Cocquet, Pierre-Henri; Gander, Martin J.; Xiang, Xueshuang Closed form dispersion corrections including a real shifted wavenumber for finite difference discretizations of 2D constant coefficient Helmholtz problems. (English) Zbl 07331668 SIAM J. Sci. Comput. 43, No. 1, A278-A308 (2021). MSC: 35J05 65N06 PDF BibTeX XML Cite \textit{P.-H. Cocquet} et al., SIAM J. Sci. Comput. 43, No. 1, A278--A308 (2021; Zbl 07331668) Full Text: DOI
Shanazari, Kamal; Banei, Siamak A meshfree method with a non-overlapping domain decomposition method based on TPS for solving the forward-backward heat equation in two-dimension. (English) Zbl 07331349 Numer. Algorithms 86, No. 4, 1747-1767 (2021). MSC: 65 PDF BibTeX XML Cite \textit{K. Shanazari} and \textit{S. Banei}, Numer. Algorithms 86, No. 4, 1747--1767 (2021; Zbl 07331349) Full Text: DOI
Lam, Henry; Li, Haidong; Zhang, Xuhui Minimax efficient finite-difference stochastic gradient estimators using black-box function evaluations. (English) Zbl 07331225 Oper. Res. Lett. 49, No. 1, 40-47 (2021). MSC: 90 PDF BibTeX XML Cite \textit{H. Lam} et al., Oper. Res. Lett. 49, No. 1, 40--47 (2021; Zbl 07331225) Full Text: DOI
Kew, Paul Adaptive grid refinement using the generalised finite-difference method. (Abstract of thesis). (English) Zbl 07330729 Bull. Aust. Math. Soc. 103, No. 2, 349 (2021). MSC: 65N50 76D05 PDF BibTeX XML Cite \textit{P. Kew}, Bull. Aust. Math. Soc. 103, No. 2, 349 (2021; Zbl 07330729) Full Text: DOI
Singh, Khilap; Pandey, Alok Kumar; Kumar, Manoj Melting heat transfer assessment on magnetic nanofluid flow past a porous stretching cylinder. (English) Zbl 07330587 J. Egypt. Math. Soc. 29, Paper No. 1, 14 p. (2021). MSC: 76W05 76A05 76S05 76M20 80A19 80A22 PDF BibTeX XML Cite \textit{K. Singh} et al., J. Egypt. Math. Soc. 29, Paper No. 1, 14 p. (2021; Zbl 07330587) Full Text: DOI
Zheng, Xiangcheng; Li, Yiqun; Cheng, Jin; Wang, Hong Inverting the variable fractional order in a variable-order space-fractional diffusion equation with variable diffusivity: analysis and simulation. (English) Zbl 07330239 J. Inverse Ill-Posed Probl. 29, No. 2, 219-231 (2021). MSC: 65 34A08 34A55 PDF BibTeX XML Cite \textit{X. Zheng} et al., J. Inverse Ill-Posed Probl. 29, No. 2, 219--231 (2021; Zbl 07330239) Full Text: DOI
Liu, Li; Fan, Zhenbin; Li, Gang; Piskarev, Sergey Discrete almost maximal regularity and stability for fractional differential equations in \(L^p([0, 1], \Omega)\). (English) Zbl 07329306 Appl. Math. Comput. 389, Article ID 125574, 15 p. (2021). MSC: 34A08 39A12 47D99 65J10 65M22 PDF BibTeX XML Cite \textit{L. Liu} et al., Appl. Math. Comput. 389, Article ID 125574, 15 p. (2021; Zbl 07329306) Full Text: DOI
Mbaye, Ibrahima; Diop, Mamadou; Sonko, Aliou; Ba, Malick Analysis of the dynamic response of the soil-pile behavioral model under lateral load. (English) Zbl 07328592 Aust. J. Math. Anal. Appl. 18, No. 1, Article No. 11, 11 p. (2021). MSC: 65N06 65N30 65N12 74Axx 74Sxx PDF BibTeX XML Cite \textit{I. Mbaye} et al., Aust. J. Math. Anal. Appl. 18, No. 1, Article No. 11, 11 p. (2021; Zbl 07328592) Full Text: Link
Pang, Hong-Kui; Qin, Hai-Hua; Sun, Hai-Wei; Ma, Ting-Ting Circulant-based approximate inverse preconditioners for a class of fractional diffusion equations. (English) Zbl 07327224 Comput. Math. Appl. 85, 18-29 (2021). MSC: 65 26 PDF BibTeX XML Cite \textit{H.-K. Pang} et al., Comput. Math. Appl. 85, 18--29 (2021; Zbl 07327224) Full Text: DOI
Jaworska, Irena Generalization of the multipoint meshless FDM application to the nonlinear analysis. (English) Zbl 07325130 Comput. Math. Appl. 87, 1-11 (2021). MSC: 65 78 PDF BibTeX XML Cite \textit{I. Jaworska}, Comput. Math. Appl. 87, 1--11 (2021; Zbl 07325130) Full Text: DOI
MacĂas-DĂaz, J. E. A dissipation-preserving scheme to approximate radially symmetric solutions of the Higgs boson equation in the de Sitter space-time. (English) Zbl 07319189 Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105698, 20 p. (2021). MSC: 65Mxx 65Qxx PDF BibTeX XML Cite \textit{J. E. MacĂas-DĂaz}, Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105698, 20 p. (2021; Zbl 07319189) Full Text: DOI
KrzyĹĽanowski, Grzegorz; Magdziarz, Marcin A computational weighted finite difference method for American and barrier options in subdiffusive Black-Scholes model. (English) Zbl 07319169 Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105676, 15 p. (2021). Reviewer: Nikolay Kyurkchiev (Plovdiv) MSC: 91G60 65M06 91G20 60G40 PDF BibTeX XML Cite \textit{G. KrzyĹĽanowski} and \textit{M. Magdziarz}, Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105676, 15 p. (2021; Zbl 07319169) Full Text: DOI
Zaky, Mahmoud A.; Hendy, Ahmed S.; Alikhanov, Anatoly A.; Pimenov, Vladimir G. Numerical analysis of multi-term time-fractional nonlinear subdiffusion equations with time delay: what could possibly go wrong? (English) Zbl 07319165 Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105672, 16 p. (2021). MSC: 65 35R11 65M12 65M06 65Q10 PDF BibTeX XML Cite \textit{M. A. Zaky} et al., Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105672, 16 p. (2021; Zbl 07319165) Full Text: DOI
Grajales, Juan Carlos Muñoz Non-homogeneous boundary value problems for some KdV-type equations on a finite interval: a numerical approach. (English) Zbl 07319162 Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105669, 18 p. (2021). MSC: 35Q53 93B05 93C20 65M60 65M06 65N30 PDF BibTeX XML Cite \textit{J. C. M. Grajales}, Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105669, 18 p. (2021; Zbl 07319162) Full Text: DOI
Yoshikawa, Shuji; Kawashima, Shuichi Global existence for a semi-discrete scheme of some quasilinear hyperbolic balance laws. (English) Zbl 07318443 J. Math. Anal. Appl. 498, No. 1, Article ID 124929, 18 p. (2021). MSC: 35L45 35L60 39A12 35A35 65M06 PDF BibTeX XML Cite \textit{S. Yoshikawa} and \textit{S. Kawashima}, J. Math. Anal. Appl. 498, No. 1, Article ID 124929, 18 p. (2021; Zbl 07318443) Full Text: DOI
Lyu, Jisang; Park, Eunchae; Kim, Sangkwon; Lee, Wonjin; Lee, Chaeyoung; Yoon, Sungha; Park, Jintae; Kim, Junseok Optimal non-uniform finite difference grids for the Black-Scholes equations. (English) Zbl 07318277 Math. Comput. Simul. 182, 690-704 (2021). MSC: 91G 65L 65M PDF BibTeX XML Cite \textit{J. Lyu} et al., Math. Comput. Simul. 182, 690--704 (2021; Zbl 07318277) Full Text: DOI
Wang, Yuan-Ming A high-order compact difference method on fitted meshes for Neumann problems of time-fractional reaction-diffusion equations with variable coefficients. (English) Zbl 07318237 Math. Comput. Simul. 181, 598-623 (2021). MSC: 65M PDF BibTeX XML Cite \textit{Y.-M. Wang}, Math. Comput. Simul. 181, 598--623 (2021; Zbl 07318237) Full Text: DOI
Jadoon, Ihtesham; Raja, Muhammad Asif Zahoor; Junaid, Muhammad; Ahmed, Ashfaq; Rehman, Ata ur; Shoaib, Muhammad Design of evolutionary optimized finite difference based numerical computing for dust density model of nonlinear Van-der Pol Mathieu’s oscillatory systems. (English) Zbl 07318229 Math. Comput. Simul. 181, 444-470 (2021). MSC: 82D 82 76X 76W 86A PDF BibTeX XML Cite \textit{I. Jadoon} et al., Math. Comput. Simul. 181, 444--470 (2021; Zbl 07318229) Full Text: DOI
BaĹźhan, Ali Highly efficient approach to numerical solutions of two different forms of the modified Kawahara equation via contribution of two effective methods. (English) Zbl 07318169 Math. Comput. Simul. 179, 111-125 (2021). MSC: 35Q 65M PDF BibTeX XML Cite \textit{A. BaĹźhan}, Math. Comput. Simul. 179, 111--125 (2021; Zbl 07318169) Full Text: DOI
Gu, Jiaxi; Jung, Jae-Hun Consistent, non-oscillatory RBF finite difference solutions to boundary layer problems for any degree on uniform grids. (English) Zbl 07317514 Appl. Math. Lett. 115, Article ID 106944, 9 p. (2021). MSC: 65 76 PDF BibTeX XML Cite \textit{J. Gu} and \textit{J.-H. Jung}, Appl. Math. Lett. 115, Article ID 106944, 9 p. (2021; Zbl 07317514) Full Text: DOI
Lemoine, Jérôme; Münch, Arnaud Resolution of the implicit Euler scheme for the Navier-Stokes equation through a least-squares method. (English) Zbl 07317383 Numer. Math. 147, No. 2, 349-391 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q30 65M06 65N30 65K10 49M15 76D05 PDF BibTeX XML Cite \textit{J. Lemoine} and \textit{A. Münch}, Numer. Math. 147, No. 2, 349--391 (2021; Zbl 07317383) Full Text: DOI
Chen, Meng; Huang, Yunqing; Li, Jichun Development and analysis of a new finite element method for the Cohen-Monk PML model. (English) Zbl 07317376 Numer. Math. 147, No. 1, 127-155 (2021). Reviewer: Bülent Karasözen (Ankara) MSC: 65M60 65M06 65N30 65M12 65M15 78M10 78M20 35B35 35L15 35Q60 PDF BibTeX XML Cite \textit{M. Chen} et al., Numer. Math. 147, No. 1, 127--155 (2021; Zbl 07317376) Full Text: DOI
Yang, Zhanwen; Zuo, Tianqing; Chen, Zhijie Numerical analysis of linearly implicit Euler-Riemann method for nonlinear Gurtin-MacCamy model. (English) Zbl 07316841 Appl. Numer. Math. 163, 147-166 (2021). MSC: 65M06 65M12 92D25 92D30 35Q92 PDF BibTeX XML Cite \textit{Z. Yang} et al., Appl. Numer. Math. 163, 147--166 (2021; Zbl 07316841) Full Text: DOI
Varma, V. Dhanya; Nadupuri, Suresh Kumar; Chamakuri, Nagaiah A posteriori error estimates and an adaptive finite element solution for the system of unsteady convection-diffusion-reaction equations in fluidized beds. (English) Zbl 07316839 Appl. Numer. Math. 163, 108-125 (2021). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 65M60 65M06 65N30 65M15 65M50 65H10 80A19 35Q79 PDF BibTeX XML Cite \textit{V. D. Varma} et al., Appl. Numer. Math. 163, 108--125 (2021; Zbl 07316839) Full Text: DOI
Maltese, David; NovotnĂ˝, AntonĂn Implicit MAC scheme for compressible Navier-Stokes equations: low Mach asymptotic error estimates. (English) Zbl 07315148 IMA J. Numer. Anal. 41, No. 1, 122-163 (2021). MSC: 65M06 65M08 76N06 PDF BibTeX XML Cite \textit{D. Maltese} and \textit{A. NovotnĂ˝}, IMA J. Numer. Anal. 41, No. 1, 122--163 (2021; Zbl 07315148) Full Text: DOI
Cakir, Musa; Gunes, Baransel; Duru, Hakki A novel computational method for solving nonlinear Volterra integro-differential equation. (English) Zbl 07314217 Kuwait J. Sci. 48, No. 1, 1-9 (2021). MSC: 65 41 PDF BibTeX XML Cite \textit{M. Cakir} et al., Kuwait J. Sci. 48, No. 1, 1--9 (2021; Zbl 07314217) Full Text: DOI
Fairag, Faisal; Chen, Ke; Ahmad, Shahbaz Analysis of the CCFD method for MC-based image denoising problems. (English) Zbl 07311976 ETNA, Electron. Trans. Numer. Anal. 54, 108-127 (2021). MSC: 68U10 94A08 65N06 65N12 PDF BibTeX XML Cite \textit{F. Fairag} et al., ETNA, Electron. Trans. Numer. Anal. 54, 108--127 (2021; Zbl 07311976) Full Text: DOI Link
Li, Jiyong; Wang, Tingchun Optimal point-wise error estimate of two conservative fourth-order compact finite difference schemes for the nonlinear Dirac equation. (English) Zbl 07311184 Appl. Numer. Math. 162, 150-170 (2021). MSC: 81Q05 81R20 35Q55 65L12 35R20 81R05 35G30 81-10 PDF BibTeX XML Cite \textit{J. Li} and \textit{T. Wang}, Appl. Numer. Math. 162, 150--170 (2021; Zbl 07311184) Full Text: DOI
Bohaienko, Vsevolod On the recurrent computation of fractional operator with Mittag-Leffler kernel. (English) Zbl 07311183 Appl. Numer. Math. 162, 137-149 (2021). MSC: 65M06 65N06 35R11 26A33 33E12 PDF BibTeX XML Cite \textit{V. Bohaienko}, Appl. Numer. Math. 162, 137--149 (2021; Zbl 07311183) Full Text: DOI
Ghosh, Surath; Kundu, Snehasis; Kumar, Sunil; Mahmoud, Emad E. Spectral approximation methods for non equilibrium transport in turbulent channel flows using fADE. (English) Zbl 07311178 Appl. Numer. Math. 162, 53-66 (2021). MSC: 65M70 35R11 PDF BibTeX XML Cite \textit{S. Ghosh} et al., Appl. Numer. Math. 162, 53--66 (2021; Zbl 07311178) Full Text: DOI
Davydov, Oleg; Safarpoor, Mansour A meshless finite difference method for elliptic interface problems based on pivoted QR decomposition. (English) Zbl 07310830 Appl. Numer. Math. 161, 489-509 (2021). MSC: 65N06 65N12 35J15 65F25 PDF BibTeX XML Cite \textit{O. Davydov} and \textit{M. Safarpoor}, Appl. Numer. Math. 161, 489--509 (2021; Zbl 07310830) Full Text: DOI
Wu, Tingting; Sun, Yuran; Cheng, Dongsheng A new finite difference scheme for the 3D Helmholtz equation with a preconditioned iterative solver. (English) Zbl 07310822 Appl. Numer. Math. 161, 348-371 (2021). MSC: 76M20 76Q05 65N12 PDF BibTeX XML Cite \textit{T. Wu} et al., Appl. Numer. Math. 161, 348--371 (2021; Zbl 07310822) Full Text: DOI
Benito, J. J.; GarcĂa, A.; Gavete, L.; Negreanu, M.; Ureña, F.; Vargas, A. M. Convergence and numerical simulations of prey-predator interactions via a meshless method. (English) Zbl 07310821 Appl. Numer. Math. 161, 333-347 (2021). MSC: 65M06 65N06 35B09 35B40 92D25 92C17 35Q92 PDF BibTeX XML Cite \textit{J. J. Benito} et al., Appl. Numer. Math. 161, 333--347 (2021; Zbl 07310821) Full Text: DOI
Srivastava, Nikhil; Singh, Aman; Kumar, Yashveer; Singh, Vineet Kumar Efficient numerical algorithms for Riesz-space fractional partial differential equations based on finite difference/operational matrix. (English) Zbl 07310817 Appl. Numer. Math. 161, 244-274 (2021). MSC: 65M06 65M12 65M15 42C10 41A50 35R11 PDF BibTeX XML Cite \textit{N. Srivastava} et al., Appl. Numer. Math. 161, 244--274 (2021; Zbl 07310817) Full Text: DOI
Khader, M. M.; Saad, Khaled M.; Hammouch, Zakia; Baleanu, Dumitru A spectral collocation method for solving fractional KdV and KdV-Burgers equations with non-singular kernel derivatives. (English) Zbl 07310809 Appl. Numer. Math. 161, 137-146 (2021). MSC: 76M22 76M20 76B15 65M15 26A33 PDF BibTeX XML Cite \textit{M. M. Khader} et al., Appl. Numer. Math. 161, 137--146 (2021; Zbl 07310809) Full Text: DOI
Sun, Jing; Nie, Daxin; Deng, Weihua High-order BDF fully discrete scheme for backward fractional Feynman-Kac equation with nonsmooth data. (English) Zbl 07310806 Appl. Numer. Math. 161, 82-100 (2021). MSC: 60J 35J 82B PDF BibTeX XML Cite \textit{J. Sun} et al., Appl. Numer. Math. 161, 82--100 (2021; Zbl 07310806) Full Text: DOI
Zheng, Xiangcheng; Liu, Huan; Wang, Hong; Fu, Hongfei Optimal-order finite element approximations to variable-coefficient two-sided space-fractional advection-reaction-diffusion equations in three space dimensions. (English) Zbl 07310800 Appl. Numer. Math. 161, 1-12 (2021). Reviewer: Bülent Karasözen (Ankara) MSC: 65N30 65N15 65M06 35R11 PDF BibTeX XML Cite \textit{X. Zheng} et al., Appl. Numer. Math. 161, 1--12 (2021; Zbl 07310800) Full Text: DOI
Li, Wei; Fang, Jilin; Qin, Yi; Huang, Pengzhan Rotational pressure-correction method for the Stokes/Darcy model based on the modular grad-div stabilization. (English) Zbl 07310784 Appl. Numer. Math. 160, 451-465 (2021). MSC: 35Q35 76S05 76D07 76E07 65M60 65M06 65N30 PDF BibTeX XML Cite \textit{W. Li} et al., Appl. Numer. Math. 160, 451--465 (2021; Zbl 07310784) Full Text: DOI
Nanta, Supawan; Yimnet, Suriyon; Poochinapan, Kanyuta; Wongsaijai, Ben On the identification of nonlinear terms in the generalized Camassa-Holm equation involving dual-power law nonlinearities. (English) Zbl 07310781 Appl. Numer. Math. 160, 386-421 (2021). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{S. Nanta} et al., Appl. Numer. Math. 160, 386--421 (2021; Zbl 07310781) Full Text: DOI
Zaky, Mahmoud A.; Hendy, Ahmed S. An efficient dissipation-preserving Legendre-Galerkin spectral method for the Higgs boson equation in the de Sitter spacetime universe. (English) Zbl 07310775 Appl. Numer. Math. 160, 281-295 (2021). MSC: 35Q75 83C10 83C15 83C40 65M06 65M70 65N30 65M12 65M15 42C10 65P10 PDF BibTeX XML Cite \textit{M. A. Zaky} and \textit{A. S. Hendy}, Appl. Numer. Math. 160, 281--295 (2021; Zbl 07310775) Full Text: DOI
Bhardwaj, Akanksha; Kumar, Alpesh A meshless method for time fractional nonlinear mixed diffusion and diffusion-wave equation. (English) Zbl 07310767 Appl. Numer. Math. 160, 146-165 (2021). MSC: 65M06 65N35 65M12 65D12 35R11 PDF BibTeX XML Cite \textit{A. Bhardwaj} and \textit{A. Kumar}, Appl. Numer. Math. 160, 146--165 (2021; Zbl 07310767) Full Text: DOI
Csomós, Petra; Takács, Bálint Operator splitting for space-dependent epidemic model. (English) Zbl 07310756 Appl. Numer. Math. 159, 259-280 (2021). MSC: 65M06 65M12 35Q92 PDF BibTeX XML Cite \textit{P. Csomós} and \textit{B. Takács}, Appl. Numer. Math. 159, 259--280 (2021; Zbl 07310756) Full Text: DOI
Qiu, Wenlin; Xu, Da; Guo, Jing The Crank-Nicolson-type Sinc-Galerkin method for the fourth-order partial integro-differential equation with a weakly singular kernel. (English) Zbl 07310755 Appl. Numer. Math. 159, 239-258 (2021). MSC: 65M60 65M70 65M12 45K05 45E10 35R09 65D30 15B05 35R11 65M06 PDF BibTeX XML Cite \textit{W. Qiu} et al., Appl. Numer. Math. 159, 239--258 (2021; Zbl 07310755) Full Text: DOI
Liu, Hailiang; Yin, Peimeng Unconditionally energy stable discontinuous Galerkin schemes for the Cahn-Hilliard equation. (English) Zbl 07309642 J. Comput. Appl. Math. 390, Article ID 113375, 19 p. (2021). MSC: 65N30 65M06 65N12 PDF BibTeX XML Cite \textit{H. Liu} and \textit{P. Yin}, J. Comput. Appl. Math. 390, Article ID 113375, 19 p. (2021; Zbl 07309642) Full Text: DOI
Han, Weimin; Wang, Cheng Numerical analysis of a parabolic hemivariational inequality for semipermeable media. (English) Zbl 07309596 J. Comput. Appl. Math. 389, Article ID 113326, 19 p. (2021). MSC: 65M60 65M06 65N30 65M15 65M12 PDF BibTeX XML Cite \textit{W. Han} and \textit{C. Wang}, J. Comput. Appl. Math. 389, Article ID 113326, 19 p. (2021; Zbl 07309596) Full Text: DOI
Benito, J. J.; GarcĂa, A.; Gavete, L.; Negreanu, M.; Ureña, F.; Vargas, A. M. Solving a reaction-diffusion system with chemotaxis and non-local terms using generalized finite difference method. Study of the convergence. (English) Zbl 07309595 J. Comput. Appl. Math. 389, Article ID 113325, 16 p. (2021). Reviewer: Piotr Biler (WrocĹ‚aw) MSC: 92C17 35Q92 65M06 35K57 PDF BibTeX XML Cite \textit{J. J. Benito} et al., J. Comput. Appl. Math. 389, Article ID 113325, 16 p. (2021; Zbl 07309595) Full Text: DOI
Wiegold, Tillmann; Klinge, S.; Gilbert, R. P.; Holzapfel, G. A. Numerical simulation of the viral entry into a cell driven by receptor diffusion. (English) Zbl 07308038 Comput. Math. Appl. 84, 224-243 (2021). MSC: 74 92 PDF BibTeX XML Cite \textit{T. Wiegold} et al., Comput. Math. Appl. 84, 224--243 (2021; Zbl 07308038) Full Text: DOI
Li, Po-Wei Space-time generalized finite difference nonlinear model for solving unsteady Burgers’ equations. (English) Zbl 07307171 Appl. Math. Lett. 114, Article ID 106896, 8 p. (2021). MSC: 65M06 35L02 PDF BibTeX XML Cite \textit{P.-W. Li}, Appl. Math. Lett. 114, Article ID 106896, 8 p. (2021; Zbl 07307171) Full Text: DOI
Ding, Ming-Hui; Zheng, Guang-Hui Determination of the reaction coefficient in a time dependent nonlocal diffusion process. (English) Zbl 07305945 Inverse Probl. 37, No. 2, Article ID 025005, 28 p. (2021). MSC: 65M32 65M30 65M06 35B65 35A02 44A10 76M30 76M21 35Q35 62F15 PDF BibTeX XML Cite \textit{M.-H. Ding} and \textit{G.-H. Zheng}, Inverse Probl. 37, No. 2, Article ID 025005, 28 p. (2021; Zbl 07305945) Full Text: DOI
Xia, Hao; Gu, Yan Short communication: the generalized finite difference method for electroelastic analysis of 2D piezoelectric structures. (English) Zbl 07305298 Eng. Anal. Bound. Elem. 124, 82-86 (2021). MSC: 78 74 PDF BibTeX XML Cite \textit{H. Xia} and \textit{Y. Gu}, Eng. Anal. Bound. Elem. 124, 82--86 (2021; Zbl 07305298) Full Text: DOI
Benito, J. J.; GarcĂa, Angelo; Gavete, L.; Negreanu, M.; Ureña, F.; Vargas, A. M. Solving Monge-Ampère equation in 2D and 3D by generalized finite difference method. (English) Zbl 07305296 Eng. Anal. Bound. Elem. 124, 52-63 (2021). MSC: 65 35 PDF BibTeX XML Cite \textit{J. J. Benito} et al., Eng. Anal. Bound. Elem. 124, 52--63 (2021; Zbl 07305296) Full Text: DOI
Mohammadi, Vahid; Dehghan, Mehdi; De Marchi, Stefano Numerical simulation of a prostate tumor growth model by the RBF-FD scheme and a semi-implicit time discretization. (English) Zbl 07305234 J. Comput. Appl. Math. 388, Article ID 113314, 24 p. (2021). MSC: 92C32 35Q92 PDF BibTeX XML Cite \textit{V. Mohammadi} et al., J. Comput. Appl. Math. 388, Article ID 113314, 24 p. (2021; Zbl 07305234) Full Text: DOI
González-Pinto, S.; Hernández-Abreu, D.; PĂ©rez-RodrĂguez, S. AMFR-W-methods for parabolic problems with mixed derivates. Applications to the Heston model. (English) Zbl 07305188 J. Comput. Appl. Math. 387, Article ID 112518, 19 p. (2021). MSC: 65M06 35L25 PDF BibTeX XML Cite \textit{S. González-Pinto} et al., J. Comput. Appl. Math. 387, Article ID 112518, 19 p. (2021; Zbl 07305188) Full Text: DOI
Huang, Weizhang; Kamenski, Lennard; Lang, Jens Conditioning of implicit Runge-Kutta integration for finite element approximation of linear diffusion equations on anisotropic meshes. (English) Zbl 07305180 J. Comput. Appl. Math. 387, Article ID 112497, 18 p. (2021). MSC: 65M60 65M06 65L06 65N30 65M50 65F08 65F10 65F35 65F15 35K10 PDF BibTeX XML Cite \textit{W. Huang} et al., J. Comput. Appl. Math. 387, Article ID 112497, 18 p. (2021; Zbl 07305180) Full Text: DOI
Boen, Lynn; in ’t Hout, Karel J. Operator splitting schemes for the two-asset Merton jump-diffusion model. (English) Zbl 07305168 J. Comput. Appl. Math. 387, Article ID 112309, 16 p. (2021). MSC: 65M06 65N40 65T50 60J74 35R09 45K05 91G20 91G60 35Q91 PDF BibTeX XML Cite \textit{L. Boen} and \textit{K. J. in 't Hout}, J. Comput. Appl. Math. 387, Article ID 112309, 16 p. (2021; Zbl 07305168) Full Text: DOI
Tao, Qi; Xu, Yan; Shu, Chi-Wang A discontinuous Galerkin method and its error estimate for nonlinear fourth-order wave equations. (English) Zbl 07305147 J. Comput. Appl. Math. 386, Article ID 113230, 17 p. (2021). MSC: 65M60 65M06 65N30 65M15 74K10 74K20 74H45 35Q74 PDF BibTeX XML Cite \textit{Q. Tao} et al., J. Comput. Appl. Math. 386, Article ID 113230, 17 p. (2021; Zbl 07305147) Full Text: DOI
Hou, Baohui; Liang, Dong Time fourth-order energy-preserving AVF finite difference method for nonlinear space-fractional wave equations. (English) Zbl 07305144 J. Comput. Appl. Math. 386, Article ID 113227, 26 p. (2021). MSC: 65M06 65M12 65M15 35C08 37K06 35R11 PDF BibTeX XML Cite \textit{B. Hou} and \textit{D. Liang}, J. Comput. Appl. Math. 386, Article ID 113227, 26 p. (2021; Zbl 07305144) Full Text: DOI
Kadiri, Mostafa; Louaked, Mohammed; Mechkour, Houari Hydrodynamic design optimization using non stationary porous media model. (English) Zbl 07305134 J. Comput. Appl. Math. 386, Article ID 113193, 45 p. (2021). MSC: 35Q35 35B45 76D55 49Q10 65M60 65M06 65N30 65M15 65M12 76M10 76M20 PDF BibTeX XML Cite \textit{M. Kadiri} et al., J. Comput. Appl. Math. 386, Article ID 113193, 45 p. (2021; Zbl 07305134) Full Text: DOI
Ferreira, J. A.; de Oliveira, P.; Pena, G.; Silveira, E. Coupling nonlinear electric fields and temperature to enhance drug transport: an accurate numerical tool. (English) Zbl 07305052 J. Comput. Appl. Math. 384, Article ID 113127, 23 p. (2021). MSC: 65 PDF BibTeX XML Cite \textit{J. A. Ferreira} et al., J. Comput. Appl. Math. 384, Article ID 113127, 23 p. (2021; Zbl 07305052) Full Text: DOI
LĂłpez-Salas, J. G.; PĂ©rez-RodrĂguez, S.; Vázquez, C. AMFR-W numerical methods for solving high-dimensional SABR/LIBOR PDE models. (English) Zbl 07303436 SIAM J. Sci. Comput. 43, No. 1, B30-B54 (2021). Reviewer: BĂĽlent Karasözen (Ankara) MSC: 65M06 65M20 65M50 65M12 65F50 91G30 91G80 35Q91 65Y05 PDF BibTeX XML Cite \textit{J. G. LĂłpez-Salas} et al., SIAM J. Sci. Comput. 43, No. 1, B30--B54 (2021; Zbl 07303436) Full Text: DOI
Blázsik, Zoltán L.; Blokhuis, Aart; Miklavič, Štefko; Nagy, Zoltán Lóránt; Szőnyi, Tamás On the balanced upper chromatic number of finite projective planes. (English) Zbl 07302683 Discrete Math. 344, No. 3, Article ID 112266, 8 p. (2021). MSC: 05C15 05B10 51E15 PDF BibTeX XML Cite \textit{Z. L. Blázsik} et al., Discrete Math. 344, No. 3, Article ID 112266, 8 p. (2021; Zbl 07302683) Full Text: DOI
Zosso, Dominique; Osting, Braxton A primal-dual optimization strategy for elliptic partial differential equations. (English) Zbl 07301469 Q. Appl. Math. 79, No. 1, 175-200 (2021). MSC: 65K10 65N06 35J20 PDF BibTeX XML Cite \textit{D. Zosso} and \textit{B. Osting}, Q. Appl. Math. 79, No. 1, 175--200 (2021; Zbl 07301469) Full Text: DOI
Chu, Kwunlun; Leung, Shingyu A level set method for the Dirichlet \(k\)-partition problem. (English) Zbl 07301289 J. Sci. Comput. 86, No. 1, Paper No. 11, 32 p. (2021). MSC: 65M06 65M12 65N25 65K10 49J20 49M25 35K05 PDF BibTeX XML Cite \textit{K. Chu} and \textit{S. Leung}, J. Sci. Comput. 86, No. 1, Paper No. 11, 32 p. (2021; Zbl 07301289) Full Text: DOI
Feng, Hongsong; Long, Guangqing; Zhao, Shan FFT-based high order central difference schemes for Poisson’s equation with staggered boundaries. (English) Zbl 07301285 J. Sci. Comput. 86, No. 1, Paper No. 7, 25 p. (2021). MSC: 65N06 65T50 65N85 35J05 PDF BibTeX XML Cite \textit{H. Feng} et al., J. Sci. Comput. 86, No. 1, Paper No. 7, 25 p. (2021; Zbl 07301285) Full Text: DOI
Zhang, Guoliang; Zheng, Shaoqin; Xiong, Tao A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. (English) Zbl 07300784 Electron Res. Arch. 29, No. 1, 1819-1839 (2021). MSC: 65M06 65M25 65L06 PDF BibTeX XML Cite \textit{G. Zhang} et al., Electron Res. Arch. 29, No. 1, 1819--1839 (2021; Zbl 07300784) Full Text: DOI
Wang, Liupeng; Huang, Yunqing Error estimates for second-order SAV finite element method to phase field crystal model. (English) Zbl 07300780 Electron Res. Arch. 29, No. 1, 1735-1752 (2021). MSC: 65M60 65M06 65M12 35R09 45K05 74E15 74N05 35Q74 PDF BibTeX XML Cite \textit{L. Wang} and \textit{Y. Huang}, Electron Res. Arch. 29, No. 1, 1735--1752 (2021; Zbl 07300780) Full Text: DOI
Lee, Chaeyoung; Kim, Hyundong; Yoon, Sungha; Kim, Sangkwon; Lee, Dongsun; Park, Jinate; Kwak, Soobin; Yang, Junxiang; Wang, Jian; Kim, Junseok An unconditionally stable scheme for the Allen-Cahn equation with high-order polynomial free energy. (English) Zbl 07299052 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105658, 19 p. (2021). MSC: 65M06 65M55 65D05 76D05 35Q35 PDF BibTeX XML Cite \textit{C. Lee} et al., Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105658, 19 p. (2021; Zbl 07299052) Full Text: DOI
Xiao, Zhicheng; Yu, Peixiang; Ouyang, Hua; Zhang, Jiajing A parallel high-order compact scheme for the pure streamfunction formulation of the 3D unsteady incompressible Navier-Stokes equation. (English) Zbl 1455.76137 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105631, 21 p. (2021). MSC: 76M20 76D05 65M12 65Y05 PDF BibTeX XML Cite \textit{Z. Xiao} et al., Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105631, 21 p. (2021; Zbl 1455.76137) Full Text: DOI
Lorin, Emmanuel Numerical analysis of the exact factorization of molecular time-dependent Schrödinger wavefunctions. (English) Zbl 07299031 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105627, 22 p. (2021). MSC: 65M06 65M12 35Q55 PDF BibTeX XML Cite \textit{E. Lorin}, Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105627, 22 p. (2021; Zbl 07299031) Full Text: DOI
Negreanu, M.; Vargas, A. M. Continuous and discrete periodic asymptotic behavior of solutions to a competitive chemotaxis PDEs system. (English) Zbl 07299005 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105592, 21 p. (2021). MSC: 35B40 35K51 35K59 92C17 92D25 35B10 65M06 PDF BibTeX XML Cite \textit{M. Negreanu} and \textit{A. M. Vargas}, Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105592, 21 p. (2021; Zbl 07299005) Full Text: DOI
Chauchat, Nicolas; Becker, Roland; Schall, Eric Performance of DG methods based on different variables for low Mach number flows. (English) Zbl 07298996 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105580, 21 p. (2021). MSC: 35Q31 76N06 65M60 65M06 65N30 65M08 PDF BibTeX XML Cite \textit{N. Chauchat} et al., Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105580, 21 p. (2021; Zbl 07298996) Full Text: DOI
Feng, Xinlong; He, Ruijian; Chen, Zhangxin Superconvergence in \(H^1\)-norm of a difference finite element method for the heat equation in a 3D spatial domain with almost-uniform mesh. (English) Zbl 07298627 Numer. Algorithms 86, No. 1, 357-395 (2021). MSC: 65M06 65M60 65M12 35K05 80A19 35Q79 35J05 PDF BibTeX XML Cite \textit{X. Feng} et al., Numer. Algorithms 86, No. 1, 357--395 (2021; Zbl 07298627) Full Text: DOI
Shi, Dongyang; Li, Chaoqun Superconvergence analysis of two-grid methods for bacteria equations. (English) Zbl 07298618 Numer. Algorithms 86, No. 1, 123-152 (2021). MSC: 65M60 65M06 65M55 65Z05 65M12 35K40 92C50 PDF BibTeX XML Cite \textit{D. Shi} and \textit{C. Li}, Numer. Algorithms 86, No. 1, 123--152 (2021; Zbl 07298618) Full Text: DOI
MacĂas-DĂaz, Jorge E. A numerically efficient variational algorithm to solve a fractional nonlinear elastic string equation. (English) Zbl 07298616 Numer. Algorithms 86, No. 1, 75-102 (2021). MSC: 65M06 65M12 74K05 74H45 74B20 35R11 35Q74 PDF BibTeX XML Cite \textit{J. E. MacĂas-DĂaz}, Numer. Algorithms 86, No. 1, 75--102 (2021; Zbl 07298616) Full Text: DOI
Zhang, Guoping; Cai, Mingchao Normal mode analysis of 3D incompressible viscous fluid flow models. (English) Zbl 1455.65143 Appl. Anal. 100, No. 1, 116-134 (2021). Reviewer: Bülent Karasözen (Ankara) MSC: 65M06 65M12 76D05 76D07 97N40 39A12 35Q30 PDF BibTeX XML Cite \textit{G. Zhang} and \textit{M. Cai}, Appl. Anal. 100, No. 1, 116--134 (2021; Zbl 1455.65143) Full Text: DOI
Jagtap, Ameya D. On spatio-temporal dynamics of sine-Gordon soliton in nonlinear non-homogeneous media using fully implicit spectral element scheme. (English) Zbl 1455.65133 Appl. Anal. 100, No. 1, 37-60 (2021). Reviewer: Marius Ghergu (Dublin) MSC: 65M06 65M70 35C08 65M12 58J45 35L70 35L20 35Q51 PDF BibTeX XML Cite \textit{A. D. Jagtap}, Appl. Anal. 100, No. 1, 37--60 (2021; Zbl 1455.65133) Full Text: DOI
Yan, Zhen-Guo; Pan, Yu; Castiglioni, Giacomo; Hillewaert, Koen; PeirĂł, Joaquim; Moxey, David; Sherwin, Spencer J. Nektar++: design and implementation of an implicit, spectral/\(hp\) element, compressible flow solver using a Jacobian-free Newton Krylov approach. (English) Zbl 07288718 Comput. Math. Appl. 81, 351-372 (2021). MSC: 76M22 76M10 76M20 76N15 PDF BibTeX XML Cite \textit{Z.-G. Yan} et al., Comput. Math. Appl. 81, 351--372 (2021; Zbl 07288718) Full Text: DOI
Chen, Ren Raw; Lee, Cheng Few; Lee, Han-Hsing Empirical performance of the constant elasticity variance option pricing model. (English) Zbl 1452.91305 Lee, Cheng Few (ed.) et al., Handbook of financial econometrics, mathematics, statistics, and machine learning. Volume 2. Hackensack, NJ: World Scientific. 1903-1942 (2021). MSC: 91G20 60G40 91G60 91G40 PDF BibTeX XML Cite \textit{R. R. Chen} et al., in: Handbook of financial econometrics, mathematics, statistics, and machine learning. Volume 2. Hackensack, NJ: World Scientific. 1903--1942 (2021; Zbl 1452.91305) Full Text: DOI
Zhang, Tian-Tian; Xu, Mei-Juan The symmetry-preserving difference schemes and exact solutions of some high-dimensional differential equations. (English) Zbl 07281329 Appl. Math. Lett. 112, Article ID 106813, 9 p. (2021). MSC: 65M06 35K59 PDF BibTeX XML Cite \textit{T.-T. Zhang} and \textit{M.-J. Xu}, Appl. Math. Lett. 112, Article ID 106813, 9 p. (2021; Zbl 07281329) Full Text: DOI
Jia, Xiaofeng; Tang, Zhuyan; Feng, Hui Numerical analysis of CNLF modular grad-div stabilization method for time-dependent Navier-Stokes equations. (English) Zbl 07281322 Appl. Math. Lett. 112, Article ID 106798, 7 p. (2021). MSC: 65M06 76D05 PDF BibTeX XML Cite \textit{X. Jia} et al., Appl. Math. Lett. 112, Article ID 106798, 7 p. (2021; Zbl 07281322) Full Text: DOI
Kojouharov, Hristo V.; Roy, Souvik; Gupta, Madhu; Alalhareth, Fawaz; Slezak, John M. A second-order modified nonstandard theta method for one-dimensional autonomous differential equations. (English) Zbl 07281312 Appl. Math. Lett. 112, Article ID 106775, 6 p. (2021). MSC: 65L12 65L05 PDF BibTeX XML Cite \textit{H. V. Kojouharov} et al., Appl. Math. Lett. 112, Article ID 106775, 6 p. (2021; Zbl 07281312) Full Text: DOI
Jesus, Carla; Sousa, ErcĂlia Superdiffusion in the presence of a reflecting boundary. (English) Zbl 1453.35177 Appl. Math. Lett. 112, Article ID 106742, 8 p. (2021). MSC: 35R11 35A35 65M06 PDF BibTeX XML Cite \textit{C. Jesus} and \textit{E. Sousa}, Appl. Math. Lett. 112, Article ID 106742, 8 p. (2021; Zbl 1453.35177) Full Text: DOI
Zhang, Qifeng; Qin, Yifan; Wang, Xuping; Sun, Zhi-zhong The study of exact and numerical solutions of the generalized viscous Burgers’ equation. (English) Zbl 1453.65240 Appl. Math. Lett. 112, Article ID 106719, 9 p. (2021). MSC: 65M06 65M12 65M15 65J08 35Q53 PDF BibTeX XML Cite \textit{Q. Zhang} et al., Appl. Math. Lett. 112, Article ID 106719, 9 p. (2021; Zbl 1453.65240) Full Text: DOI
Wang, Pengde Fast exponential time differencing/spectral-Galerkin method for the nonlinear fractional Ginzburg-Landau equation with fractional Laplacian in unbounded domain. (English) Zbl 1453.65365 Appl. Math. Lett. 112, Article ID 106710, 7 p. (2021). MSC: 65M70 65M60 65N35 65M06 35R11 35Q56 PDF BibTeX XML Cite \textit{P. Wang}, Appl. Math. Lett. 112, Article ID 106710, 7 p. (2021; Zbl 1453.65365) Full Text: DOI
Feng, Libo; Turner, Ian; Perré, Patrick; Burrage, Kevin An investigation of nonlinear time-fractional anomalous diffusion models for simulating transport processes in heterogeneous binary media. (English) Zbl 1452.76227 Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105454, 22 p. (2021). MSC: 76R50 76M20 26A33 PDF BibTeX XML Cite \textit{L. Feng} et al., Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105454, 22 p. (2021; Zbl 1452.76227) Full Text: DOI
Zhang, Tie; Sheng, Ying The \(H^1\)-error analysis of the finite element method for solving the fractional diffusion equation. (English) Zbl 1452.65263 J. Math. Anal. Appl. 493, No. 2, Article ID 124540, 22 p. (2021). MSC: 65M60 65M06 65N30 65M12 65M15 35R11 26A33 PDF BibTeX XML Cite \textit{T. Zhang} and \textit{Y. Sheng}, J. Math. Anal. Appl. 493, No. 2, Article ID 124540, 22 p. (2021; Zbl 1452.65263) Full Text: DOI
Teng, Fei; Luo, Zhendong A reduced-order extrapolated approach to solution coefficient vectors in the Crank-Nicolson finite element method for the uniform transmission line equation. (English) Zbl 1452.65250 J. Math. Anal. Appl. 493, No. 1, Article ID 124511, 13 p. (2021). MSC: 65M60 65M06 65M99 65M12 65M15 35Q60 PDF BibTeX XML Cite \textit{F. Teng} and \textit{Z. Luo}, J. Math. Anal. Appl. 493, No. 1, Article ID 124511, 13 p. (2021; Zbl 1452.65250) Full Text: DOI
Wang, Qin; Li, Hongliang; Zhang, Linbo; Lu, Benzhuo A stabilized finite element method for the Poisson-Nernst-Planck equations in three-dimensional ion channel simulations. (English) Zbl 1448.78051 Appl. Math. Lett. 111, Article ID 106652, 9 p. (2021). MSC: 78M10 78M20 78A57 35Q60 65M60 65M06 PDF BibTeX XML Cite \textit{Q. Wang} et al., Appl. Math. Lett. 111, Article ID 106652, 9 p. (2021; Zbl 1448.78051) Full Text: DOI
Cao, Limei; Zhang, Peipei; Li, Botong; Zhu, Jing; Si, Xinhui Numerical study of rotating electro-osmotic flow of double layers with a layer of fractional second-order fluid in a microchannel. (English) Zbl 1448.76185 Appl. Math. Lett. 111, Article ID 106633, 8 p. (2021). MSC: 76W05 76A10 76U05 76T06 76M20 PDF BibTeX XML Cite \textit{L. Cao} et al., Appl. Math. Lett. 111, Article ID 106633, 8 p. (2021; Zbl 1448.76185) Full Text: DOI
Koga, Kazuki Signal processing approach to mesh refinement in simulations of axisymmetric droplet dynamics. (English) Zbl 1451.76102 J. Comput. Appl. Math. 383, Article ID 113131, 17 p. (2021). MSC: 76M99 76M22 76M20 76B45 76B47 65M50 PDF BibTeX XML Cite \textit{K. Koga}, J. Comput. Appl. Math. 383, Article ID 113131, 17 p. (2021; Zbl 1451.76102) Full Text: DOI
Bhal, Santosh Kumar; Danumjaya, P.; Fairweather, G. The Crank-Nicolson orthogonal spline collocation method for one-dimensional parabolic problems with interfaces. (English) Zbl 07246887 J. Comput. Appl. Math. 383, Article ID 113119, 10 p. (2021). MSC: 65M06 65N35 65M12 65D07 65D32 35K20 PDF BibTeX XML Cite \textit{S. K. Bhal} et al., J. Comput. Appl. Math. 383, Article ID 113119, 10 p. (2021; Zbl 07246887) Full Text: DOI
Xing, F. New optimized Schwarz algorithms for one dimensional Schrödinger equation with general potential. (English) Zbl 07246880 J. Comput. Appl. Math. 383, Article ID 113018, 12 p. (2021). MSC: 65N55 65M55 65M06 65F05 65F08 65F10 65Y05 35Q55 PDF BibTeX XML Cite \textit{F. Xing}, J. Comput. Appl. Math. 383, Article ID 113018, 12 p. (2021; Zbl 07246880) Full Text: DOI
Chaudhry, Jehanzeb H.; Collins, J. B. A posteriori error estimation for the spectral deferred correction method. (English) Zbl 07241423 J. Comput. Appl. Math. 382, Article ID 113097, 13 p. (2021). MSC: 65 74 PDF BibTeX XML Cite \textit{J. H. Chaudhry} and \textit{J. B. Collins}, J. Comput. Appl. Math. 382, Article ID 113097, 13 p. (2021; Zbl 07241423) Full Text: DOI
Gu, Jiaxi; Jung, Jae-Hun Adaptive Gaussian radial basis function methods for initial value problems: construction and comparison with adaptive multiquadric radial basis function methods. (English) Zbl 1455.65107 J. Comput. Appl. Math. 381, Article ID 113036, 17 p. (2021). Reviewer: Martin D. Buhmann (GieĂźen) MSC: 65L05 65D12 65L12 65L60 41A15 PDF BibTeX XML Cite \textit{J. Gu} and \textit{J.-H. Jung}, J. Comput. Appl. Math. 381, Article ID 113036, 17 p. (2021; Zbl 1455.65107) Full Text: DOI
Chen, Huangxin; Sun, Shuyu A new physics-preserving IMPES scheme for incompressible and immiscible two-phase flow in heterogeneous porous media. (English) Zbl 1446.65107 J. Comput. Appl. Math. 381, Article ID 113035, 19 p. (2021). MSC: 65M60 65N30 65M06 76S05 76T06 PDF BibTeX XML Cite \textit{H. Chen} and \textit{S. Sun}, J. Comput. Appl. Math. 381, Article ID 113035, 19 p. (2021; Zbl 1446.65107) Full Text: DOI
Boglaev, Igor A parameter robust numerical method for a nonlinear system of singularly perturbed elliptic equations. (English) Zbl 1446.65141 J. Comput. Appl. Math. 381, Article ID 113017, 12 p. (2021). MSC: 65N06 65N12 65N15 65N50 35J60 35A01 35A02 PDF BibTeX XML Cite \textit{I. Boglaev}, J. Comput. Appl. Math. 381, Article ID 113017, 12 p. (2021; Zbl 1446.65141) Full Text: DOI
Mercier, Olivier; Yin, Xi-Yuan; Nave, Jean-Christophe The characteristic mapping method for the linear advection of arbitrary sets. (English) Zbl 07331682 SIAM J. Sci. Comput. 42, No. 3, A1663-A1685 (2020). MSC: 65M25 65M06 65Y20 PDF BibTeX XML Cite \textit{O. Mercier} et al., SIAM J. Sci. Comput. 42, No. 3, A1663--A1685 (2020; Zbl 07331682) Full Text: DOI
Ji, Bingquan; Liao, Hong-lin; Gong, Yuezheng; Zhang, Luming Adaptive second-order Crank-Nicolson time-stepping schemes for time-fractional molecular beam epitaxial growth models. (English) Zbl 07331681 SIAM J. Sci. Comput. 42, No. 3, B738-B760 (2020). MSC: 35Q99 65M06 65M12 74A50 PDF BibTeX XML Cite \textit{B. Ji} et al., SIAM J. Sci. Comput. 42, No. 3, B738--B760 (2020; Zbl 07331681) Full Text: DOI
Wang, Yanyong; Yan, Yubin; Yang, Yan Two high-order time discretization schemes for subdiffusion problems with nonsmooth data. (English) Zbl 07329861 Fract. Calc. Appl. Anal. 23, No. 5, 1349-1380 (2020). MSC: 65M06 65M12 65M15 26A33 35R11 PDF BibTeX XML Cite \textit{Y. Wang} et al., Fract. Calc. Appl. Anal. 23, No. 5, 1349--1380 (2020; Zbl 07329861) Full Text: DOI
Li, Hongshan; Huang, Zhongyi An iterative splitting method for pricing European options under the Heston model. (English) Zbl 07328879 Appl. Math. Comput. 387, Article ID 125424, 12 p. (2020). MSC: 65N06 35C20 35K20 PDF BibTeX XML Cite \textit{H. Li} and \textit{Z. Huang}, Appl. Math. Comput. 387, Article ID 125424, 12 p. (2020; Zbl 07328879) Full Text: DOI