Abbas, Mujahid; Ahmad, Khushdil; Shabbir, Khurram Approximation of fixed point of multivalued mean nonexpansive mappings in CAT(0) spaces. (English) Zbl 07765820 J. Prime Res. Math. 19, No. 2, 1-16 (2023). MSC: 47H09 54H25 47H10 47J25 PDF BibTeX XML Cite \textit{M. Abbas} et al., J. Prime Res. Math. 19, No. 2, 1--16 (2023; Zbl 07765820) Full Text: Link
Chairatsiripong, Chonjaroen; Yambangwai, Damrongsak; Thianwan, Tanakit Convergence analysis of M-iteration for \(\mathcal{G}\)-nonexpansive mappings with directed graphs applicable in image deblurring and signal recovering problems. (English) Zbl 07720273 Demonstr. Math. 56, Article ID 20220234, 21 p. (2023). MSC: 47H09 47H10 47J25 49M37 54H25 46T99 PDF BibTeX XML Cite \textit{C. Chairatsiripong} et al., Demonstr. Math. 56, Article ID 20220234, 21 p. (2023; Zbl 07720273) Full Text: DOI
Cosgun, Tahir; Sari, Murat A novel method to investigate nonlinear advection-diffusion processes. (English) Zbl 07700250 J. Comput. Appl. Math. 425, Article ID 115057, 9 p. (2023). MSC: 65-XX 35R30 47J25 47J26 65M22 65M32 76M21 PDF BibTeX XML Cite \textit{T. Cosgun} and \textit{M. Sari}, J. Comput. Appl. Math. 425, Article ID 115057, 9 p. (2023; Zbl 07700250) Full Text: DOI
Salisu, Sani; Minjibir, Ma’aruf Shehu; Kumam, Poom; Sriwongsa, Songpon Convergence theorems for fixed points in \(\mathrm{CAT}_p(0)\) spaces. (English) Zbl 07676675 J. Appl. Math. Comput. 69, No. 1, 631-650 (2023). MSC: 47H09 47H10 47J25 PDF BibTeX XML Cite \textit{S. Salisu} et al., J. Appl. Math. Comput. 69, No. 1, 631--650 (2023; Zbl 07676675) Full Text: DOI
Ali, Bashir; Hamza, A. M.; Harbau, M. H. An inertial Bregman hybrid algorithm for approximating solutions of fixed point and variational inequality problem in real Banach spaces. (English) Zbl 07735900 Mat. Vesn. 74, No. 3, 174-188 (2022). MSC: 47J25 47H09 49J40 PDF BibTeX XML Cite \textit{B. Ali} et al., Mat. Vesn. 74, No. 3, 174--188 (2022; Zbl 07735900) Full Text: EMIS Link
Abbas, Mujahid; Anjum, Rizwan; Riasat, Shakeela Fixed point results of enriched interpolative Kannan type operators with applications. (English) Zbl 1498.47103 Appl. Gen. Topol. 23, No. 2, 391-404 (2022). MSC: 47H10 47H09 47J25 49J40 PDF BibTeX XML Cite \textit{M. Abbas} et al., Appl. Gen. Topol. 23, No. 2, 391--404 (2022; Zbl 1498.47103) Full Text: DOI arXiv
Akutsah, Francis; Mebawondu, Akindele Adebayo; Babasola, Oluwatosin; Pillay, Paranjothi; Narain, Ojen Kumar D-iterative method for solving a delay differential equation and a two-point second-order boundary value problems in Banach spaces. (English) Zbl 1505.47074 Aust. J. Math. Anal. Appl. 19, No. 2, Article No. 6, 14 p. (2022). MSC: 47J25 47H09 47N20 PDF BibTeX XML Cite \textit{F. Akutsah} et al., Aust. J. Math. Anal. Appl. 19, No. 2, Article No. 6, 14 p. (2022; Zbl 1505.47074) Full Text: Link
Okeke, Chibueze C.; Ugwunnadi, Godwin C.; Jolaoso, Lateef O. An extragradient inertial algorithm for solving split fixed-point problems of demicontractive mappings, with equilibrium and variational inequality problems. (English) Zbl 1504.47103 Demonstr. Math. 55, 506-527 (2022). MSC: 47J25 47H09 49J20 49J40 PDF BibTeX XML Cite \textit{C. C. Okeke} et al., Demonstr. Math. 55, 506--527 (2022; Zbl 1504.47103) Full Text: DOI
Garodia, Chanchal; Uddin, Izhar; Baleanu, Dumitru On constrained minimization, variational inequality and split feasibility problem via new iteration scheme in Banach spaces. (English) Zbl 1510.47086 Bull. Iran. Math. Soc. 48, No. 4, 1493-1512 (2022). MSC: 47J25 47H09 49J40 PDF BibTeX XML Cite \textit{C. Garodia} et al., Bull. Iran. Math. Soc. 48, No. 4, 1493--1512 (2022; Zbl 1510.47086) Full Text: DOI
Xu, Hai-yang; Lan, Heng-you; Zhang, Fan General semi-implicit approximations with errors for common fixed points of nonexpansive-type operators and applications to Stampacchia variational inequality. (English) Zbl 1509.47095 Comput. Appl. Math. 41, No. 4, Paper No. 190, 18 p. (2022). MSC: 47J25 47H09 49J40 PDF BibTeX XML Cite \textit{H.-y. Xu} et al., Comput. Appl. Math. 41, No. 4, Paper No. 190, 18 p. (2022; Zbl 1509.47095) Full Text: DOI
Srivastava, Julee Introduction of new Picard-S hybrid iteration with application and some results for nonexpansive mappings. (English) Zbl 1498.47137 Arab J. Math. Sci. 28, No. 1, 61-76 (2022). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{J. Srivastava}, Arab J. Math. Sci. 28, No. 1, 61--76 (2022; Zbl 1498.47137) Full Text: DOI
Salahuddin Solutions of variational inclusions over the sets of common fixed points in Banach spaces. (English) Zbl 1519.47096 J. Appl. Nonlinear Dyn. 11, No. 1, 75-85 (2022). MSC: 47J25 47J22 47H09 PDF BibTeX XML Cite \textit{Salahuddin}, J. Appl. Nonlinear Dyn. 11, No. 1, 75--85 (2022; Zbl 1519.47096) Full Text: DOI
Zhang, Haixia; Tanveer, Muhammad; Li, Yi-Xia; Peng, Qingxiu; Shah, Nehad Ali Fixed point results of an implicit iterative scheme for fractal generations. (English) Zbl 07533477 AIMS Math. 6, No. 12, 13170-13186 (2021). MSC: 37F45 37F50 47J25 PDF BibTeX XML Cite \textit{H. Zhang} et al., AIMS Math. 6, No. 12, 13170--13186 (2021; Zbl 07533477) Full Text: DOI
Akgun, Fatma Aydın; Rasulov, Zaur A new iteration method for the solution of third-order BVP via Green’s function. (English) Zbl 1494.47102 Demonstr. Math. 54, 425-435 (2021). MSC: 47J25 47N20 34B15 PDF BibTeX XML Cite \textit{F. A. Akgun} and \textit{Z. Rasulov}, Demonstr. Math. 54, 425--435 (2021; Zbl 1494.47102) Full Text: DOI
Gazmeh, Hamid; Naraghirad, Eskandar The split common null point problem for Bregman generalized resolvents in two Banach spaces. (English) Zbl 1487.47104 Optimization 70, No. 8, 1725-1758 (2021). MSC: 47J25 47H05 PDF BibTeX XML Cite \textit{H. Gazmeh} and \textit{E. Naraghirad}, Optimization 70, No. 8, 1725--1758 (2021; Zbl 1487.47104) Full Text: DOI
Moslemipour, Ali; Roohi, Mehdi A Krasnoselskii-Mann type iteration for nonexpansive mappings in Hadamard spaces. (English) Zbl 1495.47107 J. Adv. Math. Stud. 14, No. 1, 85-93 (2021). MSC: 47J25 47H09 54H25 PDF BibTeX XML Cite \textit{A. Moslemipour} and \textit{M. Roohi}, J. Adv. Math. Stud. 14, No. 1, 85--93 (2021; Zbl 1495.47107) Full Text: Link
Taiwo, Adeolu; Alakoya, Timilehin Opeyemi; Mewomo, Oluwatosin Temitope Halpern-type iterative process for solving split common fixed point and monotone variational inclusion problem between Banach spaces. (English) Zbl 07331334 Numer. Algorithms 86, No. 4, 1359-1389 (2021). MSC: 47H10 47J22 47J25 65J15 PDF BibTeX XML Cite \textit{A. Taiwo} et al., Numer. Algorithms 86, No. 4, 1359--1389 (2021; Zbl 07331334) Full Text: DOI
Berinde, Vasile; Păcurar, Mădălina Kannan’s fixed point approximation for solving split feasibility and variational inequality problems. (English) Zbl 1484.47105 J. Comput. Appl. Math. 386, Article ID 113217, 10 p. (2021). Reviewer: Jürgen Appell (Würzburg) MSC: 47H10 47H09 47J25 49J40 PDF BibTeX XML Cite \textit{V. Berinde} and \textit{M. Păcurar}, J. Comput. Appl. Math. 386, Article ID 113217, 10 p. (2021; Zbl 1484.47105) Full Text: DOI arXiv
Asif, Awais; Khan, Sami Ullah; Abdeljawad, Thabet; Arshad, Muhammad; Savas, Ekrem 3D analysis of modified \(F\)-contractions in convex b-metric spaces with application to Fredholm integral equations. (English) Zbl 1484.47101 AIMS Math. 5, No. 6, 6929-6948 (2020). MSC: 47H10 45B05 47H09 47J25 PDF BibTeX XML Cite \textit{A. Asif} et al., AIMS Math. 5, No. 6, 6929--6948 (2020; Zbl 1484.47101) Full Text: DOI
Garodia, Chanchal; Uddin, Izhar A new fixed point algorithm for finding the solution of a delay differential equation. (English) Zbl 1484.47109 AIMS Math. 5, No. 4, 3182-3200 (2020). MSC: 47H10 34K07 47J25 65L03 PDF BibTeX XML Cite \textit{C. Garodia} and \textit{I. Uddin}, AIMS Math. 5, No. 4, 3182--3200 (2020; Zbl 1484.47109) Full Text: DOI
Calderón, Kenyi; Martínez-Moreno, J.; Rojas, E. M. Hybrid algorithm with perturbations for total asymptotically non-expansive mappings in CAT(0) space. (English) Zbl 07475979 Int. J. Comput. Math. 97, No. 1-2, 405-419 (2020). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{K. Calderón} et al., Int. J. Comput. Math. 97, No. 1--2, 405--419 (2020; Zbl 07475979) Full Text: DOI Link
Suwannaut, Sarawut The general intermixed iteration for equilibrium problems and variational inequality problems in Hilbert spaces. (English) Zbl 1492.47084 Thai J. Math. 18, No. 3, 1497-1518 (2020). MSC: 47J25 47H09 65K10 PDF BibTeX XML Cite \textit{S. Suwannaut}, Thai J. Math. 18, No. 3, 1497--1518 (2020; Zbl 1492.47084) Full Text: Link
Nguyen Trung Hieu; Cao Pham Cam Tu Strong convergence results for asymptotically \(G\)-nonexpansive mappings in Hilbert spaces with graphs. (English) Zbl 1492.47075 Thai J. Math. 18, No. 3, 1015-1040 (2020). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{Nguyen Trung Hieu} and \textit{Cao Pham Cam Tu}, Thai J. Math. 18, No. 3, 1015--1040 (2020; Zbl 1492.47075) Full Text: Link
Takahashi, Wataru A weak convergence theorem under Mann’s iteration for generalized nonexpansive mappings in a Banach space. (English) Zbl 1492.47086 Linear Nonlinear Anal. 6, No. 2, 313-332 (2020). MSC: 47J25 47H05 47H09 PDF BibTeX XML Cite \textit{W. Takahashi}, Linear Nonlinear Anal. 6, No. 2, 313--332 (2020; Zbl 1492.47086) Full Text: Link
Takahashi, Wataru A strong convergence theorem for solving the split common fixed point problem in two Banach spaces and applications. (English) Zbl 1492.47085 Linear Nonlinear Anal. 6, No. 3, 473-495 (2020). MSC: 47J25 47H05 47H09 PDF BibTeX XML Cite \textit{W. Takahashi}, Linear Nonlinear Anal. 6, No. 3, 473--495 (2020; Zbl 1492.47085) Full Text: Link
Kondo, Atsumasa; Takahashi, Wataru Strong convergence theorems to common attractive points of normally 2-generalized hybrid mappings and an application. (English) Zbl 1492.47072 Linear Nonlinear Anal. 6, No. 3, 421-438 (2020). MSC: 47J25 47H05 47H09 PDF BibTeX XML Cite \textit{A. Kondo} and \textit{W. Takahashi}, Linear Nonlinear Anal. 6, No. 3, 421--438 (2020; Zbl 1492.47072) Full Text: Link
Kim, Kyung Soo Convergence theorems for mixed type total asymptotically nonexpansive mappings in convex metric space. (English) Zbl 1487.47107 J. Nonlinear Convex Anal. 21, No. 9, 1931-1941 (2020). MSC: 47J25 47H09 54H25 54E40 PDF BibTeX XML Cite \textit{K. S. Kim}, J. Nonlinear Convex Anal. 21, No. 9, 1931--1941 (2020; Zbl 1487.47107) Full Text: Link
Takahashi, Wataru Weak and strong convergence theorems for two generic generalized nonspreading mappings in Banach spaces. (English) Zbl 1460.47034 Pure Appl. Funct. Anal. 5, No. 3, 747-767 (2020). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{W. Takahashi}, Pure Appl. Funct. Anal. 5, No. 3, 747--767 (2020; Zbl 1460.47034) Full Text: Link
Vasin, V. V. Iterative Fejér processes in ill-posed problems. (English. Russian original) Zbl 1504.47091 Comput. Math. Math. Phys. 60, No. 6, 938-949 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 6, 963-974 (2020). Reviewer: Bangti Jin (London) MSC: 47J06 47J25 47H09 47H05 PDF BibTeX XML Cite \textit{V. V. Vasin}, Comput. Math. Math. Phys. 60, No. 6, 938--949 (2020; Zbl 1504.47091); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 6, 963--974 (2020) Full Text: DOI
Saluja, G. S.; Kim, Jong Kyu Convergence analysis for total asymptotically nonexpansive mappings in convex metric spaces with applications. (English) Zbl 1446.47078 Nonlinear Funct. Anal. Appl. 25, No. 2, 231-247 (2020). MSC: 47J25 47H09 54H25 54E40 PDF BibTeX XML Cite \textit{G. S. Saluja} and \textit{J. K. Kim}, Nonlinear Funct. Anal. Appl. 25, No. 2, 231--247 (2020; Zbl 1446.47078) Full Text: Link
Fuan, Si; Ullah, Rizwan; Rahmat, Gul; Numan, Muhammad; Butt, Saad Ihsan; Ge, Xun Approximate fixed point sequences of an evolution family on a metric space. (English) Zbl 1512.47093 J. Math. 2020, Article ID 1647193, 6 p. (2020). MSC: 47J35 47J25 54H25 54E40 PDF BibTeX XML Cite \textit{S. Fuan} et al., J. Math. 2020, Article ID 1647193, 6 p. (2020; Zbl 1512.47093) Full Text: DOI
Dixit, Avinash; Sahu, D. R.; Singh, Amit Kumar; Som, T. Application of a new accelerated algorithm to regression problems. (English) Zbl 1436.65069 Soft Comput. 24, No. 2, 1539-1552 (2020). MSC: 65J15 47J25 47H10 62J99 PDF BibTeX XML Cite \textit{A. Dixit} et al., Soft Comput. 24, No. 2, 1539--1552 (2020; Zbl 1436.65069) Full Text: DOI
Dung, Nguyen Van; Hieu, Nguyen Trung Convergence of a new three-step iteration process to common fixed points of three \(G\)-nonexpansive mappings in Banach spaces with directed graphs. (English) Zbl 07208206 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 3, Paper No. 140, 24 p. (2020). MSC: 47H09 47H10 47J25 PDF BibTeX XML Cite \textit{N. Van Dung} and \textit{N. T. Hieu}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 3, Paper No. 140, 24 p. (2020; Zbl 07208206) Full Text: DOI
Saejung, Satit; Yotkaew, Pongsakorn On \(\triangle\)-convergence of iterative sequences in \(\operatorname{CAT}(0)\) spaces. (English) Zbl 1443.47074 Vietnam J. Math. 48, No. 1, 35-45 (2020). MSC: 47J25 47H09 54H25 54E40 PDF BibTeX XML Cite \textit{S. Saejung} and \textit{P. Yotkaew}, Vietnam J. Math. 48, No. 1, 35--45 (2020; Zbl 1443.47074) Full Text: DOI
Sahu, D. R.; Pitea, A.; Verma, M. A new iteration technique for nonlinear operators as concerns convex programming and feasibility problems. (English) Zbl 1507.47116 Numer. Algorithms 83, No. 2, 421-449 (2020). MSC: 47J25 47H06 90C25 PDF BibTeX XML Cite \textit{D. R. Sahu} et al., Numer. Algorithms 83, No. 2, 421--449 (2020; Zbl 1507.47116) Full Text: DOI
Zhu, Yue; Xiao, Jian-Zhong Strong convergence of viscosity iterations with error terms for cosine families in Banach spaces. (English) Zbl 1481.47098 Adv. Oper. Theory 5, No. 1, 1-14 (2020). MSC: 47J25 47D09 65J15 PDF BibTeX XML Cite \textit{Y. Zhu} and \textit{J.-Z. Xiao}, Adv. Oper. Theory 5, No. 1, 1--14 (2020; Zbl 1481.47098) Full Text: DOI
Kaewkhao, Attapol; Prommai, Tanaphong Inertial forward-backward algorithm based on S-iteration for inclusion problems in Hilbert spaces. (English) Zbl 07716273 Kimura, Yasunori (ed.) et al., Proceedings of the 11th international conference on nonlinear analysis and convex analysis (NACA 2019) and the International conference on optimization: techniques and applications (ICOTA), Hokodate, Japan, August 26–31, 2019. Part I. Yokohama: Yokohama Publishers. 171-182 (2019). MSC: 47H05 47H09 47H10 47J25 PDF BibTeX XML Cite \textit{A. Kaewkhao} and \textit{T. Prommai}, in: Proceedings of the 11th international conference on nonlinear analysis and convex analysis (NACA 2019) and the International conference on optimization: techniques and applications (ICOTA), Hokodate, Japan, August 26--31, 2019. Part I. Yokohama: Yokohama Publishers. 171--182 (2019; Zbl 07716273) Full Text: Link
Al-Mazrooei, A. E.; Latif, A.; Qin, X. Approximation of solutions of split equilibrium problems with monotone and strictly pseudocontractive operators. (Approximation of solutions of split equilibrium problems with monotone and strictly psedocontractive operators.) (English) Zbl 1479.47061 J. Nonlinear Convex Anal. 20, No. 12, 2557-2567 (2019). MSC: 47J25 47H05 47H09 PDF BibTeX XML Cite \textit{A. E. Al-Mazrooei} et al., J. Nonlinear Convex Anal. 20, No. 12, 2557--2567 (2019; Zbl 1479.47061) Full Text: Link
Takahashi, Wataru Strong convergence theorems for semigroups of not necessarily continuous mappings in Banach spaces. (English) Zbl 1478.47089 J. Nonlinear Convex Anal. 20, No. 4, 603-623 (2019). MSC: 47J25 47H20 47H09 PDF BibTeX XML Cite \textit{W. Takahashi}, J. Nonlinear Convex Anal. 20, No. 4, 603--623 (2019; Zbl 1478.47089) Full Text: Link
Gürsoy, Faik; Ertürk, Müzeyyen; Khan, Abdul Rahim; Karakaya, Vatan Analytical and numerical aspect of coincidence point problem of quasi-contractive operators. (English) Zbl 1488.47001 Publ. Inst. Math., Nouv. Sér. 105(119), 101-121 (2019). MSC: 47J25 47H10 65J15 54H25 54E40 PDF BibTeX XML Cite \textit{F. Gürsoy} et al., Publ. Inst. Math., Nouv. Sér. 105(119), 101--121 (2019; Zbl 1488.47001) Full Text: DOI
Suwannaut, Sarawut The S-intermixed iterative method for equilibrium problems. (English) Zbl 1463.47195 Thai J. Math., Spec. Iss.: Annual Meeting in Mathematics 2018, 60-74 (2019). MSC: 47J25 47H09 90C33 PDF BibTeX XML Cite \textit{S. Suwannaut}, Thai J. Math., 60--74 (2019; Zbl 1463.47195) Full Text: Link
Şahin, Aynur Some new results of M-iteration process in hyperbolic spaces. (English) Zbl 1463.47157 Carpathian J. Math. 35, No. 2, 221-232 (2019). MSC: 47H09 47J25 54H25 54E40 PDF BibTeX XML Cite \textit{A. Şahin}, Carpathian J. Math. 35, No. 2, 221--232 (2019; Zbl 1463.47157)
Atalan, Yunus; Karakaya, Vatan Investigation of some fixed point theorems in hyperbolic spaces for a three step iteration process. (English) Zbl 1442.47043 Korean J. Math. 27, No. 4, 929-947 (2019). MSC: 47J25 54H25 54E40 PDF BibTeX XML Cite \textit{Y. Atalan} and \textit{V. Karakaya}, Korean J. Math. 27, No. 4, 929--947 (2019; Zbl 1442.47043) Full Text: DOI
Vaish, Rajat; Ahmad, Md. Kalimuddin Common solutions to a finite family of inclusion problems and an infinite family of fixed point problems by a generalized viscosity implicit scheme including applications. (English) Zbl 07127964 Calcolo 56, No. 3, Paper No. 29, 34 p. (2019). MSC: 47H06 47H09 47H10 47J22 47J25 PDF BibTeX XML Cite \textit{R. Vaish} and \textit{Md. K. Ahmad}, Calcolo 56, No. 3, Paper No. 29, 34 p. (2019; Zbl 07127964) Full Text: DOI
Jim, Uko Sunday Hybrid iteration method for fixed points of asymptotically \(\phi\)-demicontractive maps in real Hilbert spaces. (English) Zbl 1483.65084 Palest. J. Math. 8, No. 2, 182-190 (2019). MSC: 65J15 47J25 47H09 47H10 PDF BibTeX XML Cite \textit{U. S. Jim}, Palest. J. Math. 8, No. 2, 182--190 (2019; Zbl 1483.65084) Full Text: Link
Hojo, Mayumi; Kondo, Atsumasa; Takahashi, Wataru Weak and strong convergence theorems for commutative normally 2-generalized hybrid mappings in Hilbert spaces. (English) Zbl 07304698 Linear Nonlinear Anal. 4, No. 1, 117-134 (2018). MSC: 47J25 47H05 47H09 PDF BibTeX XML Cite \textit{M. Hojo} et al., Linear Nonlinear Anal. 4, No. 1, 117--134 (2018; Zbl 07304698) Full Text: Link
Lin, Chien-Nan; Takahashi, Wataru; Wen, Ching-Feng A weak convergence theorem by Mann type iteration for a finite family of new demimetric mappings in a Hilbert space. (English) Zbl 1503.47093 J. Nonlinear Convex Anal. 19, No. 6, 1053-1067 (2018). MSC: 47J25 47H05 47H09 PDF BibTeX XML Cite \textit{C.-N. Lin} et al., J. Nonlinear Convex Anal. 19, No. 6, 1053--1067 (2018; Zbl 1503.47093) Full Text: Link
Kondo, Atsumasa; Takahashi, Wataru Strong convergence theorems of Halpern’s type for normally 2-generalized hybrid mappings in Hilbert spaces. (English) Zbl 1451.47005 J. Nonlinear Convex Anal. 19, No. 4, 617-631 (2018). MSC: 47J25 47H05 PDF BibTeX XML Cite \textit{A. Kondo} and \textit{W. Takahashi}, J. Nonlinear Convex Anal. 19, No. 4, 617--631 (2018; Zbl 1451.47005) Full Text: Link
Kumam, Wiyada; Pakkaranang, Nuttapol; Kumam, Poom Modified viscosity type iteration for total asymptotically nonexpansive mappings in CAT(0) spaces and its application to optimization problems. (English) Zbl 1438.47109 J. Nonlinear Sci. Appl. 11, No. 2, 288-302 (2018). MSC: 47J25 47H09 54H25 PDF BibTeX XML Cite \textit{W. Kumam} et al., J. Nonlinear Sci. Appl. 11, No. 2, 288--302 (2018; Zbl 1438.47109) Full Text: DOI
Wahab, Olalekan Taofeekk; Rauf, Kamilu Some results on implicit multistep fixed point iterative schemes for contractive-like operators in convex metric spaces. (English) Zbl 1415.47012 Bull. Math. Anal. Appl. 10, No. 3, 36-52 (2018). MSC: 47J25 54H25 65J15 PDF BibTeX XML Cite \textit{O. T. Wahab} and \textit{K. Rauf}, Bull. Math. Anal. Appl. 10, No. 3, 36--52 (2018; Zbl 1415.47012) Full Text: Link
Ullah, Kifayat; Khan, Hikmat Nawaz; Arshad, Muhammad Numerical reckoning fixed points in \(CAT(0)\) spaces. (English) Zbl 1412.47076 Sahand Commun. Math. Anal. 12, No. 1, 97-111 (2018). MSC: 47J25 47H09 54H25 PDF BibTeX XML Cite \textit{K. Ullah} et al., Sahand Commun. Math. Anal. 12, No. 1, 97--111 (2018; Zbl 1412.47076) Full Text: DOI
Ullah, K.; Arshad, M. New three-step iteration process and fixed point approximation in Banach spaces. (English) Zbl 1413.47146 J. Linear Topol. Algebra 7, No. 2, 87-100 (2018). MSC: 47J25 47H09 47H10 PDF BibTeX XML Cite \textit{K. Ullah} and \textit{M. Arshad}, J. Linear Topol. Algebra 7, No. 2, 87--100 (2018; Zbl 1413.47146) Full Text: Link
Khoonyang, Sirintra; Inta, Mintra; Cholamjiak, Prasit Iteration process for solving a fixed point problem of nonexpansive mappings in Banach spaces. (English) Zbl 1424.47152 Afr. Mat. 29, No. 5-6, 783-792 (2018). MSC: 47J25 47H10 47H09 PDF BibTeX XML Cite \textit{S. Khoonyang} et al., Afr. Mat. 29, No. 5--6, 783--792 (2018; Zbl 1424.47152) Full Text: DOI
La Cruz, William A residual algorithm for finding a fixed point of a nonexpansive mapping. (English) Zbl 06969107 J. Fixed Point Theory Appl. 20, No. 3, Paper No. 116, 18 p. (2018). MSC: 47H09 47J25 47J05 90C56 PDF BibTeX XML Cite \textit{W. La Cruz}, J. Fixed Point Theory Appl. 20, No. 3, Paper No. 116, 18 p. (2018; Zbl 06969107) Full Text: DOI
Yan, Ming A new primal-dual algorithm for minimizing the sum of three functions with a linear operator. (English) Zbl 1415.65142 J. Sci. Comput. 76, No. 3, 1698-1717 (2018). MSC: 65K05 47J25 90C25 PDF BibTeX XML Cite \textit{M. Yan}, J. Sci. Comput. 76, No. 3, 1698--1717 (2018; Zbl 1415.65142) Full Text: DOI arXiv
Sharma, Anupam Approximating fixed points of nearly asymptotically nonexpansive mappings in \(\mathrm{CAT}(k)\) spaces. (English) Zbl 1413.47134 Arab J. Math. Sci. 24, No. 2, 166-181 (2018). MSC: 47J25 47H09 54H25 PDF BibTeX XML Cite \textit{A. Sharma}, Arab J. Math. Sci. 24, No. 2, 166--181 (2018; Zbl 1413.47134) Full Text: DOI
Proinov, Petko D. Unified convergence analysis for Picard iteration in \(n\)-dimensional vector spaces. (English) Zbl 1386.65153 Calcolo 55, No. 1, Paper No. 6, 21 p. (2018). MSC: 65J15 47J25 47H10 54H25 65H05 PDF BibTeX XML Cite \textit{P. D. Proinov}, Calcolo 55, No. 1, Paper No. 6, 21 p. (2018; Zbl 1386.65153) Full Text: DOI
Suparatulatorn, Raweerote; Cholamjiak, Watcharaporn; Suantai, Suthep A modified S-iteration process for G-nonexpansive mappings in Banach spaces with graphs. (English) Zbl 1467.47037 Numer. Algorithms 77, No. 2, 479-490 (2018). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{R. Suparatulatorn} et al., Numer. Algorithms 77, No. 2, 479--490 (2018; Zbl 1467.47037) Full Text: DOI
Hojo, Mayumi; Takahashi, Wataru Weak and strong convergence theorems for two commutative nonlinear mappings in Hilbert spaces. (English) Zbl 1477.47068 J. Nonlinear Convex Anal. 18, No. 8, 1519-1533 (2017). MSC: 47J25 47H05 47H09 PDF BibTeX XML Cite \textit{M. Hojo} and \textit{W. Takahashi}, J. Nonlinear Convex Anal. 18, No. 8, 1519--1533 (2017; Zbl 1477.47068) Full Text: Link
Lin, Chien-Nan; Takahashi, Wataru Weak convergence theorem for a finite family of demimetric mappings with variational inequality problems in a Hilbert space. (English) Zbl 1474.47130 J. Nonlinear Convex Anal. 18, No. 4, 553-564 (2017). MSC: 47J25 47H05 47H09 PDF BibTeX XML Cite \textit{C.-N. Lin} and \textit{W. Takahashi}, J. Nonlinear Convex Anal. 18, No. 4, 553--564 (2017; Zbl 1474.47130) Full Text: Link
Ranjbar, Sajad Strong convergence of a composite Halpern type iteration for a family of nonexpansive mappings in CAT(0) spaces. (English) Zbl 1424.47156 An. Științ. Univ. “Ovidius” Constanța, Ser. Mat. 25, No. 3, 183-197 (2017). MSC: 47J25 47H09 54H25 PDF BibTeX XML Cite \textit{S. Ranjbar}, An. Științ. Univ. ``Ovidius'' Constanța, Ser. Mat. 25, No. 3, 183--197 (2017; Zbl 1424.47156) Full Text: DOI
Wen, Dao-Jun; Chen, Yi-An; Lu, Ying-Ling Ergodic-type method for a system of split variational inclusion and fixed point problems in Hilbert spaces. (English) Zbl 1412.47185 J. Nonlinear Sci. Appl. 10, No. 6, 3046-3058 (2017). MSC: 47J22 47J25 41A29 65J15 PDF BibTeX XML Cite \textit{D.-J. Wen} et al., J. Nonlinear Sci. Appl. 10, No. 6, 3046--3058 (2017; Zbl 1412.47185) Full Text: DOI
Qian, Shanguang; Deng, Wei-Qi Strong convergence of Krasnoselski-Mann iteration for a countable family of asymptotically nonexpansive mappings in CAT(0) spaces. (English) Zbl 1412.47074 J. Nonlinear Sci. Appl. 10, No. 4, 1326-1333 (2017). MSC: 47J25 47H09 54H25 PDF BibTeX XML Cite \textit{S. Qian} and \textit{W.-Q. Deng}, J. Nonlinear Sci. Appl. 10, No. 4, 1326--1333 (2017; Zbl 1412.47074) Full Text: DOI
Li, Yi; Liu, Hongbo Viscosity approximation methods for the implicit midpoint rule of asymptotically nonexpansive mapping in complete CAT(0) spaces. (English) Zbl 1412.47205 J. Nonlinear Sci. Appl. 10, No. 3, 1270-1280 (2017). MSC: 47J25 47H09 54H25 54E50 PDF BibTeX XML Cite \textit{Y. Li} and \textit{H. Liu}, J. Nonlinear Sci. Appl. 10, No. 3, 1270--1280 (2017; Zbl 1412.47205) Full Text: DOI
Takahashi, Wataru Weak and strong convergence theorems for families of nonlinear and nonself mappings in Hilbert spaces. (English) Zbl 1443.47076 J. Nonlinear Var. Anal. 1, No. 1, 1-23 (2017). MSC: 47J25 47H05 PDF BibTeX XML Cite \textit{W. Takahashi}, J. Nonlinear Var. Anal. 1, No. 1, 1--23 (2017; Zbl 1443.47076)
Mărușter, Ștefan Estimating the local radius of convergence for Picard iteration. (English) Zbl 1461.65106 Algorithms (Basel) 10, No. 1, Paper No. 10, 11 p. (2017). MSC: 65J15 47J25 PDF BibTeX XML Cite \textit{Ș. Mărușter}, Algorithms (Basel) 10, No. 1, Paper No. 10, 11 p. (2017; Zbl 1461.65106) Full Text: DOI
Şahin, Aynur; Başarir, Metin Some convergence results for nonexpansive mappings in uniformly convex hyperbolic spaces. (English) Zbl 1413.47132 Creat. Math. Inform. 26, No. 3, 331-338 (2017). MSC: 47J25 47H09 47H10 54H25 PDF BibTeX XML Cite \textit{A. Şahin} and \textit{M. Başarir}, Creat. Math. Inform. 26, No. 3, 331--338 (2017; Zbl 1413.47132)
Muangchoo-in, Khanitin; Thongtha, Dawud; Kumam, Poom; Cho, Yeol Je Fixed point theorems and convergence theorems for monotone \((\alpha, \beta)\)-nonexpansive mappings in ordered Banach spaces. (English) Zbl 1413.47123 Creat. Math. Inform. 26, No. 2, 163-180 (2017). MSC: 47J25 47H07 47H09 47H10 PDF BibTeX XML Cite \textit{K. Muangchoo-in} et al., Creat. Math. Inform. 26, No. 2, 163--180 (2017; Zbl 1413.47123)
Mărușter, Ștefan A note on the convergence of Mann iteration. (English) Zbl 1413.47120 Creat. Math. Inform. 26, No. 1, 85-88 (2017). MSC: 47J25 47H09 65J15 PDF BibTeX XML Cite \textit{Ș. Mărușter}, Creat. Math. Inform. 26, No. 1, 85--88 (2017; Zbl 1413.47120)
Saluja, Gurucharan Singh Weak convergence theorems for mixed type total asymptotically nonexpansive mappings in uniformly convex Banach spaces. (Chinese. English summary) Zbl 1399.47184 J. Math. Study 50, No. 4, 375-390 (2017). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{G. S. Saluja}, J. Math. Study 50, No. 4, 375--390 (2017; Zbl 1399.47184)
Khamsi, M. A.; Khan, A. R. Goebel and Kirk fixed point theorem for multivalued asymptotically nonexpansive mappings. (English) Zbl 1399.47144 Carpathian J. Math. 33, No. 3, 335-342 (2017). MSC: 47H10 47J25 47H09 54H25 54E40 54C60 PDF BibTeX XML Cite \textit{M. A. Khamsi} and \textit{A. R. Khan}, Carpathian J. Math. 33, No. 3, 335--342 (2017; Zbl 1399.47144)
He, Chunli; Gao, Xinghui Composite iteration methods with errors for strict quasi-pseudo-contractions in Hilbert spaces. (Chinese. English summary) Zbl 1399.47168 J. Ningxia Univ., Nat. Sci. Ed. 38, No. 3, 238-241 (2017). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{C. He} and \textit{X. Gao}, J. Ningxia Univ., Nat. Sci. Ed. 38, No. 3, 238--241 (2017; Zbl 1399.47168)
Saluja, G. S. Strong and weak convergence theorems of a new iterative scheme with errors for two finite families of generalized asymptotically quasi-nonexpansive mappings. (English) Zbl 1399.47183 An. Univ. Oradea, Fasc. Mat. 24, No. 2, 63-74 (2017). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{G. S. Saluja}, An. Univ. Oradea, Fasc. Mat. 24, No. 2, 63--74 (2017; Zbl 1399.47183)
Mebawondu, Akindele Adebayo; Jolaoso, Lateef Olakunle; Abass, Hammed Anuoluwapo On some fixed points properties and convergence theorems for a Banach operator in hyperbolic spaces. (English) Zbl 1394.47068 Int. J. Nonlinear Anal. Appl. 8, No. 2, 293-306 (2017). MSC: 47J25 47H09 47H10 49M05 PDF BibTeX XML Cite \textit{A. A. Mebawondu} et al., Int. J. Nonlinear Anal. Appl. 8, No. 2, 293--306 (2017; Zbl 1394.47068) Full Text: DOI
Wen, Daojun; Song, Shuzhi; Wan, Bo Convergence theorems of fixed points for nearly asymptotically nonexpansive mappings in hyperbolic spaces. (Chinese. English summary) Zbl 1389.47173 J. Yunnan Univ., Nat. Sci. 39, No. 2, 172-177 (2017). MSC: 47J25 47H09 54H25 PDF BibTeX XML Cite \textit{D. Wen} et al., J. Yunnan Univ., Nat. Sci. 39, No. 2, 172--177 (2017; Zbl 1389.47173) Full Text: DOI
Maruster, St.; Maruster, L. Local convergence of generalized Mann iteration. (English) Zbl 1386.65151 Numer. Algorithms 76, No. 4, 905-916 (2017). Reviewer: Peter P. Zabreĭko (Minsk) MSC: 65J15 47H10 47J25 PDF BibTeX XML Cite \textit{St. Maruster} and \textit{L. Maruster}, Numer. Algorithms 76, No. 4, 905--916 (2017; Zbl 1386.65151) Full Text: DOI Link
Chauhan, Surjeet Singh; Utreja, Kiran; Imdad, Mohammad; Ahmadullah, Md. Strong convergence theorems for a quasi contractive type mapping employing a new iterative scheme with an application. (English) Zbl 1370.47059 Honam Math. J. 39, No. 1, 1-25 (2017). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{S. S. Chauhan} et al., Honam Math. J. 39, No. 1, 1--25 (2017; Zbl 1370.47059) Full Text: DOI
Takahashi, Wataru Strong convergence theorem for a finite family of demimetric mappings with variational inequality problems in a Hilbert space. (English) Zbl 1368.47087 Japan J. Ind. Appl. Math. 34, No. 1, 41-57 (2017). MSC: 47J25 47H05 47H09 PDF BibTeX XML Cite \textit{W. Takahashi}, Japan J. Ind. Appl. Math. 34, No. 1, 41--57 (2017; Zbl 1368.47087) Full Text: DOI
Jaipranop, Chanitnan; Saejung, Satit Some improvements on weak convergence theorems of Chuang and Takahashi in Hilbert spaces. (English) Zbl 1474.47128 Chamchuri J. Math. 8, 1-17 (2016). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{C. Jaipranop} and \textit{S. Saejung}, Chamchuri J. Math. 8, 1--17 (2016; Zbl 1474.47128) Full Text: Link
Song, Yisheng; Promluang, Khanittha; Kumam, Poom; Cho, Yeol Je Some convergence theorems of the Mann iteration for monotone \(\alpha\)-nonexpansive mappings. (English) Zbl 1410.47015 Appl. Math. Comput. 287-288, 74-82 (2016). MSC: 47H04 47H10 47H06 47J05 47J25 49J40 65J15 PDF BibTeX XML Cite \textit{Y. Song} et al., Appl. Math. Comput. 287--288, 74--82 (2016; Zbl 1410.47015) Full Text: DOI
Saluja, Gurucharan Singh Strong convergence theorems for two total asymptotically nonexpansive non-self mappings in Banach spaces. (English) Zbl 1424.47157 ROMAI J. 12, No. 1, 105-121 (2016). MSC: 47J25 47H09 47H10 PDF BibTeX XML Cite \textit{G. S. Saluja}, ROMAI J. 12, No. 1, 105--121 (2016; Zbl 1424.47157)
Takeuchi, Yukio An iteration scheme finding a common fixed point of commuting two nonexpansive mappings in general Banach spaces. (English) Zbl 1424.47159 Linear Nonlinear Anal. 2, No. 2, 317-327 (2016). MSC: 47J25 47H09 47H10 PDF BibTeX XML Cite \textit{Y. Takeuchi}, Linear Nonlinear Anal. 2, No. 2, 317--327 (2016; Zbl 1424.47159) Full Text: Link
Kimura, Yasunori; Wada, Hideyuki Iterative methods for nonexpansive mappings on Hadamard spaces and their coefficient conditions. (English) Zbl 1424.47153 Linear Nonlinear Anal. 2, No. 2, 253-261 (2016). MSC: 47J25 54H25 PDF BibTeX XML Cite \textit{Y. Kimura} and \textit{H. Wada}, Linear Nonlinear Anal. 2, No. 2, 253--261 (2016; Zbl 1424.47153) Full Text: Link
Thakur, Balwant Singh; Khan, Mohammad Saeed Strong convergence of finite family of pseudocontractive mappings by a new implicit iteration. (English) Zbl 1413.47144 J. Nonlinear Anal. Optim. 7, No. 1, 31-40 (2016). MSC: 47J25 47H09 47H10 PDF BibTeX XML Cite \textit{B. S. Thakur} and \textit{M. S. Khan}, J. Nonlinear Anal. Optim. 7, No. 1, 31--40 (2016; Zbl 1413.47144) Full Text: Link
Samet, Bessem On the approximation of fixed points for a new class of generalized Berinde mappings. (English) Zbl 1399.47148 Carpathian J. Math. 32, No. 3, 363-374 (2016). MSC: 47H10 54H25 54E40 47J25 PDF BibTeX XML Cite \textit{B. Samet}, Carpathian J. Math. 32, No. 3, 363--374 (2016; Zbl 1399.47148)
Ţicală, Cristina Approximating fixed points of demicontractive mappings by iterative methods defined as admissible perturbations. (English) Zbl 1389.47168 Creat. Math. Inform. 25, No. 1, 121-126 (2016). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{C. Ţicală}, Creat. Math. Inform. 25, No. 1, 121--126 (2016; Zbl 1389.47168)
Mogbademu, Adesanmi Alao Strong convergence results for nonlinear mappings in real Banach spaces. (English) Zbl 1389.47162 Creat. Math. Inform. 25, No. 1, 85-92 (2016). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{A. A. Mogbademu}, Creat. Math. Inform. 25, No. 1, 85--92 (2016; Zbl 1389.47162)
Berinde, Vasile On a notion of rapidity of convergence used in the study of fixed point iterative methods. (English) Zbl 1389.40001 Creat. Math. Inform. 25, No. 1, 29-40 (2016). MSC: 40A05 47J25 01A60 PDF BibTeX XML Cite \textit{V. Berinde}, Creat. Math. Inform. 25, No. 1, 29--40 (2016; Zbl 1389.40001)
Imdad, Mohammad; Dashputre, Samir Fixed point approximation of Picard normal \(S\)-iteration process for generalized nonexpansive mappings in hyperbolic spaces. (English) Zbl 1368.47063 Math. Sci., Springer 10, No. 3, 131-138 (2016). MSC: 47J25 47H09 47H10 PDF BibTeX XML Cite \textit{M. Imdad} and \textit{S. Dashputre}, Math. Sci., Springer 10, No. 3, 131--138 (2016; Zbl 1368.47063) Full Text: DOI
Saluja, G. S. Hybrid mixed type iteration scheme for asymptotically nonexpansive mappings and total asymptotically nonexpansive non-self mappings. (English) Zbl 1465.47053 Math. Morav. 20, No. 2, 131-141 (2016). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{G. S. Saluja}, Math. Morav. 20, No. 2, 131--141 (2016; Zbl 1465.47053) Full Text: DOI
Saluja, G. S. Weak and strong convergence theorems of modified SP-iterations for generalized asymptotically quasi-nonexpansive mappings. (English) Zbl 1465.47052 Math. Morav. 20, No. 1, 125-144 (2016). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{G. S. Saluja}, Math. Morav. 20, No. 1, 125--144 (2016; Zbl 1465.47052) Full Text: DOI
Shen, Jinliang; Huang, Jianhua Hybrid iteration method for equilibrium problems and fixed point problems of asymptotically nonexpansive mappings. (Chinese. English summary) Zbl 1374.47081 J. Fuzhou Univ., Nat. Sci. 44, No. 5, 621-626 (2016). MSC: 47J25 90C33 47H09 PDF BibTeX XML Cite \textit{J. Shen} and \textit{J. Huang}, J. Fuzhou Univ., Nat. Sci. 44, No. 5, 621--626 (2016; Zbl 1374.47081) Full Text: DOI
Wattanataweekul, Manakorn On strong convergence of a Halpern-Mann’s type iteration with perturbations for common fixed point and generalized equilibrium problems. (English) Zbl 1456.47032 Thai J. Math. 14, No. 2, 453-476 (2016). MSC: 47J25 47H05 47H09 PDF BibTeX XML Cite \textit{M. Wattanataweekul}, Thai J. Math. 14, No. 2, 453--476 (2016; Zbl 1456.47032) Full Text: Link
Pasom, Piyanan; Cuntavepanit, Asawathep On the strong and \(\Delta\)-convergence of NSP-iteration on CAT(0) spaces. (English) Zbl 1453.54035 Thai J. Math. 14, No. 2, 341-351 (2016). MSC: 54H25 54E40 47J25 PDF BibTeX XML Cite \textit{P. Pasom} and \textit{A. Cuntavepanit}, Thai J. Math. 14, No. 2, 341--351 (2016; Zbl 1453.54035) Full Text: Link
Wang, Yuanheng; Xie, Fei The convergence for a generalized viscosity implicit iteration to approximate a hierarchical fixed point of nonexpansive mappings in Banach spaces. (Chinese. English summary) Zbl 1374.47082 J. Zhejiang Norm. Univ., Nat. Sci. 39, No. 3, 246-252 (2016). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{F. Xie}, J. Zhejiang Norm. Univ., Nat. Sci. 39, No. 3, 246--252 (2016; Zbl 1374.47082) Full Text: DOI
Sahua, Vinod Kumar Convergence results of iterative scheme for asymptotically quasi-I-nonexpansive mappings in Banach spaces. (English) Zbl 1382.47030 Funct. Anal. Approx. Comput. 8, No. 2, 1-12 (2016). MSC: 47J25 47H09 65J15 PDF BibTeX XML Cite \textit{V. K. Sahua}, Funct. Anal. Approx. Comput. 8, No. 2, 1--12 (2016; Zbl 1382.47030) Full Text: Link
Makaje, N.; Phon-On, A. A modified SP-iterative scheme for solving nonlinear equations. (English) Zbl 1367.47068 Far East J. Math. Sci. (FJMS) 99, No. 7, 1021-1036 (2016). MSC: 47J25 26A18 PDF BibTeX XML Cite \textit{N. Makaje} and \textit{A. Phon-On}, Far East J. Math. Sci. (FJMS) 99, No. 7, 1021--1036 (2016; Zbl 1367.47068) Full Text: DOI Link
Akashi, Shigeo; Takahashi, Wataru Weak convergence theorem for an infinite family of demimetric mappings in a Hilbert space. (English) Zbl 1381.47043 J. Nonlinear Convex Anal. 17, No. 10, 2159-2169 (2016). MSC: 47J25 47H05 47H09 47H25 PDF BibTeX XML Cite \textit{S. Akashi} and \textit{W. Takahashi}, J. Nonlinear Convex Anal. 17, No. 10, 2159--2169 (2016; Zbl 1381.47043) Full Text: Link
Saluja, G. S. On convergence theorems of modified \(S\)-iteration process for generalized asymptotically quasi-nonexpansive non-self mappings. (English) Zbl 1353.47109 J. Adv. Math. Stud. 9, No. 2, 303-319 (2016). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{G. S. Saluja}, J. Adv. Math. Stud. 9, No. 2, 303--319 (2016; Zbl 1353.47109)
Nguyen Buong; Vu Xuan Quynh; Nguyen Thi Thu Thuy A steepest-descent Krasnosel’skii-Mann algorithm for a class of variational inequalities in Banach spaces. (English) Zbl 1457.47012 J. Fixed Point Theory Appl. 18, No. 3, 519-532 (2016). MSC: 47J25 47H09 47J20 PDF BibTeX XML Cite \textit{Nguyen Buong} et al., J. Fixed Point Theory Appl. 18, No. 3, 519--532 (2016; Zbl 1457.47012) Full Text: DOI