×

Time adaptive numerical solution of a highly degenerate diffusion-reaction biofilm model based on regularisation. (English) Zbl 1390.35169

Summary: We consider a quasilinear degenerate diffusion-reaction system that describes biofilm formation. The model exhibits two non-linear effects: a power law degeneracy as one of the dependent variables vanishes and a super diffusion singularity as it approaches unity. Biologically relevant solutions are characterized by a moving interface and gradient blow-up there. Discretisation of the PDE in space by a standard finite volume scheme leads to a singular system of ordinary differential equations. We show that regularisation of this system allows the application of error controlled adaptive integration techniques to solve the underlying PDE. This overcomes the major limitation of existing methods for this type of problem which work with fixed time-steps. We apply the resulting numerical method to study the effect of signal diffusion in the aqueous phase on quorum sensing induction in a biofilm colony.

MSC:

35K65 Degenerate parabolic equations
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
68U20 Simulation (MSC2010)
92D25 Population dynamics (general)

Software:

SPARSKIT
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Dillon, R., Fauci, L., Fogelson, A., Gaver, D.: Modelling biofilm processes using the immersed boundary method. J. Comput. Phys. 129(1), 57-73 (1996) · Zbl 0867.76100 · doi:10.1006/jcph.1996.0233
[2] Hall-Stoodley, L., Costerton, J.W., Stoodley, P.: Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2(2), 95-108 (2004) · doi:10.1038/nrmicro821
[3] Imran, M., Smith, H.: A model of optimal dosing of antibiotic treatment in biofilm. Math. Biosci. Eng. 11(3), 547-571 (2014) · Zbl 1298.92050 · doi:10.3934/mbe.2014.11.547
[4] Lear, G., Lewis, G.D.: Microbial Biofilms: Current Research and Applications. Caister Academic, Berlin (2012). ISBN 978-1-904455-96-7
[5] Martins dos Santos, V.A.P., Yakimov, M.M., Timmis, K.N., Golyshin, P.N.: Genomic insights into oil biodegradation in marine systems. In: Diaz, E. (ed), Microbial Biodegradation: Genomics and Molecular Biology, p. 1971. Horizon Scientific Press. ISBN 978-1-904455-17-2 (2008) · Zbl 1197.92011
[6] Watnick, P., Kolter, R.: Biofilm-city of microbes (minireview). J. Bacteriol. 182(10), 2675-2679 (2000) · doi:10.1128/JB.182.10.2675-2679.2000
[7] Stewart, P.S., Costerton, J.W.: Antibiotic resistance of bacteria in biofilms. Lancet 358(9276), 135-8 (2001) · doi:10.1016/S0140-6736(01)05321-1
[8] Anderl, J.N., Franklin, M.J., Stewart, P.S.: Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother. 44, 1818-1824 (2000)
[9] Schwermer, C.U., Lavik, G., Abed, R.M., et al.: Impact of nitrate on the structure and function of bacterial biofilm communities in pipelines used for injection of seawater into oil fields. Appl. Environ. Microbiol. 74(9), 2841-51 (2008) · doi:10.1128/AEM.02027-07
[10] Donlan, R.M., Costerton, J.W.: Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15(2), 167-193 (2002) · doi:10.1128/CMR.15.2.167-193.2002
[11] Andersen, P.C., Brodbeck, B.V., Oden, S., Shriner, A., Leite, B.: Influence of xylem fluid chemistry on planktonic growth, biofilm formation and aggregation of Xylella fastidiosa. FEMS Microbiol. Lett. 274(2), 210-217 (2007)
[12] Wanner, O., Eberl, H.J., Van Loosdrecht, M.C.M., Morgenroth, E., Noguera, D.R., Picioreanu, C., Rittmann, B.E.: Mathematical Modelling of Biofilms. IWA Publishing, London (2006)
[13] van Loosdrecht, M.C.M., Heijnen, J.J., Eberl, H., Kreft, J., Picioreanu, C.: Mathematical Modelling of Biofilm Structures. Antonie Van Leeuwenhoek 81(1), 245-256 (2002) · doi:10.1023/A:1020527020464
[14] Eberl, H.J., Parker, D.F., Van Loosdrecht, C.M.: A new deterministic spatio-temporal continuum model for biofilm development. J. Theor. Med. 3, 161-175 (2001) · Zbl 0985.92009 · doi:10.1080/10273660108833072
[15] Klapper, I., Dockery, J.: Mathematical description of microbial biofilms. SIAM Rev. 52(2), 221-265 (2010) · Zbl 1191.92065 · doi:10.1137/080739720
[16] Wang, Q., Zhang, T.: Review of mathematical models for biofilms. Solid State Commun. 150(21/22), 1009-1022 (2010) · doi:10.1016/j.ssc.2010.01.021
[17] Eberl, H.J., Collinson, S.: A modelling and simulation study of siderophore mediated antagonsim in dual-species biofilms. Theor. Biol. Med. Mod. 6, 30 (2009) · doi:10.1186/1742-4682-6-30
[18] Eberl, H.J., Sudarsan, R.: Exposure of biofilms to slow flow fields: the convective contribution to growth and disinfection. J. Theor. Biol. 253(4), 788-807 (2008) · Zbl 1398.92114 · doi:10.1016/j.jtbi.2008.04.013
[19] Emerenini, B., Hense, B.A., Kuttler, C., Eberl, H.J.: A mathematical model of quorum sensing induced biofilm detachment. PLoS ONE 10(7), e0132385 (2015) · doi:10.1371/journal.pone.0132385
[20] Frederick, M., Kuttler, C., Hense, B.A., Müller, J., Eberl, H.J.: A mathematical model of quorum sensing in patchy biofilm communities with slow background flow. Can. Appl. Math. Quart. 18(3), 267-298 (2010) · Zbl 1216.92028
[21] Frederick, M.R., Kuttler, C., Hense, B.A., Eberl, H.J.: A mathematical model of quorum sensing regulated EPS production in biofilms. Theor. Biol. Med. Mod. 8, 8 (2011) · doi:10.1186/1742-4682-8-8
[22] Khassehkhan, H., Efendiev, M.A., Eberl, H.J.: A degenerate diffusion-reaction model of an amensalistic biofilm control system: existence and simulation of solution. Discrete Cont. Dy. Syst. B 12(2), 371-388 (2009) · Zbl 1183.35160 · doi:10.3934/dcdsb.2009.12.371
[23] Macias-Diaz, J.E.: A positive finite-difference model in the computational simulation of complex biological film models. J. Differ. Equ. Appl. 20(4), 548-569 (2014) · Zbl 1319.92046 · doi:10.1080/10236198.2013.863284
[24] Rahman, K.A., Sudarsan, R., Eberl, H.J.: A mixed culture biofilm model with cross-diffusion. Bull. Math. Biol. 77(11), 2086-2124 (2015) · Zbl 1339.92048 · doi:10.1007/s11538-015-0117-1
[25] Khassehkhan, H., Hillen, T., Eberl, H.J.: A non-linear master equation for a degenerate diffusion model of biofilm growth. LNCS 5544, 5-744 (2009)
[26] Ngamsaad, W., Sunatai, S.: Mechanically-driven spreading of bacterial populations. Commun. Nonlinear Sci. Numer. Simul. 35, 88-96 (2016) · Zbl 1510.92130 · doi:10.1016/j.cnsns.2015.10.026
[27] Efendiev, M.A., Zelik, S.V., Eberl, H.J.: Existence and longtime behaviour of a biofilm model. Commun. Pure Appl. Anal. 8(2), 509-531 (2009) · Zbl 1175.35017 · doi:10.3934/cpaa.2009.8.509
[28] Duvnjak, A., Eberl, H.J.: Time-discretisation of a degenerate reaction-diffusion equation arising in biofilm modelling. El. Trans Num. Anal. 23, 15-38 (2006) · Zbl 1112.65088
[29] Khassehkhan, H., Eberl, H.J.: Interface tracking for a non-linear degenerated diffusion-reaction equation describing biofilm formation. Dyn. Cont. Disc. Imp. Sys. A 13SA, 131-144 (2006)
[30] Khassehkhan, H., Eberl, H.J.: Modelling and simulation of a bacterial biofilm that is controlled by pH and protonated lactic acids. Comput. Math. Methods Med. 9(1), 47-67 (2008) · Zbl 1145.92002 · doi:10.1080/17486700701797922
[31] Eberl, H.J., Demaret, L.: A finite difference scheme for a degenerated diffusion equation arising in microbial ecology. El. J. Diff. Equs. CS 15, 77-95 (2007) · Zbl 1112.65318
[32] Sirca, S., Horvat, M.: Computational Methods for Physicists. Springer, Berlin (2012) · Zbl 1284.65002 · doi:10.1007/978-3-642-32478-9
[33] Muhammad, N., Eberl, H.J.: OpenMP parallelization of a mickens time-integration scheme for a mixed-culture biofilm model and its performance on multi-core and multi-processor computers. LNCS 5976, 180-195 (2010)
[34] Rahman, K.A., Eberl, H.J.: Numerical treatment of a cross-diffusion model of biofilm exposure to antimicrobials. LNCS 8384, 134-144 (2014)
[35] Morales-Hernandez, M.D., Medina-Ramirez, I.E., Avelar-Gonzalez, F.J., Macias-Dias, J.E.: An efficient recursive algorithm in the computational simulation of the bounded growth of biological films. Int. J. Comp. Meth. 9(4), 1250050 (2012) · Zbl 1359.76207 · doi:10.1142/S0219876212500508
[36] Jalbert, E.M.: Comparison of a semi-implicit and a fully-implicit time integration method for a highly degenerate diffusion-reaction equation coupled with an ordinary differential equation. M.Sc. Thesis, University of Guelph (2016)
[37] Balsa-Canto, E., Lopez-Nunez, A., Vazquez, C.: Numerical methods for a nonlinear reaction-diffusion system modelling a batch culture of biofilm. Appl. Math. Model. 41, 164-179 (2017) · Zbl 1443.92007
[38] Medina-Ramirez, I.E., Macias-Diaz, J.E.: On a fully discrete finite-difference approximation of a non-linear diffusionreaction model in microbial ecology. Int. J. Comput. Math. 90(9), 1915-1937 (2013) · Zbl 1291.65269 · doi:10.1080/00207160.2013.766727
[39] Sun, G.F., Liu, G.R., Li, M.: An Efficient Explicit Finite-Difference Scheme for Simulating Coupled Biomass Growth on Nutritive Substrates, Mathematical Problems in Engineering, p. 708497 (2015) · Zbl 1394.65078
[40] Hense, B.A., Kuttler, C., Müller, J., Rothballer, M., Hartmann, A., Kreft, J.: Does efficiency sensing unify diffusion and quorum sensing? Nat. Rev. Microbiol. 5, 230-239 (2007) · doi:10.1038/nrmicro1600
[41] Redfield, R.J.: Is quorum sensing a side effect of diffusion sensing? Trends Microbial. 10, 365-370 (2002) · doi:10.1016/S0966-842X(02)02400-9
[42] Trovato, A., Seno, F., Zanardo, M., Alberghini, S., Tondello, A., Squartini, A.: Quorum vs. diffusion sensing: a quantitative analysis of the relevance of absorbing or reflecting boundaries. FEMS Microbiol. Lett. 352(2), 198-203 (2014) · doi:10.1111/1574-6968.12394
[43] Chopp, D.L., Kirisits, M.J., Moran, B., Parsek, M.R.: A mathematical model of quorum sensing in a growing bacterial biofilm. J. Ind. Microbiol. Biotech. 29, 339-346 (2002) · Zbl 1334.92254 · doi:10.1038/sj.jim.7000316
[44] Chopp, D.L., Kirisits, M.J., Moran, B., Parsek, M.R.: The dependence of quorum sensing on the depth of a growing biofilm. Bull. Math. Biol. 65(6), 1053-1079 (2003) · Zbl 1334.92254 · doi:10.1016/S0092-8240(03)00057-0
[45] Vaughan, B.L., Smith, B.G., Chopp, D.L.: The influence of fluid flow on modelling quorum sensing in bacterial biofilms. Bull. Math. Biol. 72(5), 1143-1165 (2010) · Zbl 1197.92011 · doi:10.1007/s11538-009-9485-8
[46] Walter, W.: Ordinary Differential Equations. Springer, Berlin (1997)
[47] Hackbusch, W.: Theorie und Numerik Elliptischer Differentialgleichungen. Teubner, Stuttgart (1986) · Zbl 0609.65065 · doi:10.1007/978-3-322-99946-7
[48] Rang, J.: Improved Traditional Rosenbrock-Wanner Methods for Stiff ODEs and DAEs. Institute of Scientific Computing, Heidelberg (2013) · Zbl 1326.65085
[49] Van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631-644 (1992) · Zbl 0761.65023 · doi:10.1137/0913035
[50] Saad, Y.: SPARSKIT: a basic tool for sparse matrix computations (1994). http://www.users.cs.umn.edu/saad/software/SPARSKIT/sparskit.html · Zbl 0998.92043
[51] Polyanin, A.D., Zaitsev, V.F.: Handbook of Non-linear Partial Differential Equations, 2nd edn. CRC Press, Boca Raton (2011) · Zbl 1243.35001
[52] Picioreanu, C., Van Loosdrecht, C.M., Heijnen, J.J.: Mathematical modelling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnol. Bioeng. 58(1), 101-116 (1998) · doi:10.1002/(SICI)1097-0290(19980405)58:1<101::AID-BIT11>3.0.CO;2-M
[53] Ward, J.P., King, J.R., Koerber, A.J., Williams, P., Croft, J.M., Sockett, R.E.: Mathematical modeling of quorum sensing bacteria. IMA J. Math. Appl. Med. Biol. 18, 263-292 (2001) · Zbl 0998.92043 · doi:10.1093/imammb/18.3.263
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.