Henning, Patrick; Wärnegård, Johan A note on optimal \(H^1\)-error estimates for Crank-Nicolson approximations to the nonlinear Schrödinger equation. (English) Zbl 07329843 BIT 61, No. 1, 37-59 (2021). MSC: 35Q55 65M60 65M06 65M15 65M12 65N30 65H10 35B45 81Q05 PDF BibTeX XML Cite \textit{P. Henning} and \textit{J. Wärnegård}, BIT 61, No. 1, 37--59 (2021; Zbl 07329843) Full Text: DOI
Petelczyc, Krzysztof; Prażmowski, Krzysztof Multiplied configurations induced by quasi difference sets. (English) Zbl 07323130 Bull. Iran. Math. Soc. 47, No. 1, 111-133 (2021). Reviewer: Piotr Pokora (Kraków) MSC: 51D20 51E30 51E14 PDF BibTeX XML Cite \textit{K. Petelczyc} and \textit{K. Prażmowski}, Bull. Iran. Math. Soc. 47, No. 1, 111--133 (2021; Zbl 07323130) Full Text: DOI
Budzinskiy, Stanislav; Razgulin, Alexander Pulsating and rotating spirals in a delayed feedback diffractive nonlinear optical system. (English) Zbl 07321530 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 1, Article ID 2130002, 19 p. (2021). MSC: 78A60 78A45 35J05 35B36 35B32 35R07 65M06 65T50 65F05 PDF BibTeX XML Cite \textit{S. Budzinskiy} and \textit{A. Razgulin}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 1, Article ID 2130002, 19 p. (2021; Zbl 07321530) Full Text: DOI
Grajales, Juan Carlos Muñoz Non-homogeneous boundary value problems for some KdV-type equations on a finite interval: a numerical approach. (English) Zbl 07319162 Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105669, 18 p. (2021). MSC: 35Q53 93B05 93C20 65M60 65M06 65N30 PDF BibTeX XML Cite \textit{J. C. M. Grajales}, Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105669, 18 p. (2021; Zbl 07319162) Full Text: DOI
Yoshikawa, Shuji; Kawashima, Shuichi Global existence for a semi-discrete scheme of some quasilinear hyperbolic balance laws. (English) Zbl 07318443 J. Math. Anal. Appl. 498, No. 1, Article ID 124929, 18 p. (2021). MSC: 35L45 35L60 39A12 35A35 65M06 PDF BibTeX XML Cite \textit{S. Yoshikawa} and \textit{S. Kawashima}, J. Math. Anal. Appl. 498, No. 1, Article ID 124929, 18 p. (2021; Zbl 07318443) Full Text: DOI
Varma, V. Dhanya; Nadupuri, Suresh Kumar; Chamakuri, Nagaiah A posteriori error estimates and an adaptive finite element solution for the system of unsteady convection-diffusion-reaction equations in fluidized beds. (English) Zbl 07316839 Appl. Numer. Math. 163, 108-125 (2021). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 65M60 65M06 65N30 65M15 65M50 65H10 80A19 35Q79 PDF BibTeX XML Cite \textit{V. D. Varma} et al., Appl. Numer. Math. 163, 108--125 (2021; Zbl 07316839) Full Text: DOI
Lipko, O. D. Mathematical model of the FitzHugh-Nagumo hereditary oscillator. (English. Russian original) Zbl 07315947 J. Math. Sci., New York 253, No. 4, 530-538 (2021); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 154, 72-80 (2018). MSC: 37N25 37M05 34A08 45J05 PDF BibTeX XML Cite \textit{O. D. Lipko}, J. Math. Sci., New York 253, No. 4, 530--538 (2021; Zbl 07315947); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 154, 72--80 (2018) Full Text: DOI
Lin, Xue-lei; Ng, Micheal K.; Wathen, Andy Preconditioners for multilevel Toeplitz linear systems from steady-state and evolutionary advection-diffusion equations. (English) Zbl 07310829 Appl. Numer. Math. 161, 469-488 (2021). MSC: 65N06 65T50 65F08 65F10 15B05 35P15 PDF BibTeX XML Cite \textit{X.-l. Lin} et al., Appl. Numer. Math. 161, 469--488 (2021; Zbl 07310829) Full Text: DOI
Sandu, Adrian; Günther, Michael; Roberts, Steven Linearly implicit GARK schemes. (English) Zbl 07310819 Appl. Numer. Math. 161, 286-310 (2021). MSC: 65M06 65L06 65L04 65L80 35K57 PDF BibTeX XML Cite \textit{A. Sandu} et al., Appl. Numer. Math. 161, 286--310 (2021; Zbl 07310819) Full Text: DOI
Srivastava, Nikhil; Singh, Aman; Kumar, Yashveer; Singh, Vineet Kumar Efficient numerical algorithms for Riesz-space fractional partial differential equations based on finite difference/operational matrix. (English) Zbl 07310817 Appl. Numer. Math. 161, 244-274 (2021). MSC: 65M06 65M12 65M15 42C10 41A50 35R11 PDF BibTeX XML Cite \textit{N. Srivastava} et al., Appl. Numer. Math. 161, 244--274 (2021; Zbl 07310817) Full Text: DOI
Zaky, Mahmoud A.; Hendy, Ahmed S. An efficient dissipation-preserving Legendre-Galerkin spectral method for the Higgs boson equation in the de Sitter spacetime universe. (English) Zbl 07310775 Appl. Numer. Math. 160, 281-295 (2021). MSC: 35Q75 83C10 83C15 83C40 65M06 65M70 65N30 65M12 65M15 42C10 65P10 PDF BibTeX XML Cite \textit{M. A. Zaky} and \textit{A. S. Hendy}, Appl. Numer. Math. 160, 281--295 (2021; Zbl 07310775) Full Text: DOI
Albuja, Guillermo; Ávila, Andrés I. A family of new globally convergent linearization schemes for solving Richards’ equation. (English) Zbl 07310757 Appl. Numer. Math. 159, 281-296 (2021). MSC: 65M06 65N30 65H10 35K65 76S05 35Q35 PDF BibTeX XML Cite \textit{G. Albuja} and \textit{A. I. Ávila}, Appl. Numer. Math. 159, 281--296 (2021; Zbl 07310757) Full Text: DOI
Xing, Zhiyong; Wen, Liping; Xiao, Hanyu A fourth-order conservative difference scheme for the Riesz space-fractional Sine-Gordon equations and its fast implementation. (English) Zbl 07310754 Appl. Numer. Math. 159, 221-238 (2021). MSC: 65M06 65M12 65H10 65T50 15B05 35R11 35Q53 PDF BibTeX XML Cite \textit{Z. Xing} et al., Appl. Numer. Math. 159, 221--238 (2021; Zbl 07310754) Full Text: DOI
Zhang, Qifeng; Zhang, Lu; Sun, Hai-wei A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg-Landau equations. (English) Zbl 07309613 J. Comput. Appl. Math. 389, Article ID 113355, 20 p. (2021). Reviewer: Temur A. Jangveladze (Tbilisi) MSC: 65M06 65N06 65M12 65T50 65F08 65F10 15B05 35R11 35Q56 PDF BibTeX XML Cite \textit{Q. Zhang} et al., J. Comput. Appl. Math. 389, Article ID 113355, 20 p. (2021; Zbl 07309613) Full Text: DOI
Huang, Weizhang; Kamenski, Lennard; Lang, Jens Conditioning of implicit Runge-Kutta integration for finite element approximation of linear diffusion equations on anisotropic meshes. (English) Zbl 1456.65114 J. Comput. Appl. Math. 387, Article ID 112497, 18 p. (2021). MSC: 65M60 65M06 65L06 65N30 65M50 65F08 65F10 65F35 65F15 35K10 PDF BibTeX XML Cite \textit{W. Huang} et al., J. Comput. Appl. Math. 387, Article ID 112497, 18 p. (2021; Zbl 1456.65114) Full Text: DOI
Eidnes, Sølve; Li, Lu; Sato, Shun Linearly implicit structure-preserving schemes for Hamiltonian systems. (English) Zbl 1456.65063 J. Comput. Appl. Math. 387, Article ID 112489, 13 p. (2021). MSC: 65M06 65P10 35Q53 PDF BibTeX XML Cite \textit{S. Eidnes} et al., J. Comput. Appl. Math. 387, Article ID 112489, 13 p. (2021; Zbl 1456.65063) Full Text: DOI
Hou, Baohui; Liang, Dong Time fourth-order energy-preserving AVF finite difference method for nonlinear space-fractional wave equations. (English) Zbl 07305144 J. Comput. Appl. Math. 386, Article ID 113227, 26 p. (2021). MSC: 65M06 65M12 65M15 35C08 37K06 35R11 PDF BibTeX XML Cite \textit{B. Hou} and \textit{D. Liang}, J. Comput. Appl. Math. 386, Article ID 113227, 26 p. (2021; Zbl 07305144) Full Text: DOI
Akrivis, Georgios; Li, Buyang; Wang, Jilu Convergence of a second-order energy-decaying method for the viscous rotating shallow water equation. (English) Zbl 1456.65057 SIAM J. Numer. Anal. 59, No. 1, 265-288 (2021). Reviewer: Marius Ghergu (Dublin) MSC: 65M06 65N30 65M12 65M15 65H10 35L60 76U05 35Q35 PDF BibTeX XML Cite \textit{G. Akrivis} et al., SIAM J. Numer. Anal. 59, No. 1, 265--288 (2021; Zbl 1456.65057) Full Text: DOI
Abreu, E.; Matos, V.; Pérez, J.; Rodríguez-Bermúdez, P. A class of Lagrangian-Eulerian shock-capturing schemes for first-order hyperbolic problems with forcing terms. (English) Zbl 1456.65056 J. Sci. Comput. 86, No. 1, Paper No. 14, 47 p. (2021). MSC: 65M06 65M12 35L65 35L45 76S05 76T06 76N10 76L05 76B15 PDF BibTeX XML Cite \textit{E. Abreu} et al., J. Sci. Comput. 86, No. 1, Paper No. 14, 47 p. (2021; Zbl 1456.65056) Full Text: DOI
Antonietti, Paola F.; De Ponti, Jacopo; Formaggia, Luca; Scotti, Anna Preconditioning techniques for the numerical solution of flow in fractured porous media. (English) Zbl 1456.65139 J. Sci. Comput. 86, No. 1, Paper No. 2, 32 p. (2021). MSC: 65N06 65F08 65F10 76S05 35Q35 PDF BibTeX XML Cite \textit{P. F. Antonietti} et al., J. Sci. Comput. 86, No. 1, Paper No. 2, 32 p. (2021; Zbl 1456.65139) Full Text: DOI
Ye, Xiu; Zhang, Shangyou; Zhu, Peng A weak Galerkin finite element method for nonlinear conservation laws. (English) Zbl 1456.65127 Electron Res. Arch. 29, No. 1, 1897-1923 (2021). MSC: 65M60 65N30 65M06 65N15 35L50 35L65 PDF BibTeX XML Cite \textit{X. Ye} et al., Electron Res. Arch. 29, No. 1, 1897--1923 (2021; Zbl 1456.65127) Full Text: DOI
Negreanu, M.; Vargas, A. M. Continuous and discrete periodic asymptotic behavior of solutions to a competitive chemotaxis PDEs system. (English) Zbl 1456.35036 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105592, 21 p. (2021). MSC: 35B40 35K51 35K59 92C17 92D25 35B10 65M06 PDF BibTeX XML Cite \textit{M. Negreanu} and \textit{A. M. Vargas}, Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105592, 21 p. (2021; Zbl 1456.35036) Full Text: DOI
Shi, Dongyang; Li, Chaoqun Superconvergence analysis of two-grid methods for bacteria equations. (English) Zbl 1456.65122 Numer. Algorithms 86, No. 1, 123-152 (2021). MSC: 65M60 65M06 65M55 65Z05 65M12 35K40 92C50 PDF BibTeX XML Cite \textit{D. Shi} and \textit{C. Li}, Numer. Algorithms 86, No. 1, 123--152 (2021; Zbl 1456.65122) Full Text: DOI
Cui, Jin; Xu, Zhuangzhi; Wang, Yushun; Jiang, Chaolong Mass- and energy-preserving exponential Runge-Kutta methods for the nonlinear Schrödinger equation. (English) Zbl 1454.65058 Appl. Math. Lett. 112, Article ID 106770, 8 p. (2021). Reviewer: Bülent Karasözen (Ankara) MSC: 65M06 65L06 65P10 35A22 35Q55 PDF BibTeX XML Cite \textit{J. Cui} et al., Appl. Math. Lett. 112, Article ID 106770, 8 p. (2021; Zbl 1454.65058) Full Text: DOI
Maslovskaya, A. G.; Moroz, L. I.; Chebotarev, A. Yu.; Kovtanyuk, A. E. Theoretical and numerical analysis of the Landau-Khalatnikov model of ferroelectric hysteresis. (English) Zbl 07274919 Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105524, 13 p. (2021). Reviewer: Hasan Akin (Gaziantep) MSC: 82D45 82B26 74N30 35D30 35A01 35A02 35Q56 35Q82 82M20 65M06 65M15 65F10 82-05 PDF BibTeX XML Cite \textit{A. G. Maslovskaya} et al., Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105524, 13 p. (2021; Zbl 07274919) Full Text: DOI
Beroš, Ivo; Hlupić, Nikica; Basch, Danko Modification of the finite-difference method for solving a special class of nonlinear two-point boundary value problems. (English) Zbl 1450.65070 Int. J. Math. Comput. Sci. 16, No. 1, 487-502 (2021). MSC: 65L10 65L12 65H10 PDF BibTeX XML Cite \textit{I. Beroš} et al., Int. J. Math. Comput. Sci. 16, No. 1, 487--502 (2021; Zbl 1450.65070) Full Text: Link
Shirzadi, Mohammad; Dehghan, Mehdi Generalized regularized least-squares approximation of noisy data with application to stochastic PDEs. (English) Zbl 1452.65375 Appl. Math. Lett. 111, Article ID 106598, 8 p. (2021). MSC: 65N35 65M06 65K10 60H40 35J99 PDF BibTeX XML Cite \textit{M. Shirzadi} and \textit{M. Dehghan}, Appl. Math. Lett. 111, Article ID 106598, 8 p. (2021; Zbl 1452.65375) Full Text: DOI
Li, Qi; Li, Xi; Yang, Xiaofeng; Mei, Liquan Highly efficient and linear numerical schemes with unconditional energy stability for the anisotropic phase-field crystal model. (English) Zbl 1452.65165 J. Comput. Appl. Math. 383, Article ID 113122, 23 p. (2021). MSC: 65M06 65N35 65T50 65M12 82C20 82C26 82D25 74E15 74N05 PDF BibTeX XML Cite \textit{Q. Li} et al., J. Comput. Appl. Math. 383, Article ID 113122, 23 p. (2021; Zbl 1452.65165) Full Text: DOI
Xing, F. New optimized Schwarz algorithms for one dimensional Schrödinger equation with general potential. (English) Zbl 1456.65177 J. Comput. Appl. Math. 383, Article ID 113018, 12 p. (2021). MSC: 65N55 65M55 65M06 65F05 65F08 65F10 65Y05 35Q55 PDF BibTeX XML Cite \textit{F. Xing}, J. Comput. Appl. Math. 383, Article ID 113018, 12 p. (2021; Zbl 1456.65177) Full Text: DOI
Boglaev, Igor A parameter robust numerical method for a nonlinear system of singularly perturbed elliptic equations. (English) Zbl 1446.65141 J. Comput. Appl. Math. 381, Article ID 113017, 12 p. (2021). MSC: 65N06 65N12 65N15 65N50 35J60 35A01 35A02 PDF BibTeX XML Cite \textit{I. Boglaev}, J. Comput. Appl. Math. 381, Article ID 113017, 12 p. (2021; Zbl 1446.65141) Full Text: DOI
Biazar, Jafar; Asayesh, Roxana An efficient high-order compact finite difference method for the Helmholtz equation. (English) Zbl 07333823 Comput. Methods Differ. Equ. 8, No. 3, 553-563 (2020). MSC: 65M06 65F05 65T50 PDF BibTeX XML Cite \textit{J. Biazar} and \textit{R. Asayesh}, Comput. Methods Differ. Equ. 8, No. 3, 553--563 (2020; Zbl 07333823) Full Text: DOI
Rahimi, Mahboobeh; Adibi, Hojatollah Solving one dimensional nonlinear coupled Burger’s equations using high accuracy multiquadric quasi-interpolation. (English) Zbl 07333808 Comput. Methods Differ. Equ. 8, No. 2, 347-363 (2020). MSC: 35M99 35C99 PDF BibTeX XML Cite \textit{M. Rahimi} and \textit{H. Adibi}, Comput. Methods Differ. Equ. 8, No. 2, 347--363 (2020; Zbl 07333808) Full Text: DOI
Nachid, Halima; Yekre, Benjamin; Gozo, Yoro Simulation of the blow-up and the quenching time for a positive solutions of singular boundary value problems for a nonlinear parabolic systems. (English) Zbl 07333357 Afr. Math. Ann. (AFMA) 8, 53-70 (2020). MSC: 35K55 35B40 65M06 PDF BibTeX XML Cite \textit{H. Nachid} et al., Afr. Math. Ann. (AFMA) 8, 53--70 (2020; Zbl 07333357)
Essarrout, Saadeddine; Raghay, Said; Mahani, Zouhir Regularity analysis and numerical resolution of the pharmacokinetics (PK) equation for cisplatin with random coefficients and initial conditions. (English) Zbl 07326403 J. Math. Model. 8, No. 4, 455-477 (2020). MSC: 34A34 65L05 PDF BibTeX XML Cite \textit{S. Essarrout} et al., J. Math. Model. 8, No. 4, 455--477 (2020; Zbl 07326403) Full Text: DOI
Mamo, Dejen Ketema Modeling the spread dynamics of racism in cyberspace. (English) Zbl 07326384 J. Math. Model. 8, No. 2, 105-122 (2020). MSC: 34A34 65L12 68M11 PDF BibTeX XML Cite \textit{D. K. Mamo}, J. Math. Model. 8, No. 2, 105--122 (2020; Zbl 07326384) Full Text: DOI
Gubbiotti, Giorgio; Joshi, Nalini; Tran, Dinh Thi; Viallet, Claude-Michel Complexity and integrability in 4D bi-rational maps with two invariants. (English) Zbl 07326224 Nijhoff, Frank (ed.) et al., Asymptotic, algebraic and geometric aspects of integrable systems. In honor of Nalini Joshi on her 60th birthday. Selected papers of the workshop, TSIMF, Sanya, China, April 9–13, 2018. Cham: Springer (ISBN 978-3-030-56999-0/hbk; 978-3-030-57000-2/ebook). Springer Proceedings in Mathematics & Statistics 338, 17-36 (2020). MSC: 37Jxx 37Kxx PDF BibTeX XML Cite \textit{G. Gubbiotti} et al., in: Asymptotic, algebraic and geometric aspects of integrable systems. In honor of Nalini Joshi on her 60th birthday. Selected papers of the workshop, TSIMF, Sanya, China, April 9--13, 2018. Cham: Springer. 17--36 (2020; Zbl 07326224) Full Text: DOI
Liu, Jun; Wu, Shu-Lin A fast block \(\alpha\)-circulant preconditoner for all-at-once systems from wave equations. (English) Zbl 07324170 SIAM J. Matrix Anal. Appl. 41, No. 4, 1912-1943 (2020). Reviewer: Abdallah Bradji (Annaba) MSC: 65M06 65M12 65M15 65N30 65F08 65F10 65H10 15A18 65Y05 PDF BibTeX XML Cite \textit{J. Liu} and \textit{S.-L. Wu}, SIAM J. Matrix Anal. Appl. 41, No. 4, 1912--1943 (2020; Zbl 07324170) Full Text: DOI
Wu, Shu-Lin; Zhou, Tao Diagonalization-based parallel-in-time algorithms for parabolic PDE-constrained optimization problems. (English) Zbl 07323750 ESAIM, Control Optim. Calc. Var. 26, Paper No. 88, 26 p. (2020). Reviewer: Chandrasekhar Salimath (Bengaluru) MSC: 65M55 65M06 65M12 65M15 65F08 65F10 65Y05 49K20 35K10 PDF BibTeX XML Cite \textit{S.-L. Wu} and \textit{T. Zhou}, ESAIM, Control Optim. Calc. Var. 26, Paper No. 88, 26 p. (2020; Zbl 07323750) Full Text: DOI
Bobenko, Alexander I.; Schief, Wolfgang K.; Suris, Yuri B.; Techter, Jan On a discretization of confocal quadrics. A geometric approach to general parametrizations. (English) Zbl 07323444 Int. Math. Res. Not. 2020, No. 24, 10180-10230 (2020). MSC: 37K25 39A36 37K60 51A50 51A15 51A45 51B05 51E14 PDF BibTeX XML Cite \textit{A. I. Bobenko} et al., Int. Math. Res. Not. 2020, No. 24, 10180--10230 (2020; Zbl 07323444) Full Text: DOI
Hoang, Manh Tuan; Egbelowo, Oluwaseun Francis Nonstandard finite difference schemes for solving an SIS epidemic model with standard incidence. (English) Zbl 07321695 Rend. Circ. Mat. Palermo (2) 69, No. 3, 753-769 (2020). MSC: 65L05 65L12 65L20 37M05 PDF BibTeX XML Cite \textit{M. T. Hoang} and \textit{O. F. Egbelowo}, Rend. Circ. Mat. Palermo (2) 69, No. 3, 753--769 (2020; Zbl 07321695) Full Text: DOI
Barsukow, Wasilij Stationary states of finite volume discretizations of multi-dimensional linear hyperbolic systems. (English) Zbl 07315474 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 296-303 (2020). MSC: 65M06 35L40 65M08 39A70 PDF BibTeX XML Cite \textit{W. Barsukow}, AIMS Ser. Appl. Math. 10, 296--303 (2020; Zbl 07315474)
Arun, K. R.; Samantaray, Saurav An asymptotic preserving time integrator for low Mach number limits of the Euler equations with gravity. (English) Zbl 07315472 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 279-286 (2020). MSC: 35Q31 35L45 35L65 35L67 65M06 65M08 65M20 PDF BibTeX XML Cite \textit{K. R. Arun} and \textit{S. Samantaray}, AIMS Ser. Appl. Math. 10, 279--286 (2020; Zbl 07315472)
Lapin, A.; Laitinen, E. A numerical model for steel continuous casting problem in a time-variable domain. (English) Zbl 07309065 Lobachevskii J. Math. 41, No. 12, 2664-2672 (2020). MSC: 65M25 65N06 65N30 65N85 65H10 80A22 35Q79 PDF BibTeX XML Cite \textit{A. Lapin} and \textit{E. Laitinen}, Lobachevskii J. Math. 41, No. 12, 2664--2672 (2020; Zbl 07309065) Full Text: DOI
Suzuki, Takao; Okubo, Naoto Cluster algebra and \(q\)-Painlevé equations: higher order generalization and degeneration structure. (English) Zbl 07304001 RIMS Kôkyûroku Bessatsu B78, 53-75 (2020). MSC: 39A13 17B80 34M55 37J70 37J65 37J37 13F60 PDF BibTeX XML Cite \textit{T. Suzuki} and \textit{N. Okubo}, RIMS Kôkyûroku Bessatsu B78, 53--75 (2020; Zbl 07304001) Full Text: Link
Soler, J. A.; Schwander, F.; Giorgiani, G.; Liandrat, J.; Tamain, P.; Serre, E. A new conservative finite-difference scheme for anisotropic elliptic problems in bounded domain. (English) Zbl 1453.65385 J. Comput. Phys. 405, Article ID 109093, 24 p. (2020). MSC: 65N06 35J57 35J05 PDF BibTeX XML Cite \textit{J. A. Soler} et al., J. Comput. Phys. 405, Article ID 109093, 24 p. (2020; Zbl 1453.65385) Full Text: DOI
Balsara, Dinshaw S.; Garain, Sudip; Florinski, Vladimir; Boscheri, Walter An efficient class of WENO schemes with adaptive order for unstructured meshes. (English) Zbl 1453.65208 J. Comput. Phys. 404, Article ID 109062, 32 p. (2020). MSC: 65M06 76M20 76L05 35L65 PDF BibTeX XML Cite \textit{D. S. Balsara} et al., J. Comput. Phys. 404, Article ID 109062, 32 p. (2020; Zbl 1453.65208) Full Text: DOI
Gao, Yali; Cai, Yongyong Numerical methods for Bogoliubov-de Gennes excitations of Bose-Einstein condensates. (English) Zbl 1453.81065 J. Comput. Phys. 403, Article ID 109058, 21 p. (2020). MSC: 81V73 65N06 65N35 PDF BibTeX XML Cite \textit{Y. Gao} and \textit{Y. Cai}, J. Comput. Phys. 403, Article ID 109058, 21 p. (2020; Zbl 1453.81065) Full Text: DOI
Macías-Díaz, J. E. A parallelized computational model for multidimensional systems of coupled nonlinear fractional hyperbolic equations. (English) Zbl 1453.65227 J. Comput. Phys. 402, Article ID 109043, 19 p. (2020). MSC: 65M06 65M12 35R11 65Y05 35B36 PDF BibTeX XML Cite \textit{J. E. Macías-Díaz}, J. Comput. Phys. 402, Article ID 109043, 19 p. (2020; Zbl 1453.65227) Full Text: DOI
Nordström, Jan; Ghasemi, Fatemeh The relation between primal and dual boundary conditions for hyperbolic systems of equations. (English) Zbl 1453.65230 J. Comput. Phys. 401, Article ID 109032, 13 p. (2020). MSC: 65M06 35L50 35A02 78M20 PDF BibTeX XML Cite \textit{J. Nordström} and \textit{F. Ghasemi}, J. Comput. Phys. 401, Article ID 109032, 13 p. (2020; Zbl 1453.65230) Full Text: DOI
Liu, Li-Bin; Liang, Ying; Zhang, Jian; Bao, Xiaobing A robust adaptive grid method for singularly perturbed Burger-Huxley equations. (English) Zbl 1456.65072 Electron Res. Arch. 28, No. 4, 1439-1457 (2020). MSC: 65M06 65M12 65M50 65H10 35Q53 PDF BibTeX XML Cite \textit{L.-B. Liu} et al., Electron Res. Arch. 28, No. 4, 1439--1457 (2020; Zbl 1456.65072) Full Text: DOI
Cruz, Inês; Mena-Matos, Helena; Sousa-Dias, Esmeralda The group of symplectic birational maps of the plane and the dynamics of a family of 4D maps. (English) Zbl 1456.53066 J. Geom. Mech. 12, No. 3, 363-375 (2020). MSC: 53D17 37J11 57R30 37J06 39A20 13F60 14E05 PDF BibTeX XML Cite \textit{I. Cruz} et al., J. Geom. Mech. 12, No. 3, 363--375 (2020; Zbl 1456.53066) Full Text: DOI
da Silva Almeida Juniór, Dilberto; de Jesus Araujo Ramos, Anderson; Pantoja Fortes, Joao Carlos; de Lima Santos, Mauro Ingham type approach for uniform observability inequality of the semi-discrete coupled wave equations. (English) Zbl 1456.35131 Electron. J. Differ. Equ. 2020, Paper No. 127, 28 p. (2020). MSC: 35L53 93B07 35B35 35B40 65M06 PDF BibTeX XML Cite \textit{D. da Silva Almeida Juniór} et al., Electron. J. Differ. Equ. 2020, Paper No. 127, 28 p. (2020; Zbl 1456.35131) Full Text: Link
Vega, Carlos A.; Valbuena, Sonia Numerical approximations of the Keyfitz-Kranzer type models by using entropy stable schemes. (English) Zbl 07293336 JNAIAM, J. Numer. Anal. Ind. Appl. Math. 14, No. 3-4, 1-15 (2020). Reviewer: Kanakadurga Sivakumar (Chennai) MSC: 65M06 35L65 35L45 35L67 58J45 65M12 PDF BibTeX XML Cite \textit{C. A. Vega} and \textit{S. Valbuena}, JNAIAM, J. Numer. Anal. Ind. Appl. Math. 14, No. 3--4, 1--15 (2020; Zbl 07293336) Full Text: Link
Imran, Mudassar; Ben-Romdhane, Mohamed; Ansari, Ali R.; Temimi, Helmi Numerical study of an influenza epidemic dynamical model with diffusion. (English) Zbl 07292862 Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2761-2787 (2020). Reviewer: Yaroslav Baranetskij (Lviv) MSC: 35Q92 92D30 92C50 35B35 65M06 37M05 PDF BibTeX XML Cite \textit{M. Imran} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2761--2787 (2020; Zbl 07292862) Full Text: DOI
Osipov, Andrey S. Inverse spectral problems for second-order difference operators and their application to the study of Volterra type systems. (English) Zbl 07291909 Nelineĭn. Din. 16, No. 3, 397-419 (2020). MSC: 37J70 37J35 37K15 47B39 47B36 39A70 39A36 PDF BibTeX XML Cite \textit{A. S. Osipov}, Nelineĭn. Din. 16, No. 3, 397--419 (2020; Zbl 07291909) Full Text: DOI MNR
Inan, Bilge; Bahadir, Ahmet Refik A fully implicit finite difference approach for numerical solution of the generalized equal width (GEW) equation. (English) Zbl 1456.65069 Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 90, No. 2, 299-308 (2020). MSC: 65M06 65M12 65H10 35C08 35Q53 PDF BibTeX XML Cite \textit{B. Inan} and \textit{A. R. Bahadir}, Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 90, No. 2, 299--308 (2020; Zbl 1456.65069) Full Text: DOI
Cheviakov, A. F.; Dorodnitsyn, V. A.; Kaptsov, E. I. Invariant conservation law-preserving discretizations of linear and nonlinear wave equations. (English) Zbl 1454.65057 J. Math. Phys. 61, No. 8, 081504, 23 p. (2020). MSC: 65M06 65N06 65J08 37K10 37M15 17B81 74B20 PDF BibTeX XML Cite \textit{A. F. Cheviakov} et al., J. Math. Phys. 61, No. 8, 081504, 23 p. (2020; Zbl 1454.65057) Full Text: DOI
Musharbash, Eleonora; Nobile, Fabio; Vidličková, Eva Symplectic dynamical low rank approximation of wave equations with random parameters. (English) Zbl 07286417 BIT 60, No. 4, 1153-1201 (2020). MSC: 65M60 65M70 65M06 35L05 37M15 65P10 PDF BibTeX XML Cite \textit{E. Musharbash} et al., BIT 60, No. 4, 1153--1201 (2020; Zbl 07286417) Full Text: DOI
Vabishchevich, Petr N. Incomplete iterative implicit schemes. (English) Zbl 1454.65065 Comput. Methods Appl. Math. 20, No. 4, 727-737 (2020). MSC: 65M06 65F10 65M12 65M22 PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, Comput. Methods Appl. Math. 20, No. 4, 727--737 (2020; Zbl 1454.65065) Full Text: DOI
Fan, Haitao; Shu, Chi-Wang Existence and computation of solutions of a model of traffic involving hysteresis. (English) Zbl 1454.35235 SIAM J. Appl. Math. 80, No. 6, 2319-2337 (2020). Reviewer: Giuseppe Maria Coclite (Bari) MSC: 35L65 35L40 35D30 35C07 34C55 90B20 65Z05 65M06 65M12 60K30 76S05 PDF BibTeX XML Cite \textit{H. Fan} and \textit{C.-W. Shu}, SIAM J. Appl. Math. 80, No. 6, 2319--2337 (2020; Zbl 1454.35235) Full Text: DOI
Nguyen, Loc Hoang A new algorithm to determine the creation or depletion term of parabolic equations from boundary measurements. (English) Zbl 1454.65107 Comput. Math. Appl. 80, No. 10, 2135-2149 (2020). Reviewer: Christian Clason (Graz) MSC: 65M32 65M30 65M06 65N06 35K55 35K05 35Q79 92C35 35Q92 35N20 PDF BibTeX XML Cite \textit{L. H. Nguyen}, Comput. Math. Appl. 80, No. 10, 2135--2149 (2020; Zbl 1454.65107) Full Text: DOI
Maros, Gábor; Izsák, Ferenc Finite element methods for fractional-order diffusion problems with optimal convergence order. (English) Zbl 1452.65351 Comput. Math. Appl. 80, No. 10, 2105-2114 (2020). MSC: 65N30 65M06 65N25 65F60 65F10 65M15 65N12 35R11 26A33 PDF BibTeX XML Cite \textit{G. Maros} and \textit{F. Izsák}, Comput. Math. Appl. 80, No. 10, 2105--2114 (2020; Zbl 1452.65351) Full Text: DOI
Anguelov, R.; Berge, T.; Chapwanya, M.; Djoko, J. K.; Kama, P.; Lubuma, J. M.-S.; Terefe, Y. Nonstandard finite difference method revisited and application to the Ebola virus disease transmission dynamics. (English) Zbl 1453.65185 J. Difference Equ. Appl. 26, No. 6, 818-854 (2020). MSC: 65L12 65L20 37M99 39A30 92D30 PDF BibTeX XML Cite \textit{R. Anguelov} et al., J. Difference Equ. Appl. 26, No. 6, 818--854 (2020; Zbl 1453.65185) Full Text: DOI
Moldovan, Ionuţ Dragoş; Cismaşiu, Ildi; De Freitas, João António Teixeira Unified hybrid-Trefftz finite element formulation for dynamic problems. (English) Zbl 1451.65151 Alves, Carlos (ed.) et al., Advances in Trefftz methods and their applications. Selected papers based on the presentations at the 9th conference on Trefftz methods and 5th conference on method of fundamental solutions, Lisbon, Portugal, July 29–31, 2019. Cham: Springer. SEMA SIMAI Springer Ser. 23, 157-188 (2020). MSC: 65M60 65M38 35P05 65M06 65N06 65T50 44A10 42A38 35K99 35L99 PDF BibTeX XML Cite \textit{I. D. Moldovan} et al., SEMA SIMAI Springer Ser. 23, 157--188 (2020; Zbl 1451.65151) Full Text: DOI
Boffi, Daniele; Gastaldi, Lucia; Wolf, Sebastian Higher-order time-stepping schemes for fluid-structure interaction problems. (English) Zbl 1452.65224 Discrete Contin. Dyn. Syst., Ser. B 25, No. 10, 3807-3830 (2020). Reviewer: Marius Ghergu (Dublin) MSC: 65M60 65M85 65M06 65N30 65H10 65L12 65M12 65M15 74F10 76D05 PDF BibTeX XML Cite \textit{D. Boffi} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 10, 3807--3830 (2020; Zbl 1452.65224) Full Text: DOI
Solodushkin, Svyatoslav; Gorbova, Tatiana; Pimenov, Vladimir Difference scheme for partial differential equations of fractional order with a nonlinear differentiation operator. (English) Zbl 1453.65232 Pinelas, Sandra (ed.) et al., Differential and difference equations with applications. Selected papers based on the presentations at the fourth international conference, ICDDEA 2019, Lisbon, Portugal, July 1–5, 2019. Cham: Springer. Springer Proc. Math. Stat. 333, 689-703 (2020). MSC: 65M06 34K37 35R11 65M12 65H10 PDF BibTeX XML Cite \textit{S. Solodushkin} et al., Springer Proc. Math. Stat. 333, 689--703 (2020; Zbl 1453.65232) Full Text: DOI
Huang, Fukeng; Shen, Jie; Yang, Zhiguo A highly efficient and accurate new scalar auxiliary variable approach for gradient flows. (English) Zbl 1451.65210 SIAM J. Sci. Comput. 42, No. 4, A2514-A2536 (2020). MSC: 65N35 65N22 65M06 65F05 35J05 PDF BibTeX XML Cite \textit{F. Huang} et al., SIAM J. Sci. Comput. 42, No. 4, A2514--A2536 (2020; Zbl 1451.65210) Full Text: DOI
Eidnes, Sølve; Li, Lu Linearly implicit local and global energy-preserving methods for PDEs with a cubic Hamiltonian. (English) Zbl 1456.37094 SIAM J. Sci. Comput. 42, No. 5, A2865-A2888 (2020). Reviewer: Bülent Karasözen (Ankara) MSC: 37M15 65M06 65P10 PDF BibTeX XML Cite \textit{S. Eidnes} and \textit{L. Li}, SIAM J. Sci. Comput. 42, No. 5, A2865--A2888 (2020; Zbl 1456.37094) Full Text: DOI
Vaibhav, Vishal Discrete Darboux transformation for Ablowitz-Ladik systems derived from numerical discretization of Zakharov-Shabat scattering problem. (English) Zbl 1452.65179 Commun. Nonlinear Sci. Numer. Simul. 82, Article ID 105056, 12 p. (2020). MSC: 65M06 65T50 65M12 37K35 35C08 78A45 78A46 35Q60 35Q51 PDF BibTeX XML Cite \textit{V. Vaibhav}, Commun. Nonlinear Sci. Numer. Simul. 82, Article ID 105056, 12 p. (2020; Zbl 1452.65179) Full Text: DOI
Clavero, C.; Jorge, J. C. An efficient and uniformly convergent scheme for one-dimensional parabolic singularly perturbed semilinear systems of reaction-diffusion type. (English) Zbl 1450.65136 Numer. Algorithms 85, No. 3, 1005-1027 (2020). MSC: 65N06 65N12 65M06 PDF BibTeX XML Cite \textit{C. Clavero} and \textit{J. C. Jorge}, Numer. Algorithms 85, No. 3, 1005--1027 (2020; Zbl 1450.65136) Full Text: DOI
Exl, Lukas; Mauser, Norbert J.; Schrefl, Thomas; Suess, Dieter Learning time-stepping by nonlinear dimensionality reduction to predict magnetization dynamics. (English) Zbl 1451.78010 Commun. Nonlinear Sci. Numer. Simul. 84, Article ID 105205, 8 p. (2020). MSC: 78A25 68T05 78M20 78M34 PDF BibTeX XML Cite \textit{L. Exl} et al., Commun. Nonlinear Sci. Numer. Simul. 84, Article ID 105205, 8 p. (2020; Zbl 1451.78010) Full Text: DOI
Bourriaud, Alexandre; Loubère, Raphaël; Turpault, Rodolphe A priori neural networks versus a posteriori MOOD loop: a high accurate 1D FV scheme testing bed. (English) Zbl 1450.65093 J. Sci. Comput. 84, No. 2, Paper No. 31, 36 p. (2020). Reviewer: Abdallah Bradji (Annaba) MSC: 65M08 65M06 65M15 65Z05 85A25 92B20 68T05 PDF BibTeX XML Cite \textit{A. Bourriaud} et al., J. Sci. Comput. 84, No. 2, Paper No. 31, 36 p. (2020; Zbl 1450.65093) Full Text: DOI
Yokus, Asıf On the exact and numerical solutions to the FitzHugh-Nagumo equation. (English) Zbl 1443.37053 Int. J. Mod. Phys. B 34, No. 17, Article ID 2050149, 12 p. (2020). MSC: 37K35 35Q92 65M06 PDF BibTeX XML Cite \textit{A. Yokus}, Int. J. Mod. Phys. B 34, No. 17, Article ID 2050149, 12 p. (2020; Zbl 1443.37053) Full Text: DOI
Mondal, Priyajit; Mahapatra, Tapas Ray Minimization of entropy generation due to MHD double diffusive mixed convection in a lid driven trapezoidal cavity with various aspect ratios. (English) Zbl 1447.80001 Nonlinear Anal., Model. Control 25, No. 4, 545-563 (2020). MSC: 80A19 76W05 76R05 76R10 80M20 65F10 PDF BibTeX XML Cite \textit{P. Mondal} and \textit{T. R. Mahapatra}, Nonlinear Anal., Model. Control 25, No. 4, 545--563 (2020; Zbl 1447.80001) Full Text: DOI
Roja, J. Christy; Tamilselvan, A. An overlapping numerical method for a partially singularly perturbed initial value problem. (English) Zbl 1441.34024 Comput. Math. Model. 31, No. 2, 135-142 (2020). MSC: 34A30 34D15 34A12 PDF BibTeX XML Cite \textit{J. C. Roja} and \textit{A. Tamilselvan}, Comput. Math. Model. 31, No. 2, 135--142 (2020; Zbl 1441.34024) Full Text: DOI
Yang, Xi A fast null-space method for the unsteady Stokes equations. (English) Zbl 1447.65095 Comput. Math. Appl. 80, No. 5, 1459-1477 (2020). MSC: 65M60 65M06 65F10 65F05 65F60 76D07 35A24 PDF BibTeX XML Cite \textit{X. Yang}, Comput. Math. Appl. 80, No. 5, 1459--1477 (2020; Zbl 1447.65095) Full Text: DOI
Benito, J. J.; García, A.; Gavete, L.; Negreanu, M.; Ureña, F.; Vargas, A. M. Solving a chemotaxis-haptotaxis system in 2D using generalized finite difference method. (English) Zbl 1447.65069 Comput. Math. Appl. 80, No. 5, 762-777 (2020). MSC: 65M60 65M06 65N30 65M12 35K51 92C17 92C37 35Q92 PDF BibTeX XML Cite \textit{J. J. Benito} et al., Comput. Math. Appl. 80, No. 5, 762--777 (2020; Zbl 1447.65069) Full Text: DOI
Guillén-González, F.; Rodríguez-Bellido, M. A.; Rueda-Gómez, D. A. Study of a chemo-repulsion model with quadratic production. II: Analysis of an unconditionally energy-stable fully discrete scheme. (English) Zbl 1447.65075 Comput. Math. Appl. 80, No. 5, 636-652 (2020). MSC: 65M60 65M12 65M15 92C17 65M06 65H10 35Q82 PDF BibTeX XML Cite \textit{F. Guillén-González} et al., Comput. Math. Appl. 80, No. 5, 636--652 (2020; Zbl 1447.65075) Full Text: DOI
Asante-Asamani, E. O.; Kleefeld, A.; Wade, B. A. A second-order exponential time differencing scheme for non-linear reaction-diffusion systems with dimensional splitting. (English) Zbl 1440.65081 J. Comput. Phys. 415, Article ID 109490, 17 p. (2020). MSC: 65M06 65F60 35K57 PDF BibTeX XML Cite \textit{E. O. Asante-Asamani} et al., J. Comput. Phys. 415, Article ID 109490, 17 p. (2020; Zbl 1440.65081) Full Text: DOI
Gerstenberger, Janick; Burbulla, Samuel; Kröner, Dietmar Discontinuous Galerkin method for incompressible two-phase flows. (English) Zbl 1454.65116 Klöfkorn, Robert (ed.) et al., Finite volumes for complex applications IX – methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15–19, 2020. In 2 volumes. Volume I and II. Cham: Springer. Springer Proc. Math. Stat. 323, 675-683 (2020). MSC: 65M60 65M08 65M06 65F08 65F10 76T10 76D45 76D05 PDF BibTeX XML Cite \textit{J. Gerstenberger} et al., Springer Proc. Math. Stat. 323, 675--683 (2020; Zbl 1454.65116) Full Text: DOI
Brenner, Konstantin Acceleration of Newton’s method using nonlinear Jacobi preconditioning. (English) Zbl 1454.65075 Klöfkorn, Robert (ed.) et al., Finite volumes for complex applications IX – methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15–19, 2020. In 2 volumes. Volume I and II. Cham: Springer. Springer Proc. Math. Stat. 323, 395-403 (2020). MSC: 65M08 65M22 65M06 65H10 65F08 76S05 PDF BibTeX XML Cite \textit{K. Brenner}, Springer Proc. Math. Stat. 323, 395--403 (2020; Zbl 1454.65075) Full Text: DOI
Dodson, Benjamin; Soffer, Avraham; Spencer, Thomas The nonlinear Schrödinger equation on Z and R with bounded initial data: examples and conjectures. (English) Zbl 1446.35181 J. Stat. Phys. 180, No. 1-6, 910-934 (2020). MSC: 35Q55 35Q41 35B65 35C08 35A01 35A02 37K40 65M06 65H10 82B20 82B26 PDF BibTeX XML Cite \textit{B. Dodson} et al., J. Stat. Phys. 180, No. 1--6, 910--934 (2020; Zbl 1446.35181) Full Text: DOI
Duan, X.; Rubin, J. E.; Swigon, D. Identification of affine dynamical systems from a single trajectory. (English) Zbl 1451.34021 Inverse Probl. 36, No. 8, Article ID 085004, 36 p. (2020). Reviewer: Namig Guliyev (Baku) MSC: 34A55 34A30 PDF BibTeX XML Cite \textit{X. Duan} et al., Inverse Probl. 36, No. 8, Article ID 085004, 36 p. (2020; Zbl 1451.34021) Full Text: DOI
Liu, Jiankang; Guo, Bao-Zhu A new semidiscretized order reduction finite difference scheme for uniform approximation of one-dimensional wave equation. (English) Zbl 1446.65199 SIAM J. Control Optim. 58, No. 4, 2256-2287 (2020). MSC: 65P10 39A12 35L05 37M15 PDF BibTeX XML Cite \textit{J. Liu} and \textit{B.-Z. Guo}, SIAM J. Control Optim. 58, No. 4, 2256--2287 (2020; Zbl 1446.65199) Full Text: DOI
Prokofev, V. V.; Zabrodin, A. V. Matrix Kadomtsev-Petviashvili hierarchy and spin generalization of trigonometric Calogero-Moser hierarchy. (English. Russian original) Zbl 1448.37079 Proc. Steklov Inst. Math. 309, 225-239 (2020); translation from Tr. Mat. Inst. Steklova 309, 241-256 (2020). MSC: 37K10 37J35 37J70 37K60 39A36 PDF BibTeX XML Cite \textit{V. V. Prokofev} and \textit{A. V. Zabrodin}, Proc. Steklov Inst. Math. 309, 225--239 (2020; Zbl 1448.37079); translation from Tr. Mat. Inst. Steklova 309, 241--256 (2020) Full Text: DOI
De Sole, Alberto; Kac, Victor G.; Valeri, Daniele; Wakimoto, Minoru Poisson \(\lambda\)-brackets for differential-difference equations. (English) Zbl 07236280 Int. Math. Res. Not. 2020, No. 13, 4144-4190 (2020). MSC: 37K06 37K30 37J06 37J37 PDF BibTeX XML Cite \textit{A. De Sole} et al., Int. Math. Res. Not. 2020, No. 13, 4144--4190 (2020; Zbl 07236280) Full Text: DOI
Yang, Shuiping; Liu, Fawang; Feng, Libo; Turner, Ian W. Efficient numerical methods for the nonlinear two-sided space-fractional diffusion equation with variable coefficients. (English) Zbl 1446.65082 Appl. Numer. Math. 157, 55-68 (2020). MSC: 65M06 65M12 65H10 35R11 26A33 76S05 60K35 76M20 35R05 PDF BibTeX XML Cite \textit{S. Yang} et al., Appl. Numer. Math. 157, 55--68 (2020; Zbl 1446.65082) Full Text: DOI
Qiu, Wenlin; Xu, Da; Guo, Jing; Zhou, Jun A time two-grid algorithm based on finite difference method for the two-dimensional nonlinear time-fractional mobile/immobile transport model. (English) Zbl 1452.65175 Numer. Algorithms 85, No. 1, 39-58 (2020). MSC: 65M06 65N06 65M55 65M12 65H10 35R11 26A33 35Q49 PDF BibTeX XML Cite \textit{W. Qiu} et al., Numer. Algorithms 85, No. 1, 39--58 (2020; Zbl 1452.65175) Full Text: DOI
Batista, Juan; Hu, Xiaozhe; Zikatanov, Ludmil T. Auxiliary space preconditioning for mixed finite element discretizations of Richards’ equation. (English) Zbl 1446.65106 Comput. Math. Appl. 80, No. 2, 405-416 (2020). MSC: 65M60 65N30 65M06 65F10 65F08 76S05 35Q35 PDF BibTeX XML Cite \textit{J. Batista} et al., Comput. Math. Appl. 80, No. 2, 405--416 (2020; Zbl 1446.65106) Full Text: DOI
Łoś, Marcin; Behnoudfar, P.; Paszyński, M.; Calo, Victor M. Fast isogeometric solvers for hyperbolic wave propagation problems. (English) Zbl 1446.65072 Comput. Math. Appl. 80, No. 1, 109-120 (2020). MSC: 65M06 65D07 65F05 35L05 74B10 PDF BibTeX XML Cite \textit{M. Łoś} et al., Comput. Math. Appl. 80, No. 1, 109--120 (2020; Zbl 1446.65072) Full Text: DOI
Zhou, Yongtao; Zhang, Chengjian; Brugnano, Luigi An implicit difference scheme with the KPS preconditioner for two-dimensional time-space fractional convection-diffusion equations. (English) Zbl 1446.65145 Comput. Math. Appl. 80, No. 1, 31-42 (2020). MSC: 65N06 65M06 65M12 65F10 65F08 35R11 26A33 PDF BibTeX XML Cite \textit{Y. Zhou} et al., Comput. Math. Appl. 80, No. 1, 31--42 (2020; Zbl 1446.65145) Full Text: DOI
Liu, Xiang; Jia, Baoguo; Wang, Peiguang Some new results for nonlinear fractional \(h\)-difference systems with “maxima”. (English) Zbl 1445.39006 Rocky Mt. J. Math. 50, No. 3, 1073-1084 (2020). MSC: 39A13 39A12 39A70 PDF BibTeX XML Cite \textit{X. Liu} et al., Rocky Mt. J. Math. 50, No. 3, 1073--1084 (2020; Zbl 1445.39006) Full Text: DOI Euclid
Fatori, Luci H.; Saito, Tais O.; Sepúlveda, Mauricio; Takahashi, Renan Energy decay to Timoshenko system with indefinite damping. (English) Zbl 1445.35057 Math. Methods Appl. Sci. 43, No. 1, 225-241 (2020). MSC: 35B40 35L53 93D20 65M06 74H45 74K10 PDF BibTeX XML Cite \textit{L. H. Fatori} et al., Math. Methods Appl. Sci. 43, No. 1, 225--241 (2020; Zbl 1445.35057) Full Text: DOI
Zheng, Chunxiong; Du, Qiang; Ma, Xiang; Zhang, Jiwei Stability and error analysis for a second-order fast approximation of the local and nonlocal diffusion equations on the real line. (English) Zbl 1446.82045 SIAM J. Numer. Anal. 58, No. 3, 1893-1917 (2020). MSC: 82C21 65R20 46N20 45A05 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{C. Zheng} et al., SIAM J. Numer. Anal. 58, No. 3, 1893--1917 (2020; Zbl 1446.82045) Full Text: DOI
Protasov, Vladimir Yu. Surface dimension, tiles, and synchronizing automata. (English) Zbl 1444.42036 SIAM J. Math. Anal. 52, No. 4, 3463-3486 (2020). MSC: 42C40 28A75 39A99 11K55 68Q45 PDF BibTeX XML Cite \textit{V. Yu. Protasov}, SIAM J. Math. Anal. 52, No. 4, 3463--3486 (2020; Zbl 1444.42036) Full Text: DOI
Deuflhard, Peter; Weiser, Martin Numerical mathematics 3: Adaptive numerical solution of partial differential equations. 2nd expanded edition. (Numerische Mathematik 3. Adaptive Lösung partieller Differentialgleichungen.) (German) Zbl 1451.65002 De Gruyter Studium. Berlin: De Gruyter (ISBN 978-3-11-069168-9/pbk; 978-3-11-068965-5/ebook). xvi, 456 p. (2020). MSC: 65-01 65N22 65M22 65M15 65M60 65N15 65N30 65N12 65F05 65F08 65N55 65N50 65N06 65N35 65Y15 35J05 35J60 35L05 35Q41 35Q30 35Q61 PDF BibTeX XML Cite \textit{P. Deuflhard} and \textit{M. Weiser}, Numerische Mathematik 3. Adaptive Lösung partieller Differentialgleichungen. Berlin: De Gruyter (2020; Zbl 1451.65002) Full Text: DOI
Amosov, Andrey A.; Krymov, Nikita E. Discrete and asymptotic approximations for one stationary radiative-conductive heat transfer problem. (English) Zbl 1446.35202 Russ. J. Numer. Anal. Math. Model. 35, No. 3, 127-141 (2020). MSC: 35Q79 80A21 80A19 80M20 65N06 65H10 35B40 74F05 PDF BibTeX XML Cite \textit{A. A. Amosov} and \textit{N. E. Krymov}, Russ. J. Numer. Anal. Math. Model. 35, No. 3, 127--141 (2020; Zbl 1446.35202) Full Text: DOI
Jin, Bangti; Zhou, Zhi Incomplete iterative solution of subdiffusion. (English) Zbl 1453.65326 Numer. Math. 145, No. 3, 693-725 (2020). MSC: 65M60 65M06 65N30 65N55 65M15 65F10 35R11 26A33 PDF BibTeX XML Cite \textit{B. Jin} and \textit{Z. Zhou}, Numer. Math. 145, No. 3, 693--725 (2020; Zbl 1453.65326) Full Text: DOI
Egger, H.; Radu, B. A mass-lumped mixed finite element method for acoustic wave propagation. (English) Zbl 1450.65120 Numer. Math. 145, No. 2, 239-269 (2020). Reviewer: Bülent Karasözen (Ankara) MSC: 65M60 65M06 65M12 35L05 35L50 65L20 76Q05 PDF BibTeX XML Cite \textit{H. Egger} and \textit{B. Radu}, Numer. Math. 145, No. 2, 239--269 (2020; Zbl 1450.65120) Full Text: DOI
Lu, Qinyun; Zhu, Yuanguo Finite-time stability of uncertain fractional difference equations. (English) Zbl 1447.93317 Fuzzy Optim. Decis. Mak. 19, No. 2, 239-249 (2020). MSC: 93D40 93C41 39A99 26A33 PDF BibTeX XML Cite \textit{Q. Lu} and \textit{Y. Zhu}, Fuzzy Optim. Decis. Mak. 19, No. 2, 239--249 (2020; Zbl 1447.93317) Full Text: DOI