Umrzaqov, S. M. Local derivations of null-filiform and filiform Zinbiel algebras. (English) Zbl 07720375 Uzb. Math. J. 67, No. 2, 172-180 (2023). MSC: 16W25 46L57 47B47 17C65 PDF BibTeX XML Cite \textit{S. M. Umrzaqov}, Uzb. Math. J. 67, No. 2, 172--180 (2023; Zbl 07720375) Full Text: DOI
Adashev, Jobir Central extensions of 2-filiform Leibniz algebras. (English) Zbl 1518.17002 Commun. Algebra 51, No. 5, 1886-1899 (2023). MSC: 17A32 17B30 PDF BibTeX XML Cite \textit{J. Adashev}, Commun. Algebra 51, No. 5, 1886--1899 (2023; Zbl 1518.17002) Full Text: DOI
Abdurasulov, K. K.; Adashev, J. Q. Solvable extensions of the naturally graded quasi-filiform Leibniz algebras. (English) Zbl 07658066 Commun. Algebra 51, No. 2, 510-527 (2023). MSC: 17A32 17A36 17B30 PDF BibTeX XML Cite \textit{K. K. Abdurasulov} and \textit{J. Q. Adashev}, Commun. Algebra 51, No. 2, 510--527 (2023; Zbl 07658066) Full Text: DOI arXiv
Gutiérrez, María Valeria On Ricci negative derivations. (English) Zbl 1496.17007 Adv. Geom. 22, No. 2, 199-214 (2022). Reviewer: Andreas Arvanitoyeorgos (Patras) MSC: 17B30 53C30 PDF BibTeX XML Cite \textit{M. V. Gutiérrez}, Adv. Geom. 22, No. 2, 199--214 (2022; Zbl 1496.17007) Full Text: DOI arXiv
Edwards, John; Krome, Cameron; Payne, Tracy L. Computation of positively graded filiform nilpotent Lie algebras in low dimensions. (English) Zbl 1472.17044 J. Symb. Comput. 108, 73-90 (2022). Reviewer: Andrea Caranti (Trento) MSC: 17B30 17B70 PDF BibTeX XML Cite \textit{J. Edwards} et al., J. Symb. Comput. 108, 73--90 (2022; Zbl 1472.17044) Full Text: DOI
Darabi, Hamid; Eshrati, Mehdi; Jabbar Nezhad, Babak On the multiplier of filiform Filippov algebras. (English) Zbl 1503.17012 Result. Math. 76, No. 4, Paper No. 190, 9 p. (2021). Reviewer: Ernest L. Stitzinger (Raleigh) MSC: 17B05 17B30 PDF BibTeX XML Cite \textit{H. Darabi} et al., Result. Math. 76, No. 4, Paper No. 190, 9 p. (2021; Zbl 1503.17012) Full Text: DOI
Adashev, J. Q.; Camacho, L. M.; Omirov, B. A. Solvable Leibniz algebras with naturally graded non-Lie \(p\)-filiform nilradicals whose maximal complemented space of its nilradical. (English) Zbl 1475.17003 Linear Multilinear Algebra 69, No. 8, 1500-1520 (2021). Reviewer: Hesam Safa (Bojnord) MSC: 17A32 17A36 17B30 17B56 PDF BibTeX XML Cite \textit{J. Q. Adashev} et al., Linear Multilinear Algebra 69, No. 8, 1500--1520 (2021; Zbl 1475.17003) Full Text: DOI arXiv
Makhlouf, Abdenacer; Mehidi, Mourad On classification of filiform Hom-Lie algebras. (English) Zbl 1479.17038 Silvestrov, Sergei (ed.) et al., Algebraic structures and applications. Selected papers based on the presentations at the international conference on stochastic processes and algebraic structures – from theory towards applications, SPAS 2017, Västerås and Stockholm, Sweden, October 4–6, 2017. Cham: Springer. Springer Proc. Math. Stat. 317, 189-221 (2020). MSC: 17B61 17B30 PDF BibTeX XML Cite \textit{A. Makhlouf} and \textit{M. Mehidi}, Springer Proc. Math. Stat. 317, 189--221 (2020; Zbl 1479.17038) Full Text: DOI arXiv
Castro-Jiménez, F. J.; Ceballos, M.; Núñez-Valdés, J. Filiform Lie algebras with low derived length. (English) Zbl 1493.17011 Mediterr. J. Math. 17, No. 6, Paper No. 198, 18 p. (2020). Reviewer: Peyman Niroomand (Dāmghān) MSC: 17B30 PDF BibTeX XML Cite \textit{F. J. Castro-Jiménez} et al., Mediterr. J. Math. 17, No. 6, Paper No. 198, 18 p. (2020; Zbl 1493.17011) Full Text: DOI arXiv
Ayupov, Sh. A.; Kudaibergenov, K. K.; Yusupov, B. B. Local and 2-local derivations of \(p\)-filiform Leibniz algebras. (English. Russian original) Zbl 1464.17003 J. Math. Sci., New York 245, No. 3, 359-367 (2020); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 144, 65-73 (2018). Reviewer: Alexandre P. Pojidaev (Novosibirsk) MSC: 17A32 17B10 17B20 PDF BibTeX XML Cite \textit{Sh. A. Ayupov} et al., J. Math. Sci., New York 245, No. 3, 359--367 (2020; Zbl 1464.17003); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 144, 65--73 (2018) Full Text: DOI
Muratova, Kh. A.; Ladra, M.; Omirov, B. A.; Sattarov, A. M. Solvable Leibniz algebras with quasi-filiform Lie algebras of maximum length nilradicals. (English) Zbl 1475.17005 Commun. Algebra 48, No. 8, 3525-3542 (2020). Reviewer: Hesam Safa (Bojnord) MSC: 17A32 17A36 17B30 17B56 PDF BibTeX XML Cite \textit{Kh. A. Muratova} et al., Commun. Algebra 48, No. 8, 3525--3542 (2020; Zbl 1475.17005) Full Text: DOI arXiv
Kaygorodov, Ivan; Lopes, Samuel A.; Páez-Guillán, Pilar Non-associative central extensions of null-filiform associative algebras. (English) Zbl 1452.16001 J. Algebra 560, 1190-1210 (2020). Reviewer: Phillip Schultz (Perth) MSC: 16D70 16S70 PDF BibTeX XML Cite \textit{I. Kaygorodov} et al., J. Algebra 560, 1190--1210 (2020; Zbl 1452.16001) Full Text: DOI arXiv
Gorbatsevich, V. V. Computational experiments with nilpotent Lie algebras. (English. Russian original) Zbl 1459.17025 Math. Notes 107, No. 1, 20-26 (2020); translation from Mat. Zametki 107, No. 1, 23-31 (2020). MSC: 17B30 17-08 PDF BibTeX XML Cite \textit{V. V. Gorbatsevich}, Math. Notes 107, No. 1, 20--26 (2020; Zbl 1459.17025); translation from Mat. Zametki 107, No. 1, 23--31 (2020) Full Text: DOI arXiv
Sattarov, A. M. Classification of non-strongly nilpotent filiform Leibniz algebras of dimension 11 and 12. (English) Zbl 1488.17014 Uzb. Math. J. 2019, No. 2, 113-122 (2019). MSC: 17A32 17B30 PDF BibTeX XML Cite \textit{A. M. Sattarov}, Uzb. Math. J. 2019, No. 2, 113--122 (2019; Zbl 1488.17014) Full Text: DOI
Zhu, Kaixiao; Wu, Mingzhong Lie triple derivations of filiform Lie algebra \({R_n}\). (Chinese. English summary) Zbl 1449.17033 Math. Pract. Theory 49, No. 23, 198-203 (2019). MSC: 17B40 17B30 PDF BibTeX XML Cite \textit{K. Zhu} and \textit{M. Wu}, Math. Pract. Theory 49, No. 23, 198--203 (2019; Zbl 1449.17033)
Evans, Tyler J.; Fialowski, Alice Cohomology of restricted filiform Lie algebras \(\mathfrak m_2^\lambda(p)\). (English) Zbl 1447.17014 SIGMA, Symmetry Integrability Geom. Methods Appl. 15, Paper 095, 11 p. (2019). Reviewer: Andrea Caranti (Trento) MSC: 17B50 17B56 PDF BibTeX XML Cite \textit{T. J. Evans} and \textit{A. Fialowski}, SIGMA, Symmetry Integrability Geom. Methods Appl. 15, Paper 095, 11 p. (2019; Zbl 1447.17014) Full Text: DOI arXiv
Karimjanov, I. A.; Ladra, M. Minimal representations of filiform Lie algebras and their application for construction of Leibniz algebras. (English) Zbl 1432.17003 J. Geom. Phys. 144, 235-244 (2019). MSC: 17A32 17B30 17B10 PDF BibTeX XML Cite \textit{I. A. Karimjanov} and \textit{M. Ladra}, J. Geom. Phys. 144, 235--244 (2019; Zbl 1432.17003) Full Text: DOI arXiv
Abdurasulov, Kobiljon K.; Adashev, Jobir Q.; Casas, José M.; Omirov, Bakhrom A. Solvable Leibniz algebras whose nilradical is a quasi-filiform Leibniz algebra of maximum length. (English) Zbl 1471.17008 Commun. Algebra 47, No. 4, 1578-1594 (2019). MSC: 17A32 17A36 17B30 17B56 PDF BibTeX XML Cite \textit{K. K. Abdurasulov} et al., Commun. Algebra 47, No. 4, 1578--1594 (2019; Zbl 1471.17008) Full Text: DOI arXiv
Evans, Tyler J.; Fialowski, Alice Restricted one-dimensional central extensions of the restricted filiform Lie algebras \(\mathfrak{m}_0^\lambda(p)\). (English) Zbl 1418.17046 Linear Algebra Appl. 565, 244-257 (2019). MSC: 17B56 17B50 PDF BibTeX XML Cite \textit{T. J. Evans} and \textit{A. Fialowski}, Linear Algebra Appl. 565, 244--257 (2019; Zbl 1418.17046) Full Text: DOI arXiv
Gaybullaev, R. K.; Khalkulova, Kh. A.; Adashev, J. Q. The rigidity of some solvable Lie algebras. (English) Zbl 1474.17013 Uzb. Math. J. 2018, No. 2, 43-49 (2018). MSC: 17B30 17B56 PDF BibTeX XML Cite \textit{R. K. Gaybullaev} et al., Uzb. Math. J. 2018, No. 2, 43--49 (2018; Zbl 1474.17013) Full Text: DOI
Camacho, L. M.; Omirov, B. A.; Masutova, K. K.; Rikhsiboev, I. M. Solvable Leibniz algebras with \(NF_n\bigoplus F_m^1\) nilradical. (English) Zbl 1430.17004 Open Math. 15, 1371-1388 (2017). MSC: 17A32 17A65 17B30 PDF BibTeX XML Cite \textit{L. M. Camacho} et al., Open Math. 15, 1371--1388 (2017; Zbl 1430.17004) Full Text: DOI
Rakhimov, I. S.; Khudoyberdiyev, A. Kh.; Omirov, B. A.; Mohd Atan, K. A. On isomorphism criterion for a subclass of complex filiform Leibniz algebras. (English) Zbl 1386.17003 Int. J. Algebra Comput. 27, No. 7, 953-972 (2017). MSC: 17A32 17A60 17B30 PDF BibTeX XML Cite \textit{I. S. Rakhimov} et al., Int. J. Algebra Comput. 27, No. 7, 953--972 (2017; Zbl 1386.17003) Full Text: DOI
Falcón, O. J.; Falcón, R. M.; Núñez, J. Isomorphism and isotopism classes of filiform Lie algebras of dimension up to seven over finite fields. (English) Zbl 1400.17011 Result. Math. 71, No. 3-4, 1151-1166 (2017). MSC: 17B60 17B05 PDF BibTeX XML Cite \textit{O. J. Falcón} et al., Result. Math. 71, No. 3--4, 1151--1166 (2017; Zbl 1400.17011) Full Text: DOI arXiv
Adashev, J. K.; Camacho, L. M.; Omirov, B. A. Central extensions of null-filiform and naturally graded filiform non-Lie Leibniz algebras. (English) Zbl 1421.17001 J. Algebra 479, 461-486 (2017). MSC: 17A32 17A60 17B30 PDF BibTeX XML Cite \textit{J. K. Adashev} et al., J. Algebra 479, 461--486 (2017; Zbl 1421.17001) Full Text: DOI arXiv
Adashev, J. Q.; Ladra, M.; Omirov, B. A. Solvable Leibniz algebras with naturally graded non-Lie \(p\)-filiform nilradicals. (English) Zbl 1427.17005 Commun. Algebra 45, No. 10, 4329-4347 (2017). MSC: 17A32 17A36 17B30 17B56 PDF BibTeX XML Cite \textit{J. Q. Adashev} et al., Commun. Algebra 45, No. 10, 4329--4347 (2017; Zbl 1427.17005) Full Text: DOI arXiv
Ceballos, M.; Núñez, J.; Tenorio, Á. F. New results in the classification of filiform Lie algebras. (English) Zbl 1415.17012 Bull. Malays. Math. Sci. Soc. (2) 40, No. 1, 409-437 (2017). MSC: 17B30 17B05 17-08 68W30 68W40 PDF BibTeX XML Cite \textit{M. Ceballos} et al., Bull. Malays. Math. Sci. Soc. (2) 40, No. 1, 409--437 (2017; Zbl 1415.17012) Full Text: DOI
Arabyani, H.; Safa, H.; Saeedi, F. On characterizing pairs of non-abelian nilpotent and filiform Lie algebras by their Schur multipliers. (English) Zbl 1459.17023 J. Math. Ext. 10, No. 4, 61-73 (2016). MSC: 17B30 17B60 17B99 PDF BibTeX XML Cite \textit{H. Arabyani} et al., J. Math. Ext. 10, No. 4, 61--73 (2016; Zbl 1459.17023)
Falcón, Óscar J.; Falcón, Raúl M.; Núñez, Juan; Pacheco, Ana M.; Villar, M. Trinidad Classification of filiform Lie algebras up to dimension 7 over finite fields. (English) Zbl 1389.17011 An. Științ. Univ. “Ovidius” Constanța, Ser. Mat. 24, No. 2, 185-204 (2016). MSC: 17B30 05C90 PDF BibTeX XML Cite \textit{Ó. J. Falcón} et al., An. Științ. Univ. ``Ovidius'' Constanța, Ser. Mat. 24, No. 2, 185--204 (2016; Zbl 1389.17011) Full Text: DOI
Navarro, Rosa María Classification of filiform Lie algebras of order 3. (English) Zbl 1384.17015 J. Geom. Phys. 110, 248-258 (2016). MSC: 17B30 17B99 PDF BibTeX XML Cite \textit{R. M. Navarro}, J. Geom. Phys. 110, 248--258 (2016; Zbl 1384.17015) Full Text: DOI
Dubovik, P. A. Hermitian \(f\)-structures on 6-dimensional filiform Lie groups. (English. Russian original) Zbl 1353.53034 Russ. Math. 60, No. 7, 29-36 (2016); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2016, No. 7, 34-43 (2016). Reviewer: Neda Bokan (Beograd) MSC: 53C15 53C30 17B30 PDF BibTeX XML Cite \textit{P. A. Dubovik}, Russ. Math. 60, No. 7, 29--36 (2016; Zbl 1353.53034); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2016, No. 7, 34--43 (2016) Full Text: DOI
Ladra, M.; Masutova, K. K.; Omirov, B. A. Corrigendum to: “Classification of solvable Leibniz algebras with naturally graded filiform nilradical”. (English) Zbl 1405.17004 Linear Algebra Appl. 507, 513-517 (2016). MSC: 17A32 17A36 17B30 PDF BibTeX XML Cite \textit{M. Ladra} et al., Linear Algebra Appl. 507, 513--517 (2016; Zbl 1405.17004) Full Text: DOI
Camacho, L. M.; Cañete, E. M.; Gómez, J. R.; Omirov, B. A. 3-filiform Leibniz algebras of maximum length. (English. Russian original) Zbl 1404.17002 Sib. Math. J. 57, No. 1, 24-35 (2016); translation from Sib. Mat. Zh. 57, No. 1, 33-46 (2016). MSC: 17A32 PDF BibTeX XML Cite \textit{L. M. Camacho} et al., Sib. Math. J. 57, No. 1, 24--35 (2016; Zbl 1404.17002); translation from Sib. Mat. Zh. 57, No. 1, 33--46 (2016) Full Text: DOI arXiv
Nikolayevsky, Y. Solvable extensions of negative Ricci curvature of filiform Lie groups. (English) Zbl 1381.53087 Math. Nachr. 289, No. 2-3, 321-331 (2016). Reviewer: Raed Raffoul (Sydney) MSC: 53C30 22E25 53D20 PDF BibTeX XML Cite \textit{Y. Nikolayevsky}, Math. Nachr. 289, No. 2--3, 321--331 (2016; Zbl 1381.53087) Full Text: DOI arXiv
Camacho, L. M.; Omirov, B. A.; Masutova, K. K. Solvable Leibniz algebras with filiform nilradical. (English) Zbl 1382.17002 Bull. Malays. Math. Sci. Soc. (2) 39, No. 1, 283-303 (2016). MSC: 17A32 17A65 17B30 PDF BibTeX XML Cite \textit{L. M. Camacho} et al., Bull. Malays. Math. Sci. Soc. (2) 39, No. 1, 283--303 (2016; Zbl 1382.17002) Full Text: DOI arXiv
Ayupov, Shavkat; Kudaybergenov, Karimbergen Local derivations on finite-dimensional Lie algebras. (English) Zbl 1395.17032 Linear Algebra Appl. 493, 381-398 (2016). MSC: 17B40 17B20 17B30 PDF BibTeX XML Cite \textit{S. Ayupov} and \textit{K. Kudaybergenov}, Linear Algebra Appl. 493, 381--398 (2016; Zbl 1395.17032) Full Text: DOI arXiv
Wu, Mingzhong Solvable Lie algebras with \(N(R_n,m,r)\) nilradical. (English) Zbl 1373.17018 Bull. Iran. Math. Soc. 41, No. 4, 955-970 (2015). MSC: 17B30 17B05 PDF BibTeX XML Cite \textit{M. Wu}, Bull. Iran. Math. Soc. 41, No. 4, 955--970 (2015; Zbl 1373.17018) Full Text: Link
Pérez, Mercedes; Pérez, Francisco; Jiménez, Emilio Symbolic and iterative computation of quasi-filiform nilpotent Lie algebras of dimension nine. (English) Zbl 1423.17001 Symmetry 7, No. 4, 1788-1802 (2015). MSC: 17-08 17B30 PDF BibTeX XML Cite \textit{M. Pérez} et al., Symmetry 7, No. 4, 1788--1802 (2015; Zbl 1423.17001) Full Text: DOI
Yu, Huanhuan; Liu, Wende The Hom-structures on filiform Lie algebras \(\text{ Q}_n\). (Chinese. English summary) Zbl 1340.17023 Pure Appl. Math. 31, No. 2, 156-163 (2015). MSC: 17B30 PDF BibTeX XML Cite \textit{H. Yu} and \textit{W. Liu}, Pure Appl. Math. 31, No. 2, 156--163 (2015; Zbl 1340.17023) Full Text: DOI
Gómez, J. R.; Omirov, B. A. On classification of filiform Leibniz algebras. (English) Zbl 1356.17002 Algebra Colloq. 22, Spec. Iss. 1, 757-774 (2015). MSC: 17A32 17A36 17B30 PDF BibTeX XML Cite \textit{J. R. Gómez} and \textit{B. A. Omirov}, Algebra Colloq. 22, 757--774 (2015; Zbl 1356.17002) Full Text: DOI
Abdulkareem, A. O.; Rakhimov, I. S.; Said Husain, S. K. Isomorphism classes and invariants of low-dimensional filiform Leibniz algebras. (English) Zbl 1362.17003 Linear Multilinear Algebra 63, No. 11, 2254-2274 (2015). MSC: 17A32 17B30 PDF BibTeX XML Cite \textit{A. O. Abdulkareem} et al., Linear Multilinear Algebra 63, No. 11, 2254--2274 (2015; Zbl 1362.17003) Full Text: DOI arXiv
Ayupov, Sh. A.; Camacho, L. M.; Khudoyberdiyev, A. Kh.; Omirov, B. A. Leibniz algebras associated with representations of filiform Lie algebras. (English) Zbl 1368.17001 J. Geom. Phys. 98, 181-195 (2015). MSC: 17A32 17B30 17B10 PDF BibTeX XML Cite \textit{Sh. A. Ayupov} et al., J. Geom. Phys. 98, 181--195 (2015; Zbl 1368.17001) Full Text: DOI arXiv
Rump, Wolfgang The brace of a classical group. (English) Zbl 1344.14029 Note Mat. 34, No. 1, 115-145 (2014). Reviewer: Dmitry Artamonov (Moskva) MSC: 14L35 16Y99 16T25 17A30 17B20 17B45 PDF BibTeX XML Cite \textit{W. Rump}, Note Mat. 34, No. 1, 115--145 (2014; Zbl 1344.14029) Full Text: Link
Khudoyberdiyev, A. Kh.; Omirov, B. A. Infinitesimal deformations of naturally graded filiform Leibniz algebras. (English) Zbl 1362.17005 J. Geom. Phys. 86, 149-163 (2014). MSC: 17A32 PDF BibTeX XML Cite \textit{A. Kh. Khudoyberdiyev} and \textit{B. A. Omirov}, J. Geom. Phys. 86, 149--163 (2014; Zbl 1362.17005) Full Text: DOI arXiv
Khudoyberdiyev, A. Kh.; Ladra, M.; Omirov, B. A. On solvable Leibniz algebras whose nilradical is a direct sum of null-filiform algebras. (English) Zbl 1307.17003 Linear Multilinear Algebra 62, No. 9, 1220-1239 (2014). Reviewer: Sh. A. Ayupov (Tashkent) MSC: 17A32 17A36 17A60 17A65 17B30 PDF BibTeX XML Cite \textit{A. Kh. Khudoyberdiyev} et al., Linear Multilinear Algebra 62, No. 9, 1220--1239 (2014; Zbl 1307.17003) Full Text: DOI
Cagliero, Leandro; Tirao, Paulo The cohomology of filiform Lie algebras of maximal rank. (English) Zbl 1348.17016 Linear Algebra Appl. 455, 143-167 (2014). MSC: 17B56 17B30 PDF BibTeX XML Cite \textit{L. Cagliero} and \textit{P. Tirao}, Linear Algebra Appl. 455, 143--167 (2014; Zbl 1348.17016) Full Text: DOI arXiv
Camacho, L. M.; Cañete, E. M.; Gómez, J. R.; Omirov, B. A. \(p\)-filiform Leibniz algebras of maximum length. (English) Zbl 1360.17002 Linear Algebra Appl. 450, 316-333 (2014). Reviewer: Sh. A. Ayupov (Tashkent) MSC: 17A32 17A36 17A60 17B70 PDF BibTeX XML Cite \textit{L. M. Camacho} et al., Linear Algebra Appl. 450, 316--333 (2014; Zbl 1360.17002) Full Text: DOI arXiv
Wu, Mingzhong The derivation algebra of a \(Q_n\) filiform Lie algebra. (English) Zbl 1299.17014 Chin. Q. J. Math. 28, No. 3, 397-401 (2013). MSC: 17B40 17B30 PDF BibTeX XML Cite \textit{M. Wu}, Chin. Q. J. Math. 28, No. 3, 397--401 (2013; Zbl 1299.17014)
Wu, Mingzhong Quasi \(R_n\) filiform Lie algebras. (English) Zbl 1281.17016 Linear Algebra Appl. 439, No. 5, 1203-1220 (2013). MSC: 17B30 17B05 PDF BibTeX XML Cite \textit{M. Wu}, Linear Algebra Appl. 439, No. 5, 1203--1220 (2013; Zbl 1281.17016) Full Text: DOI
Cairns, Grant; Hinić Galić, Ana; Nikolayevsky, Yuri Totally geodesic subalgebras of filiform nilpotent Lie algebras. (English) Zbl 1290.17009 J. Lie Theory 23, No. 4, 1051-1074 (2013). Reviewer: Marta Macho Stadler (Leioa) MSC: 17B30 17B70 22E25 53C30 57R30 PDF BibTeX XML Cite \textit{G. Cairns} et al., J. Lie Theory 23, No. 4, 1051--1074 (2013; Zbl 1290.17009) Full Text: arXiv Link
Cairns, Grant; Hinić Galić, Ana; Nikolayevsky, Yuri Totally geodesic subalgebras of nilpotent Lie algebras. (English) Zbl 1362.17017 J. Lie Theory 23, No. 4, 1023-1049 (2013). Reviewer: Marta Macho Stadler (Leioa) MSC: 17B30 22E25 53C30 57R30 PDF BibTeX XML Cite \textit{G. Cairns} et al., J. Lie Theory 23, No. 4, 1023--1049 (2013; Zbl 1362.17017) Full Text: arXiv Link
Masutova, K. K.; Omirov, B. A.; Khudoyberdiyev, A. Kh. Naturally graded Leibniz algebras with characteristic sequence \((n-m,m)\). (English. Russian original) Zbl 1328.17002 Math. Notes 93, No. 5, 740-755 (2013); translation from Mat. Zametki 93, No. 5, 746-763 (2013). MSC: 17A32 PDF BibTeX XML Cite \textit{K. K. Masutova} et al., Math. Notes 93, No. 5, 740--755 (2013; Zbl 1328.17002); translation from Mat. Zametki 93, No. 5, 746--763 (2013) Full Text: DOI
Casas, J. M.; Ladra, M.; Omirov, B. A.; Karimjanov, I. A. Classification of solvable Leibniz algebras with null-filiform nilradical. (English) Zbl 1317.17003 Linear Multilinear Algebra 61, No. 6, 758-774 (2013). MSC: 17A32 17A65 17B30 PDF BibTeX XML Cite \textit{J. M. Casas} et al., Linear Multilinear Algebra 61, No. 6, 758--774 (2013; Zbl 1317.17003) Full Text: DOI arXiv
Almaraz Luengo, E.; Ancochea Bermúdez, J. M.; García Vergnolle, L. Completeness of quasi-filiform Lie algebras. (English) Zbl 1298.17015 Linear Multilinear Algebra 61, No. 5, 582-595 (2013). Reviewer: Rutwig Campoamor-Stursberg (Madrid) MSC: 17B30 17B56 PDF BibTeX XML Cite \textit{E. Almaraz Luengo} et al., Linear Multilinear Algebra 61, No. 5, 582--595 (2013; Zbl 1298.17015) Full Text: DOI
Ceballos, Manuel; Núñez, Juan; Tenorio, Ángel F. Representing filiform Lie algebras minimally and faithfully by strictly upper-triangular matrices. (English) Zbl 1310.17006 J. Algebra Appl. 12, No. 4, Paper No. 1250196, 15 p. (2013). MSC: 17B30 17-08 68W30 PDF BibTeX XML Cite \textit{M. Ceballos} et al., J. Algebra Appl. 12, No. 4, Paper No. 1250196, 15 p. (2013; Zbl 1310.17006) Full Text: DOI
Casas, J. M.; Ladra, M.; Omirov, B. A.; Karimjanov, I. A. Classification of solvable Leibniz algebras with naturally graded filiform nilradical. (English) Zbl 1300.17003 Linear Algebra Appl. 438, No. 7, 2973-3000 (2013). Reviewer: Sh. A. Ayupov (Tashkent) MSC: 17A32 17A36 17A65 17B30 PDF BibTeX XML Cite \textit{J. M. Casas} et al., Linear Algebra Appl. 438, No. 7, 2973--3000 (2013; Zbl 1300.17003) Full Text: DOI arXiv
Camacho, L. M.; Cañete, E. M.; Gómez-Vidal, S.; Omirov, B. A. \(p\)-filiform Zinbiel algebras. (English) Zbl 1300.17002 Linear Algebra Appl. 438, No. 7, 2958-2972 (2013). Reviewer: Sh. A. Ayupov (Tashkent) MSC: 17A32 17B30 17A60 PDF BibTeX XML Cite \textit{L. M. Camacho} et al., Linear Algebra Appl. 438, No. 7, 2958--2972 (2013; Zbl 1300.17002) Full Text: DOI arXiv
Ancochea Bermúdez, José María; Stursberg, Campoamor; García Vergnolle, Lucía Lie algebras obtained as extensions by derivations of the nilpotent algebra \({\mathcal L}_{5, 3}\). (English) Zbl 1301.17012 Castrillón López, Marco (ed.) et al., Contribuciones matemáticas en honor a Juan Tarrés. Madrid: Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas (ISBN 978-84-695-4421-1). 1-15 (2012). Reviewer: Daniel Beltiţă (Bucureşti) MSC: 17B30 17B56 PDF BibTeX XML Cite \textit{J. M. Ancochea Bermúdez} et al., in: Contribuciones matemáticas en honor a Juan Tarrés. Madrid: Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas. 1--15 (2012; Zbl 1301.17012)
Wu, Mingzhong The derivation algebra of a quasi \(R_n\)-filiform Lie algebra. (English) Zbl 1274.17023 Commun. Math. Res. 28, No. 3, 218-224 (2012). MSC: 17B40 17B30 PDF BibTeX XML Cite \textit{M. Wu}, Commun. Math. Res. 28, No. 3, 218--224 (2012; Zbl 1274.17023)
Šnobl, Libor Maximal solvable extensions of filiform algebras. (English) Zbl 1265.17017 Arch. Math., Brno 47, No. 5, 405-414 (2011). Reviewer: Martin Čadek (Brno) MSC: 17B30 PDF BibTeX XML Cite \textit{L. Šnobl}, Arch. Math., Brno 47, No. 5, 405--414 (2011; Zbl 1265.17017)
Cabezas, J. M.; Camacho, L. M.; Gómez, J. R.; Omirov, B. A. On the description of Leibniz algebras with nilindex \(n-3\). (English) Zbl 1299.17001 Acta Math. Hung. 133, No. 3, 203-220 (2011). MSC: 17A32 17A36 17A60 17B70 PDF BibTeX XML Cite \textit{J. M. Cabezas} et al., Acta Math. Hung. 133, No. 3, 203--220 (2011; Zbl 1299.17001) Full Text: DOI arXiv
Rakhimov, Isamiddin S.; Hassan, Munther A. On isomorphism criteria for Leibniz central extensions of a linear deformation of \(\mu _{n}\). (English) Zbl 1258.17005 Int. J. Algebra Comput. 21, No. 5, 715-729 (2011). MSC: 17A32 17A60 17B30 17-08 PDF BibTeX XML Cite \textit{I. S. Rakhimov} and \textit{M. A. Hassan}, Int. J. Algebra Comput. 21, No. 5, 715--729 (2011; Zbl 1258.17005) Full Text: DOI
Rakhimov, Isamiddin S.; Hassan, Munther A. On one-dimensional Leibniz central extensions of a filiform Lie algebra. (English) Zbl 1228.17003 Bull. Aust. Math. Soc. 84, No. 2, 205-224 (2011). Reviewer: Sh. A. Ayupov (Tashkent) MSC: 17A32 17A60 17B30 13A50 PDF BibTeX XML Cite \textit{I. S. Rakhimov} and \textit{M. A. Hassan}, Bull. Aust. Math. Soc. 84, No. 2, 205--224 (2011; Zbl 1228.17003) Full Text: DOI arXiv
Camacho, L. M.; Cañete, E. M.; Gómez, J. R.; Omirov, B. A. 3-filiform Leibniz algebras of maximum length, whose naturally graded algebras are Lie algebras. (English) Zbl 1226.17003 Linear Multilinear Algebra 59, No. 9, 1039-1058 (2011). Reviewer: Marek Golasiński (Toruń) MSC: 17A32 17A36 17A60 17B70 PDF BibTeX XML Cite \textit{L. M. Camacho} et al., Linear Multilinear Algebra 59, No. 9, 1039--1058 (2011; Zbl 1226.17003) Full Text: DOI
Rakhimov, I. S.; Said Husain, S. K. Classification of a subclass of low-dimensional complex filiform Leibniz algebras. (English) Zbl 1238.17002 Linear Multilinear Algebra 59, No. 1-3, 339-354 (2011). Reviewer: Sh. A. Ayupov (Tashkent) MSC: 17A32 17B30 13A50 PDF BibTeX XML Cite \textit{I. S. Rakhimov} and \textit{S. K. Said Husain}, Linear Multilinear Algebra 59, No. 1--3, 339--354 (2011; Zbl 1238.17002) Full Text: DOI Link
Rakhimov, I. S.; Said Husain, S. K. On isomorphism classes and invariants of a subclass of low-dimensional complex filiform Leibniz algebras. (English) Zbl 1237.17008 Linear Multilinear Algebra 59, No. 1-3, 205-220 (2011). Reviewer: Sh. A. Ayupov (Tashkent) MSC: 17A32 17A42 17B30 13A50 PDF BibTeX XML Cite \textit{I. S. Rakhimov} and \textit{S. K. Said Husain}, Linear Multilinear Algebra 59, No. 1--3, 205--220 (2011; Zbl 1237.17008) Full Text: DOI Link
Camacho, L. M.; Gómez, J. R.; González, A. J.; Omirov, B. A. The classification of naturally graded \(p\)-filiform Leibniz algebras. (English) Zbl 1215.17005 Commun. Algebra 39, No. 1, 153-168 (2011). Reviewer: Isamiddin Rakhimov (Malaysia) MSC: 17A32 17A36 17A60 17B70 PDF BibTeX XML Cite \textit{L. M. Camacho} et al., Commun. Algebra 39, No. 1, 153--168 (2011; Zbl 1215.17005) Full Text: DOI
Ren, Bin; Zhu, Linsheng Quasi \(Q_n\)-filiform Lie algebras. (English) Zbl 1268.17011 Algebra Colloq. 18, No. 1, 139-154 (2011). Reviewer: Daniel Beltiţă (Bucureşti) MSC: 17B30 17B05 17B40 PDF BibTeX XML Cite \textit{B. Ren} and \textit{L. Zhu}, Algebra Colloq. 18, No. 1, 139--154 (2011; Zbl 1268.17011) Full Text: DOI arXiv Link
Yang, Hengyun Derivation algebras of a class of modular Lie algebras. (English) Zbl 1240.17048 J. Math., Wuhan Univ. 30, No. 3, 409-413 (2010). MSC: 17B50 17B40 PDF BibTeX XML Cite \textit{H. Yang}, J. Math., Wuhan Univ. 30, No. 3, 409--413 (2010; Zbl 1240.17048)
Ayupov, Sh. A.; Kurbanbaev, T. K. The classification of 4-dimensional \(p\)-adic filiform Leibniz algebras. (English) Zbl 1246.17004 TWMS J. Pure Appl. Math. 1, No. 2, 155-162 (2010). Reviewer: Manuel Avelino Insua Hermo (Noia) MSC: 17A32 17A60 PDF BibTeX XML Cite \textit{Sh. A. Ayupov} and \textit{T. K. Kurbanbaev}, TWMS J. Pure Appl. Math. 1, No. 2, 155--162 (2010; Zbl 1246.17004)
Rakhimov, I. S.; Bekbaev, U. D. On isomorphisms and invariants of finite dimensional complex filiform Leibniz algebras. (English) Zbl 1237.17007 Commun. Algebra 38, No. 12, 4705-4738 (2010). Reviewer: Sh. A. Ayupov (Tashkent) MSC: 17A32 17B60 17A60 17B70 13A50 17B30 PDF BibTeX XML Cite \textit{I. S. Rakhimov} and \textit{U. D. Bekbaev}, Commun. Algebra 38, No. 12, 4705--4738 (2010; Zbl 1237.17007) Full Text: DOI Link
Bai, Ruipu; Shen, Caihong; Zhang, Yaozhong Solvable 3-Lie algebras with a maximal hypo-nilpotent ideal \(N\). (English) Zbl 1277.17002 Electron. J. Linear Algebra 21, 43-62 (2010). MSC: 17A40 17B60 PDF BibTeX XML Cite \textit{R. Bai} et al., Electron. J. Linear Algebra 21, 43--62 (2010; Zbl 1277.17002) Full Text: DOI EMIS
Camacho, L. M.; Gómez, J. R.; González, A. J.; Omirov, B. A. Naturally graded 2-filiform Leibniz algebras. (English) Zbl 1213.17002 Commun. Algebra 38, No. 10, 3671-3685 (2010). Reviewer: Alberto Elduque (Zaragoza) MSC: 17A32 17A36 17A60 17B70 PDF BibTeX XML Cite \textit{L. M. Camacho} et al., Commun. Algebra 38, No. 10, 3671--3685 (2010; Zbl 1213.17002) Full Text: DOI arXiv
Rakhimov, I. S.; Sozan, J. On filiform Leibniz algebras of dimension nine. (English) Zbl 1232.17022 Int. Math. Forum 5, No. 13-16, 671-692 (2010). Reviewer: Sh. A. Ayupov (Tashkent) MSC: 17B30 17A32 13A50 PDF BibTeX XML Cite \textit{I. S. Rakhimov} and \textit{J. Sozan}, Int. Math. Forum 5, No. 13--16, 671--692 (2010; Zbl 1232.17022) Full Text: Link
Rakhimov, I. S.; Sozan, J. Description of nine dimensional complex filiform Leibniz algebras arising from naturally graded non Lie filiform Leibniz algebras. (English) Zbl 1223.17004 Int. J. Algebra 3, No. 17-20, 969-980 (2009). Reviewer: Chen Yuqun (Guangzhou) MSC: 17A32 17A60 17B30 PDF BibTeX XML Cite \textit{I. S. Rakhimov} and \textit{J. Sozan}, Int. J. Algebra 3, No. 17--20, 969--980 (2009; Zbl 1223.17004) Full Text: Link
García Vergnolle, Lucia; Remm, Elisabeth Complex structures on quasi-filiform Lie algebras. (English) Zbl 1252.17007 J. Lie Theory 19, No. 2, 251-265 (2009). Reviewer: Daniel Beltiţă (Bucureşti) MSC: 17B30 53C56 17B60 PDF BibTeX XML Cite \textit{L. García Vergnolle} and \textit{E. Remm}, J. Lie Theory 19, No. 2, 251--265 (2009; Zbl 1252.17007) Full Text: arXiv Link
Bai, Ruipu; Shen, Caihong; Zhang, Yaozhong 3-Lie algebras with an ideal \(N\). (English) Zbl 1178.17004 Linear Algebra Appl. 431, No. 5-7, 673-700 (2009). MSC: 17A42 17B60 17B30 PDF BibTeX XML Cite \textit{R. Bai} et al., Linear Algebra Appl. 431, No. 5--7, 673--700 (2009; Zbl 1178.17004) Full Text: DOI
Adashev, J. Q.; Khudoyberdiyev, A. Kh.; Omirov, B. A. Classification of complex naturally graded quasi-filiform Zinbiel algebras. (English) Zbl 1189.17003 Futorny, Vyacheslav (ed.) et al., Algebras, representations and applications. Conference in honour of Ivan Shestakov’s 60th birthday, Maresias, Brazil, August 26–September 1, 2007. Providence, RI: American Mathematical Society (AMS) (ISBN 978-0-8218-4652-0/pbk). Contemp. Math. 483, 1-11 (2009). Reviewer: Isamiddin Rakhimov (Malaysia) MSC: 17A30 17A32 PDF BibTeX XML Cite \textit{J. Q. Adashev} et al., Contemp. Math. 483, 1--11 (2009; Zbl 1189.17003) Full Text: arXiv
Omirov, B. A.; Rakhimov, I. S. On Lie-like complex filiform Leibniz algebras. (English) Zbl 1194.17001 Bull. Aust. Math. Soc. 79, No. 3, 391-404 (2009). Reviewer: Manuel Avelino Insua Hermo (Vigo) MSC: 17A32 17A60 17B70 17B30 PDF BibTeX XML Cite \textit{B. A. Omirov} and \textit{I. S. Rakhimov}, Bull. Aust. Math. Soc. 79, No. 3, 391--404 (2009; Zbl 1194.17001) Full Text: DOI
Wu, Mingzhong The maximal torus of \((n-3)\)-filiform Lie algebras. (English) Zbl 1174.17010 J. Math. Study 41, No. 2, 113-118 (2008). MSC: 17B30 PDF BibTeX XML Cite \textit{M. Wu}, J. Math. Study 41, No. 2, 113--118 (2008; Zbl 1174.17010)
Núñez, Juan Economizing brackets to define filiform Lie algebras. (English) Zbl 1167.17002 J. Lie Theory 18, No. 4, 951-959 (2008). Reviewer: Daniel Beltiţă (Bucureşti) MSC: 17B30 17B70 PDF BibTeX XML Cite \textit{J. Núñez}, J. Lie Theory 18, No. 4, 951--959 (2008; Zbl 1167.17002) Full Text: Link
Gómez, J. R.; Jiménez-Merchán, A.; Reyes, J. Quasi-filiform Lie algebras of great length. (English) Zbl 1180.17003 J. Algebra 320, No. 2, 586-611 (2008). Reviewer: Pasha Zusmanovich (Reykjavik) MSC: 17B30 17-04 17B70 PDF BibTeX XML Cite \textit{J. R. Gómez} et al., J. Algebra 320, No. 2, 586--611 (2008; Zbl 1180.17003) Full Text: DOI
Nikolayevsky, Yuri Einstein solvmanifolds with a simple Einstein derivation. (English) Zbl 1145.53040 Geom. Dedicata 135, 87-102 (2008). MSC: 53C30 53C25 17B30 PDF BibTeX XML Cite \textit{Y. Nikolayevsky}, Geom. Dedicata 135, 87--102 (2008; Zbl 1145.53040) Full Text: DOI arXiv
Burde, Dietrich; Dekimpe, Karel; Vercammen, Kim Novikov algebras and Novikov structures on Lie algebras. (English) Zbl 1140.17001 Linear Algebra Appl. 429, No. 1, 31-41 (2008). Reviewer: Béchir Dali (Bizerte) MSC: 17A30 17B30 PDF BibTeX XML Cite \textit{D. Burde} et al., Linear Algebra Appl. 429, No. 1, 31--41 (2008; Zbl 1140.17001) Full Text: DOI arXiv
Albeverio, S.; Ayupov, Sh. A.; Omirov, B. A.; Khudoyberdiyev, A. Kh. \(n\)-dimensional filiform Leibniz algebras of length \((n-1)\) and their derivations. (English) Zbl 1208.17002 J. Algebra 319, No. 6, 2471-2488 (2008). Reviewer: Isamiddin Rakhimov (Malaysia) MSC: 17A32 17A36 17B40 PDF BibTeX XML Cite \textit{S. Albeverio} et al., J. Algebra 319, No. 6, 2471--2488 (2008; Zbl 1208.17002) Full Text: DOI arXiv
Wang, Qi; Ren, Bin Derivation algebra of quasi \(L_5,Q_5\)-filiform Lie algebras with one-dimensional center. (Chinese. English summary) Zbl 1150.17013 J. Univ. Sci. Technol. Suzhou, Nat. Sci. 24, No. 1, 37-40 (2007). MSC: 17B30 17B40 PDF BibTeX XML Cite \textit{Q. Wang} and \textit{B. Ren}, J. Univ. Sci. Technol. Suzhou, Nat. Sci. 24, No. 1, 37--40 (2007; Zbl 1150.17013)
García Vergnolle, L. On quasi-filiform Lie algebras admitting a torus of derivations. (Sur les algèbres de Lie quasi-filiformes admettant un tore de dérivations.) (English) Zbl 1172.17006 Manuscr. Math. 124, No. 4, 489-505 (2007). Reviewer: Daniel Beltiţă (Bucureşti) MSC: 17B30 17B70 PDF BibTeX XML Cite \textit{L. García Vergnolle}, Manuscr. Math. 124, No. 4, 489--505 (2007; Zbl 1172.17006) Full Text: DOI
Fialowski, Alice; Wagemann, Friedrich Cohomology and deformations of the infinite-dimensional filiform Lie algebra \(\mathfrak m_0\). (English) Zbl 1181.17008 J. Algebra 318, No. 2, 1002-1026 (2007). Reviewer: Michael Kuznetsov (Nizhnij Novgorod) MSC: 17B56 17B30 17B65 17B66 PDF BibTeX XML Cite \textit{A. Fialowski} and \textit{F. Wagemann}, J. Algebra 318, No. 2, 1002--1026 (2007; Zbl 1181.17008) Full Text: DOI arXiv
Benjumea, J. C.; Echarte, F. J.; Núñez, J.; Tenorio, A. F. A method to obtain the Lie group associated with a nilpotent Lie algebra. (English) Zbl 1161.17309 Comput. Math. Appl. 51, No. 9-10, 1493-1506 (2006). MSC: 17B30 22E25 PDF BibTeX XML Cite \textit{J. C. Benjumea} et al., Comput. Math. Appl. 51, No. 9--10, 1493--1506 (2006; Zbl 1161.17309) Full Text: DOI
Benjumea, J. C.; Echarte, F. J.; Núñez, J. A method to integrate filiform Lie algebras. (English) Zbl 1135.22015 Bol. Soc. Mat. Mex., III. Ser. 12, No. 2, 179-192 (2006). Reviewer: Alexander Tovstolis (Donetsk) MSC: 22E60 17B30 PDF BibTeX XML Cite \textit{J. C. Benjumea} et al., Bol. Soc. Mat. Mex., III. Ser. 12, No. 2, 179--192 (2006; Zbl 1135.22015)
Reihani, K.; Milnes, P. Analysis on discrete cocompact subgroups of the generic filiform Lie groups. (English) Zbl 1110.22004 Acta Math. Hung. 112, No. 1-2, 157-179 (2006). Reviewer: Anton Deitmar (Tübingen) MSC: 22D25 46L55 PDF BibTeX XML Cite \textit{K. Reihani} and \textit{P. Milnes}, Acta Math. Hung. 112, No. 1--2, 157--179 (2006; Zbl 1110.22004) Full Text: DOI
Benjumea, J. C.; Echarte, F. J.; Márquez, M. C.; Núñez, J. Links among characteristically nilpotent, \(C\)-graded and derived filiform Lie algebras. (English) Zbl 1107.17008 Rocky Mt. J. Math. 35, No. 4, 1081-1098 (2005). Reviewer: Daniel Beltiţă (Bucureşti) MSC: 17B30 17B70 PDF BibTeX XML Cite \textit{J. C. Benjumea} et al., Rocky Mt. J. Math. 35, No. 4, 1081--1098 (2005; Zbl 1107.17008) Full Text: DOI
Omirov, B. A. On the derivations of filiform Leibniz algebras. (English) Zbl 1130.17001 Math. Notes 77, No. 5, 677-685 (2005); translation from Mat. Zametki 77, No. 5, 733-742 (2005). MSC: 17A32 17A36 PDF BibTeX XML Cite \textit{B. A. Omirov}, Math. Notes 77, No. 5, 677--685 (2005; Zbl 1130.17001); translation from Mat. Zametki 77, No. 5, 733--742 (2005) Full Text: DOI
Khakimdjanov, Yusupdjan Affine structures on filiform Lie algebras. (English) Zbl 1071.17008 Vinberg, Ernest (ed.), Lie groups and invariant theory. Providence, RI: American Mathematical Society (AMS) (ISBN 0-8218-3733-8/hbk). Translations. Series 2. American Mathematical Society 213. Advances in the Mathematical Sciences 56, 141-155 (2005). Reviewer: Daniel Beltiţă (Bucureşti) MSC: 17B30 53B05 PDF BibTeX XML Cite \textit{Y. Khakimdjanov}, Transl., Ser. 2, Am. Math. Soc. 213, 141--155 (2005; Zbl 1071.17008)
Cabezas, J. M.; Pastor, E. Naturally graded \(p\)-filiform Lie algebras in arbitrary finite dimension. (English) Zbl 1070.17003 J. Lie Theory 15, No. 2, 379-391 (2005). Reviewer: Rutwig Campoamor-Stursberg (Mulhouse) MSC: 17B30 PDF BibTeX XML Cite \textit{J. M. Cabezas} and \textit{E. Pastor}, J. Lie Theory 15, No. 2, 379--391 (2005; Zbl 1070.17003) Full Text: EuDML Link
Khakimdjanov, Yu.; Goze, M.; Medina, A. Symplectic or contact structures on Lie groups. (English) Zbl 1053.53056 Differ. Geom. Appl. 21, No. 1, 41-54 (2004). Reviewer: David E. Blair (East Lansing) MSC: 53D10 53D05 22E25 17B30 PDF BibTeX XML Cite \textit{Yu. Khakimdjanov} et al., Differ. Geom. Appl. 21, No. 1, 41--54 (2004; Zbl 1053.53056) Full Text: DOI arXiv
Echarte, F. J.; Núñez, J.; Ramírez, F. Relations among invariants of complex filiform Lie algebras. (English) Zbl 1047.17005 Appl. Math. Comput. 147, No. 2, 365-376 (2004). Reviewer: Daniel Beltiţă (Bucureşti) MSC: 17B30 17B05 PDF BibTeX XML Cite \textit{F. J. Echarte} et al., Appl. Math. Comput. 147, No. 2, 365--376 (2004; Zbl 1047.17005) Full Text: DOI
Millionshchikov, D. V. Deformations of graded Lie algebras, and symplectic structures. (English. Russian original) Zbl 1067.17009 Russ. Math. Surv. 58, No. 6, 1206-1207 (2003); translation from Usp. Mat. Nauk 58, No. 6, 157-158 (2003). Reviewer: Daniel Beltiţă (Bucureşti) MSC: 17B30 17B70 53D05 PDF BibTeX XML Cite \textit{D. V. Millionshchikov}, Russ. Math. Surv. 58, No. 6, 1206--1207 (2003; Zbl 1067.17009); translation from Usp. Mat. Nauk 58, No. 6, 157--158 (2003) Full Text: DOI arXiv
Boza, Luis; Fedriani, Eugenio M.; Núñez, Juan Complex filiform Lie algebras of dimension 11. (English) Zbl 1048.17007 Appl. Math. Comput. 141, No. 2-3, 611-630 (2003). Reviewer: Daniel Beltiţă (Bucureşti) MSC: 17B30 17B05 PDF BibTeX XML Cite \textit{L. Boza} et al., Appl. Math. Comput. 141, No. 2--3, 611--630 (2003; Zbl 1048.17007) Full Text: DOI
Ancochea Bermúdez, José María; Campoamor, Rutwig Completable filiform Lie algebras. (English) Zbl 1042.17005 Linear Algebra Appl. 367, 185-191 (2003). Reviewer: Daniel Beltiţă (Bucureşti) MSC: 17B30 17B05 PDF BibTeX XML Cite \textit{J. M. Ancochea Bermúdez} and \textit{R. Campoamor}, Linear Algebra Appl. 367, 185--191 (2003; Zbl 1042.17005) Full Text: DOI arXiv
Barbari, P.; Kobotis, A. On nilpotent filiform Lie algebras of dimension eight. (English) Zbl 1036.17008 Int. J. Math. Math. Sci. 2003, No. 14, 879-894 (2003). Reviewer: Daniel Beltiţă (Bucureşti) MSC: 17B30 17B40 PDF BibTeX XML Cite \textit{P. Barbari} and \textit{A. Kobotis}, Int. J. Math. Math. Sci. 2003, No. 14, 879--894 (2003; Zbl 1036.17008) Full Text: DOI EuDML