Rezazadeh, Arezou; Nagy, Abdelhameed M.; Avazzadeh, Zakieh Barycentric Legendre interpolation method for solving nonlinear fractal-fractional Burgers equation. (English) Zbl 07523978 J. Math. Ext. 15, No. 5, Paper No. 13, 24 p. (2021). MSC: 26A33 94A11 65M70 PDF BibTeX XML Cite \textit{A. Rezazadeh} et al., J. Math. Ext. 15, No. 5, Paper No. 13, 24 p. (2021; Zbl 07523978) Full Text: DOI OpenURL
Sun, Jianshe Traveling wave solution of fractal KdV-Burgers-Kuramoto equation within local fractional differential operator. (English) Zbl 1482.35065 Fractals 29, No. 7, Article ID 2150231, 10 p. (2021). MSC: 35C07 35Q53 35R11 PDF BibTeX XML Cite \textit{J. Sun}, Fractals 29, No. 7, Article ID 2150231, 10 p. (2021; Zbl 1482.35065) Full Text: DOI OpenURL
Wang, Yan; Xu, Li; Wang, Yu-Jin; Liu, Jian-Gen Lie group analysis of fractal differential-difference equations. (English) Zbl 07468084 Fractals 29, No. 7, Article ID 2150197, 7 p. (2021). MSC: 37-XX 82-XX PDF BibTeX XML Cite \textit{Y. Wang} et al., Fractals 29, No. 7, Article ID 2150197, 7 p. (2021; Zbl 07468084) Full Text: DOI OpenURL
Wang, Kang-Jia; Wang, Guo-Dong Variational principle and approximate solution for the fractal generalized Benjamin-Bona-Mahony-Burgers equation in fluid mechanics. (English) Zbl 1482.35009 Fractals 29, No. 3, Article ID 2150075, 8 p. (2021). MSC: 35A15 35A22 35Q35 35R11 PDF BibTeX XML Cite \textit{K.-J. Wang} and \textit{G.-D. Wang}, Fractals 29, No. 3, Article ID 2150075, 8 p. (2021; Zbl 1482.35009) Full Text: DOI OpenURL
Wang, Kang-Le A novel approach for fractal Burgers-BBM equation and its variational principle. (English) Zbl 1482.35010 Fractals 29, No. 3, Article ID 2150059, 8 p. (2021). MSC: 35A15 35A22 35K58 35R11 PDF BibTeX XML Cite \textit{K.-L. Wang}, Fractals 29, No. 3, Article ID 2150059, 8 p. (2021; Zbl 1482.35010) Full Text: DOI OpenURL
Guo, Yantao; Chen, Xueyong Dimension of the global attractor for damped KdV-Burgers equations on \(\mathbb{R}\). (English) Zbl 1474.35119 Math. Appl. 33, No. 4, 922-928 (2020). MSC: 35B41 35Q53 37L30 PDF BibTeX XML Cite \textit{Y. Guo} and \textit{X. Chen}, Math. Appl. 33, No. 4, 922--928 (2020; Zbl 1474.35119) OpenURL
Meyer, Gabriel; Vitiello, Giuseppe On the molecular dynamics in the hurricane interactions with its environment. (English) Zbl 1428.86015 Phys. Lett., A 382, No. 22, 1441-1448 (2018). MSC: 86A10 35Q56 35Q86 PDF BibTeX XML Cite \textit{G. Meyer} and \textit{G. Vitiello}, Phys. Lett., A 382, No. 22, 1441--1448 (2018; Zbl 1428.86015) Full Text: DOI arXiv OpenURL
Karch, Grzegorz; Pudełko, Anna; Xu, Xiaojing Two-dimensional fractal Burgers equation with step-like initial conditions. (English) Zbl 1331.35370 Math. Methods Appl. Sci. 38, No. 13, 2830-2839 (2015). MSC: 35R11 35B40 35K15 35Q53 PDF BibTeX XML Cite \textit{G. Karch} et al., Math. Methods Appl. Sci. 38, No. 13, 2830--2839 (2015; Zbl 1331.35370) Full Text: DOI OpenURL
Gui, Guilong; Liu, Yue Global well-posedness and blow-up of solutions for the Camassa-Holm equations with fractional dissipation. (English) Zbl 1339.35092 Math. Z. 281, No. 3-4, 993-1020 (2015). MSC: 35G25 35K30 35B44 35R11 PDF BibTeX XML Cite \textit{G. Gui} and \textit{Y. Liu}, Math. Z. 281, No. 3--4, 993--1020 (2015; Zbl 1339.35092) Full Text: DOI OpenURL
Zhang, Xicheng Stochastic functional differential equations driven by Lévy processes and quasi-linear partial integro-differential equations. (English) Zbl 1266.60122 Ann. Appl. Probab. 22, No. 6, 2505-2538 (2012). Reviewer: Nikolaos Halidias (Athens) MSC: 60H30 35R09 PDF BibTeX XML Cite \textit{X. Zhang}, Ann. Appl. Probab. 22, No. 6, 2505--2538 (2012; Zbl 1266.60122) Full Text: DOI arXiv Euclid OpenURL
Alibaud, Nathael; Imbert, Cyril; Karch, Grzegorz Asymptotic properties of entropy solutions to fractal Burgers equation. (English) Zbl 1225.35026 SIAM J. Math. Anal. 42, No. 1, 354-376 (2010). Reviewer: Nasser-eddine Tatar (Dhahran) MSC: 35B40 35K15 35R11 35K58 35C06 PDF BibTeX XML Cite \textit{N. Alibaud} et al., SIAM J. Math. Anal. 42, No. 1, 354--376 (2010; Zbl 1225.35026) Full Text: DOI arXiv OpenURL
Chan, Chi Hin; Czubak, Magdalena; Silvestre, Luis Eventual regularization of the slightly supercritical fractional Burgers equation. (English) Zbl 1194.35320 Discrete Contin. Dyn. Syst. 27, No. 2, 847-861 (2010). MSC: 35Q35 35R11 35D30 35B65 35B40 35B05 76M10 PDF BibTeX XML Cite \textit{C. H. Chan} et al., Discrete Contin. Dyn. Syst. 27, No. 2, 847--861 (2010; Zbl 1194.35320) Full Text: DOI arXiv OpenURL
Xu, Xiaojing Local well-posedness and ill-posedness for the fractal Burgers equation in homogeneous Sobolev spaces. (English) Zbl 1155.35420 Math. Methods Appl. Sci. 32, No. 3, 359-370 (2009). MSC: 35Q35 PDF BibTeX XML Cite \textit{X. Xu}, Math. Methods Appl. Sci. 32, No. 3, 359--370 (2009; Zbl 1155.35420) Full Text: DOI OpenURL
Kiselev, Alexander; Nazarov, Fedor; Shterenberg, Roman Blow up and regularity for fractal Burgers equation. (English) Zbl 1186.35020 Dyn. Partial Differ. Equ. 5, No. 3, 211-240 (2008). Reviewer: Nasser-eddine Tatar (Dhahran) MSC: 35B44 35R11 26A33 PDF BibTeX XML Cite \textit{A. Kiselev} et al., Dyn. Partial Differ. Equ. 5, No. 3, 211--240 (2008; Zbl 1186.35020) Full Text: DOI arXiv OpenURL
Karch, Grzegorz; Miao, Changxing; Xu, Xiaojing On convergence of solutions of fractal Burgers equation toward rarefaction waves. (English) Zbl 1154.35080 SIAM J. Math. Anal. 39, No. 5, 1536-1549 (2008). MSC: 35Q53 35B40 35K55 60J60 PDF BibTeX XML Cite \textit{G. Karch} et al., SIAM J. Math. Anal. 39, No. 5, 1536--1549 (2008; Zbl 1154.35080) Full Text: DOI arXiv OpenURL
Brandolese, Lorenzo; Karch, Grzegorz Far field asymptotics of solutions to convection equation with anomalous diffusion. (English) Zbl 1146.35318 J. Evol. Equ. 8, No. 2, 307-326 (2008). MSC: 35B40 35K55 35K15 35L65 PDF BibTeX XML Cite \textit{L. Brandolese} and \textit{G. Karch}, J. Evol. Equ. 8, No. 2, 307--326 (2008; Zbl 1146.35318) Full Text: DOI arXiv OpenURL
Magdziarz, M. The dependence structure of the fractional Ornstein-Uhlenbeck process. (English) Zbl 1098.60061 Probab. Math. Stat. 25, No. 1, 97-104 (2005). Reviewer: Nijole Kalinauskaitė (Vilnius) MSC: 60H15 PDF BibTeX XML Cite \textit{M. Magdziarz}, Probab. Math. Stat. 25, No. 1, 97--104 (2005; Zbl 1098.60061) OpenURL
Bertoin, Jean Subordinators: Examples and applications. (English) Zbl 0955.60046 Bertoin, J. (ed.) et al., Lectures on probability theory and statistics. Ecole d’eté de Probabilités de Saint-Flour XXVII-1997, Saint-Flour, France, July 7-23, 1997. Berlin: Springer. Lect. Notes Math. 1717, 1-91 (1999). Reviewer: Thomas Simon (Berlin) MSC: 60G51 60D05 60H30 60J25 60J55 60J60 60J65 60K05 PDF BibTeX XML Cite \textit{J. Bertoin}, Lect. Notes Math. 1717, 1--91 (1999; Zbl 0955.60046) OpenURL
Scotti, A.; Meneveau, C. A fractal model for large eddy simulation of turbulent flow. (English) Zbl 0944.76030 Physica D 127, No. 3-4, 198-232 (1999). MSC: 76F65 76F05 76M25 PDF BibTeX XML Cite \textit{A. Scotti} and \textit{C. Meneveau}, Physica D 127, No. 3--4, 198--232 (1999; Zbl 0944.76030) Full Text: DOI OpenURL
Biler, Piotr; Karch, Grzegorz; Woyczynski, Wojbor A. Asymptotics for multifractal conservation laws. (English) Zbl 0931.35015 Stud. Math. 135, No. 3, 231-252 (1999). MSC: 35B40 35Q53 35C20 PDF BibTeX XML Cite \textit{P. Biler} et al., Stud. Math. 135, No. 3, 231--252 (1999; Zbl 0931.35015) Full Text: EuDML OpenURL
Angilella, J. R.; Vassilicos, J. C. Spectral, diffusive and convective properties of fractal and spiral fields. (English) Zbl 0968.76030 Physica D 124, No. 1-3, 23-57 (1998). Reviewer: Marco Romito (Firenze) MSC: 76F99 PDF BibTeX XML Cite \textit{J. R. Angilella} and \textit{J. C. Vassilicos}, Physica D 124, No. 1--3, 23--57 (1998; Zbl 0968.76030) Full Text: DOI OpenURL
Woyczyński, Wojbor A. Burgers-KPZ turbulence. Göttingen lectures. (English) Zbl 0919.60004 Lecture Notes in Mathematics. 1700. Berlin: Springer. xi, 318 p. (1998). Reviewer: N.Leonenko (Kyïv) MSC: 60-02 60H15 60G60 60K40 PDF BibTeX XML Cite \textit{W. A. Woyczyński}, Burgers-KPZ turbulence. Göttingen lectures. Berlin: Springer (1998; Zbl 0919.60004) Full Text: DOI OpenURL
Malkov, M. A. Spatial chaos in weakly dispersive and viscous media: A nonperturbative theory of the driven KdV-Burgers equation. (English) Zbl 0885.35111 Physica D 95, No. 1, 62-80 (1996). MSC: 35Q53 37D45 76L05 PDF BibTeX XML Cite \textit{M. A. Malkov}, Physica D 95, No. 1, 62--80 (1996; Zbl 0885.35111) Full Text: DOI arXiv OpenURL
Guo, Boling Finite dimensional behavior for weakly damped generalized KdV-Burgers equations. (English) Zbl 0826.35110 Northeast. Math. J. 10, No. 3, 309-319 (1994). MSC: 35Q53 37C70 PDF BibTeX XML Cite \textit{B. Guo}, Northeast. Math. J. 10, No. 3, 309--319 (1994; Zbl 0826.35110) OpenURL
Eden, Alp On Burgers’ original mathematical model of turbulence. (English) Zbl 0753.35076 Nonlinearity 3, No. 3, 557-566 (1990). Reviewer: H.Lange (Köln) MSC: 35Q53 76F99 PDF BibTeX XML Cite \textit{A. Eden}, Nonlinearity 3, No. 3, 557--566 (1990; Zbl 0753.35076) Full Text: DOI OpenURL