 4, 1788--1802 (2015; Zbl 1423.17001) Full Text: DOI
Ma, Yingchao; Liu, Wende Spectral sequences and cohomology of four-dimensional filiform Lie superalgebras. (Chinese. English summary) Zbl 1340.17022 Pure Appl. Math. 31, No. 3, 282-290 (2015). MSC: 17B30 16E40 55T99 PDF BibTeX XML Cite \textit{Y. Ma} and \textit{W. Liu}, Pure Appl. Math. 31, No. 3, 282--290 (2015; Zbl 1340.17022) Full Text: DOI
Yu, Huanhuan; Liu, Wende The Hom-structures on filiform Lie algebras \(\text{ Q}_n\). (Chinese. English summary) Zbl 1340.17023 Pure Appl. Math. 31, No. 2, 156-163 (2015). MSC: 17B30 PDF BibTeX XML Cite \textit{H. Yu} and \textit{W. Liu}, Pure Appl. Math. 31, No. 2, 156--163 (2015; Zbl 1340.17023) Full Text: DOI
Gómez, J. R.; Omirov, B. A. On classification of filiform Leibniz algebras. (English) Zbl 1356.17002 Algebra Colloq. 22, Spec. Iss. 1, 757-774 (2015). MSC: 17A32 17A36 17B30 PDF BibTeX XML Cite \textit{J. R. Gómez} and \textit{B. A. Omirov}, Algebra Colloq. 22, 757--774 (2015; Zbl 1356.17002) Full Text: DOI
Abdulkareem, A. O.; Rakhimov, I. S.; Said Husain, S. K. Isomorphism classes and invariants of low-dimensional filiform Leibniz algebras. (English) Zbl 1362.17003 Linear Multilinear Algebra 63, No. 11, 2254-2274 (2015). MSC: 17A32 17B30 PDF BibTeX XML Cite \textit{A. O. Abdulkareem} et al., Linear Multilinear Algebra 63, No. 11, 2254--2274 (2015; Zbl 1362.17003) Full Text: DOI arXiv
Ayupov, Sh. A.; Camacho, L. M.; Khudoyberdiyev, A. Kh.; Omirov, B. A. Leibniz algebras associated with representations of filiform Lie algebras. (English) Zbl 1368.17001 J. Geom. Phys. 98, 181-195 (2015). MSC: 17A32 17B30 17B10 PDF BibTeX XML Cite \textit{Sh. A. Ayupov} et al., J. Geom. Phys. 98, 181--195 (2015; Zbl 1368.17001) Full Text: DOI arXiv
Navarro, R. M. Infinitesimal deformations of filiform Lie algebras of order 3. (English) Zbl 1368.17016 J. Geom. Phys. 98, 150-159 (2015). MSC: 17B30 17B70 PDF BibTeX XML Cite \textit{R. M. Navarro}, J. Geom. Phys. 98, 150--159 (2015; Zbl 1368.17016) Full Text: DOI
Wang, Qi; Chen, Hongjia; Liu, Wende On representations of the filiform Lie superalgebra \(L_{m,n}\). (English) Zbl 1325.17008 J. Geom. Phys. 97, 93-104 (2015). MSC: 17B30 17B10 17B25 PDF BibTeX XML Cite \textit{Q. Wang} et al., J. Geom. Phys. 97, 93--104 (2015; Zbl 1325.17008) Full Text: DOI
Wu, Mingzhong Completable nilpotent Lie superalgebras. (English) Zbl 1339.17011 Front. Math. China 10, No. 3, 697-713 (2015). MSC: 17B30 17B40 PDF BibTeX XML Cite \textit{M. Wu}, Front. Math. China 10, No. 3, 697--713 (2015; Zbl 1339.17011) Full Text: DOI
Xie, Xiangdong Quasi-conformal maps on model filiform groups. (English) Zbl 1339.22006 Mich. Math. J. 64, No. 1, 169-202 (2015). Reviewer: Sergiy Merenkov (New York) MSC: 22E25 53C17 30L10 17B01 PDF BibTeX XML Cite \textit{X. Xie}, Mich. Math. J. 64, No. 1, 169--202 (2015; Zbl 1339.22006) Full Text: DOI arXiv Euclid
Barron, Tatyana; Kerner, Dmitry; Tvalavadze, Marina On varieties of Lie algebras of maximal class. (English) Zbl 1393.17022 Can. J. Math. 67, No. 1, 55-89 (2015). Reviewer: Liangyun Chen (Changchun) MSC: 17B30 14F99 17B70 PDF BibTeX XML Cite \textit{T. Barron} et al., Can. J. Math. 67, No. 1, 55--89 (2015; Zbl 1393.17022) Full Text: DOI arXiv
Jiao, Yang; Liu, Wende Yang-Baxter equations on the filiform Lie superalgebra \(L_{1,2}\). (Chinese. English summary) Zbl 1340.17020 Math. Pract. Theory 44, No. 17, 283-287 (2014). MSC: 17B30 16T25 PDF BibTeX XML Cite \textit{Y. Jiao} and \textit{W. Liu}, Math. Pract. Theory 44, No. 17, 283--287 (2014; Zbl 1340.17020)
Bahturin, Yuri; Goze, Michel; Remm, Elisabeth Group gradings on Lie algebras and applications to geometry. II. (English) Zbl 1354.17022 Mason, Geoffrey (ed.) et al., Developments and retrospectives in Lie theory. Geometric and analytic methods. Retrospective selected papers based on the presentations at the seminar “Lie groups, Lie algebras and their representations”, 1991–2014. Cham: Springer (ISBN 978-3-319-09933-0/hbk; 978-3-319-09934-7/ebook). Developments in Mathematics 37, 1-40 (2014). MSC: 17B70 17B30 53C05 PDF BibTeX XML Cite \textit{Y. Bahturin} et al., Dev. Math. 37, 1--40 (2014; Zbl 1354.17022) Full Text: DOI
Abdulkareem, Abdulafeez O.; Rakhimov, I. S.; Said Husain, S. K. On seven-dimensional filiform Leibniz algebras. (English) Zbl 1352.17001 Kilicman, Adem (ed.) et al., International conference on mathematical sciences and statistics 2013. Selected papers. ICMSS 2013, Kuala Lumpur, Malaysia, February 5–7, 2013. Singapore: Springer (ISBN 978-981-4585-32-3/hbk; 978-981-4585-33-0/ebook). 1-11 (2014). MSC: 17A32 17B30 PDF BibTeX XML Cite \textit{A. O. Abdulkareem} et al., in: International conference on mathematical sciences and statistics 2013. Selected papers. ICMSS 2013, Kuala Lumpur, Malaysia, February 5--7, 2013. Singapore: Springer. 1--11 (2014; Zbl 1352.17001) Full Text: DOI
Jiao, Yang; Liu, Wende The derivations and the multiplicative Hom-structures of Filiform Lie superalgebras \(L_{n,m}\). (Chinese. English summary) Zbl 1324.17014 Pure Appl. Math. 30, No. 5, 534-542 (2014). MSC: 17B40 17B05 PDF BibTeX XML Cite \textit{Y. Jiao} and \textit{W. Liu}, Pure Appl. Math. 30, No. 5, 534--542 (2014; Zbl 1324.17014) Full Text: DOI
Rump, Wolfgang The brace of a classical group. (English) Zbl 1344.14029 Note Mat. 34, No. 1, 115-145 (2014). Reviewer: Dmitry Artamonov (Moskva) MSC: 14L35 16Y99 16T25 17A30 17B20 17B45 PDF BibTeX XML Cite \textit{W. Rump}, Note Mat. 34, No. 1, 115--145 (2014; Zbl 1344.14029) Full Text: Link
Arabyani, Homayoon; Saeedi, Farshid; Moghaddam, Mohammad Reza R.; Khamseh, Elaheh Characterization of nilpotent Lie algebras pair by their Schur multipliers. (English) Zbl 1385.17006 Commun. Algebra 42, No. 12, 5474-5483 (2014). Reviewer: Ernest L. Stitzinger (Raleigh) MSC: 17B30 PDF BibTeX XML Cite \textit{H. Arabyani} et al., Commun. Algebra 42, No. 12, 5474--5483 (2014; Zbl 1385.17006) Full Text: DOI
Cagliero, Leandro; Tirao, Paulo The cohomology of filiform Lie algebras of maximal rank. (English) Zbl 1348.17016 Linear Algebra Appl. 455, 143-167 (2014). MSC: 17B56 17B30 PDF BibTeX XML Cite \textit{L. Cagliero} and \textit{P. Tirao}, Linear Algebra Appl. 455, 143--167 (2014; Zbl 1348.17016) Full Text: DOI arXiv
Herrera-Granada, Joan Felipe; Tirao, Paulo Filiform Lie algebras of dimension 8 as degenerations. (English) Zbl 1316.17007 J. Algebra Appl. 13, No. 4, Article ID 1350144, 10 p. (2014). Reviewer: Juan Núñez Valdés (Sevilla) MSC: 17B30 17B99 PDF BibTeX XML Cite \textit{J. F. Herrera-Granada} and \textit{P. Tirao}, J. Algebra Appl. 13, No. 4, Article ID 1350144, 10 p. (2014; Zbl 1316.17007) Full Text: DOI arXiv
Camacho, L. M.; Cañete, E. M.; Gómez, J. R.; Omirov, B. A. \(p\)-filiform Leibniz algebras of maximum length. (English) Zbl 1360.17002 Linear Algebra Appl. 450, 316-333 (2014). Reviewer: Sh. A. Ayupov (Tashkent) MSC: 17A32 17A36 17A60 17B70 PDF BibTeX XML Cite \textit{L. M. Camacho} et al., Linear Algebra Appl. 450, 316--333 (2014; Zbl 1360.17002) Full Text: DOI arXiv
Wu, Mingzhong The derivation algebra of a \(Q_n\) filiform Lie algebra. (English) Zbl 1299.17014 Chin. Q. J. Math. 28, No. 3, 397-401 (2013). MSC: 17B40 17B30 PDF BibTeX XML Cite \textit{M. Wu}, Chin. Q. J. Math. 28, No. 3, 397--401 (2013; Zbl 1299.17014)
Wu, Mingzhong Quasi \(R_n\) filiform Lie algebras. (English) Zbl 1281.17016 Linear Algebra Appl. 439, No. 5, 1203-1220 (2013). MSC: 17B30 17B05 PDF BibTeX XML Cite \textit{M. Wu}, Linear Algebra Appl. 439, No. 5, 1203--1220 (2013; Zbl 1281.17016) Full Text: DOI
Cairns, Grant; Hinić Galić, Ana; Nikolayevsky, Yuri Totally geodesic subalgebras of filiform nilpotent Lie algebras. (English) Zbl 1290.17009 J. Lie Theory 23, No. 4, 1051-1074 (2013). Reviewer: Marta Macho Stadler (Leioa) MSC: 17B30 17B70 22E25 53C30 57R30 PDF BibTeX XML Cite \textit{G. Cairns} et al., J. Lie Theory 23, No. 4, 1051--1074 (2013; Zbl 1290.17009) Full Text: arXiv Link
Cairns, Grant; Hinić Galić, Ana; Nikolayevsky, Yuri Totally geodesic subalgebras of nilpotent Lie algebras. (English) Zbl 1362.17017 J. Lie Theory 23, No. 4, 1023-1049 (2013). Reviewer: Marta Macho Stadler (Leioa) MSC: 17B30 22E25 53C30 57R30 PDF BibTeX XML Cite \textit{G. Cairns} et al., J. Lie Theory 23, No. 4, 1023--1049 (2013; Zbl 1362.17017) Full Text: arXiv Link
Masutova, K. K.; Omirov, B. A.; Khudoyberdiyev, A. Kh. Naturally graded Leibniz algebras with characteristic sequence \((n-m,m)\). (English. Russian original) Zbl 1328.17002 Math. Notes 93, No. 5, 740-755 (2013); translation from Mat. Zametki 93, No. 5, 746-763 (2013). MSC: 17A32 PDF BibTeX XML Cite \textit{K. K. Masutova} et al., Math. Notes 93, No. 5, 740--755 (2013; Zbl 1328.17002); translation from Mat. Zametki 93, No. 5, 746--763 (2013) Full Text: DOI
Almaraz Luengo, E.; Ancochea Bermúdez, J. M.; García Vergnolle, L. Completeness of quasi-filiform Lie algebras. (English) Zbl 1298.17015 Linear Multilinear Algebra 61, No. 5, 582-595 (2013). Reviewer: Rutwig Campoamor-Stursberg (Madrid) MSC: 17B30 17B56 PDF BibTeX XML Cite \textit{E. Almaraz Luengo} et al., Linear Multilinear Algebra 61, No. 5, 582--595 (2013; Zbl 1298.17015) Full Text: DOI
Ceballos, Manuel; Núñez, Juan; Tenorio, Ángel F. Representing filiform Lie algebras minimally and faithfully by strictly upper-triangular matrices. (English) Zbl 1310.17006 J. Algebra Appl. 12, No. 4, Paper No. 1250196, 15 p. (2013). MSC: 17B30 17-08 68W30 PDF BibTeX XML Cite \textit{M. Ceballos} et al., J. Algebra Appl. 12, No. 4, Paper No. 1250196, 15 p. (2013; Zbl 1310.17006) Full Text: DOI
Casas, J. M.; Ladra, M.; Omirov, B. A.; Karimjanov, I. A. Classification of solvable Leibniz algebras with naturally graded filiform nilradical. (English) Zbl 1300.17003 Linear Algebra Appl. 438, No. 7, 2973-3000 (2013). Reviewer: Sh. A. Ayupov (Tashkent) MSC: 17A32 17A36 17A65 17B30 PDF BibTeX XML Cite \textit{J. M. Casas} et al., Linear Algebra Appl. 438, No. 7, 2973--3000 (2013; Zbl 1300.17003) Full Text: DOI arXiv
Ancochea Bermúdez, José María; Stursberg, Campoamor; García Vergnolle, Lucía Lie algebras obtained as extensions by derivations of the nilpotent algebra \({\mathcal L}_{5, 3}\). (English) Zbl 1301.17012 Castrillón López, Marco (ed.) et al., Contribuciones matemáticas en honor a Juan Tarrés. Madrid: Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas (ISBN 978-84-695-4421-1). 1-15 (2012). Reviewer: Daniel Beltiţă (Bucureşti) MSC: 17B30 17B56 PDF BibTeX XML Cite \textit{J. M. Ancochea Bermúdez} et al., in: Contribuciones matemáticas en honor a Juan Tarrés. Madrid: Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas. 1--15 (2012; Zbl 1301.17012)
Wu, Mingzhong The derivation algebra of a quasi \(R_n\)-filiform Lie algebra. (English) Zbl 1274.17023 Commun. Math. Res. 28, No. 3, 218-224 (2012). MSC: 17B40 17B30 PDF BibTeX XML Cite \textit{M. Wu}, Commun. Math. Res. 28, No. 3, 218--224 (2012; Zbl 1274.17023)
Šnobl, Libor Maximal solvable extensions of filiform algebras. (English) Zbl 1265.17017 Arch. Math., Brno 47, No. 5, 405-414 (2011). Reviewer: Martin Čadek (Brno) MSC: 17B30 PDF BibTeX XML Cite \textit{L. Šnobl}, Arch. Math., Brno 47, No. 5, 405--414 (2011; Zbl 1265.17017)
Cabezas, J. M.; Camacho, L. M.; Gómez, J. R.; Omirov, B. A. On the description of Leibniz algebras with nilindex \(n-3\). (English) Zbl 1299.17001 Acta Math. Hung. 133, No. 3, 203-220 (2011). MSC: 17A32 17A36 17A60 17B70 PDF BibTeX XML Cite \textit{J. M. Cabezas} et al., Acta Math. Hung. 133, No. 3, 203--220 (2011; Zbl 1299.17001) Full Text: DOI arXiv
Rakhimov, Isamiddin S.; Hassan, Munther A. On isomorphism criteria for Leibniz central extensions of a linear deformation of \(\mu _{n}\). (English) Zbl 1258.17005 Int. J. Algebra Comput. 21, No. 5, 715-729 (2011). MSC: 17A32 17A60 17B30 17-08 PDF BibTeX XML Cite \textit{I. S. Rakhimov} and \textit{M. A. Hassan}, Int. J. Algebra Comput. 21, No. 5, 715--729 (2011; Zbl 1258.17005) Full Text: DOI
Khakimdjanov, Yu.; Navarro, R. M. Integrable deformations of nilpotent color Lie superalgebras. (English) Zbl 1262.17005 J. Geom. Phys. 61, No. 10, 1797-1808 (2011); corrigendum 62, No. 6, 1571 (2012). Reviewer: Liangyun Chen (Changchun) MSC: 17B30 17B70 17B75 17B56 PDF BibTeX XML Cite \textit{Yu. Khakimdjanov} and \textit{R. M. Navarro}, J. Geom. Phys. 61, No. 10, 1797--1808 (2011; Zbl 1262.17005) Full Text: DOI
Rakhimov, Isamiddin S.; Hassan, Munther A. On one-dimensional Leibniz central extensions of a filiform Lie algebra. (English) Zbl 1228.17003 Bull. Aust. Math. Soc. 84, No. 2, 205-224 (2011). Reviewer: Sh. A. Ayupov (Tashkent) MSC: 17A32 17A60 17B30 13A50 PDF BibTeX XML Cite \textit{I. S. Rakhimov} and \textit{M. A. Hassan}, Bull. Aust. Math. Soc. 84, No. 2, 205--224 (2011; Zbl 1228.17003) Full Text: DOI arXiv
Camacho, L. M.; Cañete, E. M.; Gómez, J. R.; Omirov, B. A. 3-filiform Leibniz algebras of maximum length, whose naturally graded algebras are Lie algebras. (English) Zbl 1226.17003 Linear Multilinear Algebra 59, No. 9, 1039-1058 (2011). Reviewer: Marek Golasiński (Toruń) MSC: 17A32 17A36 17A60 17B70 PDF BibTeX XML Cite \textit{L. M. Camacho} et al., Linear Multilinear Algebra 59, No. 9, 1039--1058 (2011; Zbl 1226.17003) Full Text: DOI
Camacho, L. M.; Gómez, J. R.; González, A. J.; Omirov, B. A. The classification of naturally graded \(p\)-filiform Leibniz algebras. (English) Zbl 1215.17005 Commun. Algebra 39, No. 1, 153-168 (2011). Reviewer: Isamiddin Rakhimov (Malaysia) MSC: 17A32 17A36 17A60 17B70 PDF BibTeX XML Cite \textit{L. M. Camacho} et al., Commun. Algebra 39, No. 1, 153--168 (2011; Zbl 1215.17005) Full Text: DOI
Khakimdjanov, Yu.; Navarro, R. M. Filiform color Lie superalgebras. (English) Zbl 1206.17010 J. Geom. Phys. 61, No. 1, 8-17 (2011); corrigendum 62, No. 6, 1572-1573 (2012). MSC: 17B30 17B70 17B75 PDF BibTeX XML Cite \textit{Yu. Khakimdjanov} and \textit{R. M. Navarro}, J. Geom. Phys. 61, No. 1, 8--17 (2011; Zbl 1206.17010) Full Text: DOI