Zotos, Euaggelos E.; Suraj, Md Sanam; Aggarwal, Rajiv; Kaur, Charanpreet Basins of convergence in the collinear restricted four-body problem with a repulsive Manev potential. (English) Zbl 1448.65267 Appl. Appl. Math. 15, No. 1, 38-57 (2020). MSC: 65P10 70F10 37M25 PDF BibTeX XML Cite \textit{E. E. Zotos} et al., Appl. Appl. Math. 15, No. 1, 38--57 (2020; Zbl 1448.65267) Full Text: Link
Zotos, Euaggelos E.; Sanam Suraj, Md.; Mittal, Amit; Aggarwal, Rajiv Determining the properties of the basins of convergence in the generalized Hénon-Heiles system. (English) Zbl 1432.37070 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 1, Article ID 2050007, 10 p. (2020). MSC: 37E30 37F10 28A80 37C70 PDF BibTeX XML Cite \textit{E. E. Zotos} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 1, Article ID 2050007, 10 p. (2020; Zbl 1432.37070) Full Text: DOI
Zotos, Euaggelos E.; Suraj, Md Sanam; Mittal, Amit; Aggarwal, Rajiv Determining the basins of convergence in the Sitnikov three-body problem with a repulsive quasi-homogeneous Manev-type potential. (English) Zbl 1447.37073 Nonlinear Stud. 26, No. 4, 1027-1044 (2019). MSC: 37M22 37N05 70F07 28A80 65P10 PDF BibTeX XML Cite \textit{E. E. Zotos} et al., Nonlinear Stud. 26, No. 4, 1027--1044 (2019; Zbl 1447.37073) Full Text: Link
Zotos, Euaggelos E.; Suraj, Md Sanam; Aggarwal, Rajiv; Mittal, Amit On the convergence dynamics of the Sitnikov problem with non-spherical primaries. (English) Zbl 1415.70026 Int. J. Appl. Comput. Math. 5, No. 2, Paper No. 43, 12 p. (2019). MSC: 70F07 65H05 PDF BibTeX XML Cite \textit{E. E. Zotos} et al., Int. J. Appl. Comput. Math. 5, No. 2, Paper No. 43, 12 p. (2019; Zbl 1415.70026) Full Text: DOI
Zotos, Euaggelos E.; Suraj, Md Sanam; Mittal, Amit; Aggarwal, Rajiv Comparing the geometry of the basins of attraction, the speed and the efficiency of several numerical methods. (English) Zbl 1408.65027 Int. J. Appl. Comput. Math. 4, No. 4, Paper No. 105, 18 p. (2018). Reviewer: Nikolay Kyurkchiev (Plovdiv) MSC: 65H05 65-02 PDF BibTeX XML Cite \textit{E. E. Zotos} et al., Int. J. Appl. Comput. Math. 4, No. 4, Paper No. 105, 18 p. (2018; Zbl 1408.65027) Full Text: DOI
Zotos, Euaggelos E.; Satya, Satyendra Kumar; Aggarwal, Rajiv; Md Suraj, Sanam Basins of convergence in the circular Sitnikov four-body problem with nonspherical primaries. (English) Zbl 1390.70027 Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 5, Article ID 1830016, 24 p. (2018). MSC: 70F10 70G60 70-08 PDF BibTeX XML Cite \textit{E. E. Zotos} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 5, Article ID 1830016, 24 p. (2018; Zbl 1390.70027) Full Text: DOI
Zotos, Euaggelos E. Investigating the Newton-Raphson basins of attraction in the restricted three-body problem with modified Newtonian gravity. (English) Zbl 1430.70039 J. Appl. Math. Comput. 56, No. 1-2, 53-71 (2018). MSC: 70F07 37C70 37N05 PDF BibTeX XML Cite \textit{E. E. Zotos}, J. Appl. Math. Comput. 56, No. 1--2, 53--71 (2018; Zbl 1430.70039) Full Text: DOI
Mathias, A. C.; Viana, R. L.; Kroetz, T.; Caldas, I. L. Fractal structures in the chaotic motion of charged particles in a magnetized plasma under the influence of drift waves. (English) Zbl 1400.78004 Physica A 469, 681-694 (2017). MSC: 78A25 37D45 34H10 PDF BibTeX XML Cite \textit{A. C. Mathias} et al., Physica A 469, 681--694 (2017; Zbl 1400.78004) Full Text: DOI
Zotos, Euaggelos E. Orbit classification in the Hill problem. I: The classical case. (English) Zbl 1430.70094 Nonlinear Dyn. 89, No. 2, 901-923 (2017). MSC: 70M20 PDF BibTeX XML Cite \textit{E. E. Zotos}, Nonlinear Dyn. 89, No. 2, 901--923 (2017; Zbl 1430.70094) Full Text: DOI
Zotos, Euaggelos E. Basins of convergence of equilibrium points in the generalized Hill problem. (English) Zbl 1409.37083 Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 12, Article ID 1730043, 18 p. (2017). Reviewer: Alois Steindl (Wien) MSC: 37M20 65L20 65L07 PDF BibTeX XML Cite \textit{E. E. Zotos}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 12, Article ID 1730043, 18 p. (2017; Zbl 1409.37083) Full Text: DOI
Zotos, Euaggelos E. Investigating the planar circular restricted three-body problem with strong gravitational field. (English) Zbl 1375.70034 Meccanica 52, No. 9, 1995-2021 (2017). MSC: 70F07 70F15 PDF BibTeX XML Cite \textit{E. E. Zotos}, Meccanica 52, No. 9, 1995--2021 (2017; Zbl 1375.70034) Full Text: DOI
Jakimowicz, Aleksander Fundamental sources of economic complexity. (English) Zbl 1401.91261 Int. J. Nonlinear Sci. Numer. Simul. 17, No. 1, 1-13 (2016). MSC: 91B55 91B62 37N40 37D45 PDF BibTeX XML Cite \textit{A. Jakimowicz}, Int. J. Nonlinear Sci. Numer. Simul. 17, No. 1, 1--13 (2016; Zbl 1401.91261) Full Text: DOI
de Assis, Sheila C.; Terra, Maisa O. Escape dynamics and fractal basin boundaries in the planar Earth-Moon system. (English) Zbl 1415.70027 Celest. Mech. Dyn. Astron. 120, No. 2, 105-130 (2014). MSC: 70F10 37J30 70H08 PDF BibTeX XML Cite \textit{S. C. de Assis} and \textit{M. O. Terra}, Celest. Mech. Dyn. Astron. 120, No. 2, 105--130 (2014; Zbl 1415.70027) Full Text: DOI
Zambrano, S.; Sanjuán, M. A. F. Partial control of a system with fractal basin boundaries. (English) Zbl 1187.37129 Todorov, Michail D. (ed.), Applications of mathematics in engineering and economics ’34. Proceedings of the 34th international conference (AMEE ’08), Sozopol, Bulgaria, 8–14 June 2008. Melville, NY: American Institute of Physics (AIP) (ISBN 978-0-7354-0598-1/hbk). AIP Conference Proceedings 1067, 94-102 (2008). Reviewer: George S. Stavrakakis (Chania) MSC: 37N35 28A80 PDF BibTeX XML Cite \textit{S. Zambrano} and \textit{M. A. F. Sanjuán}, AIP Conf. Proc. 1067, 94--102 (2008; Zbl 1187.37129) Full Text: DOI
Edmunds, Jeffrey L. Multiple attractors in a discrete competition model. (English) Zbl 1147.92322 Theor. Popul. Biol. 72, No. 3, 379-388 (2007). MSC: 92D40 39A11 37N25 PDF BibTeX XML Cite \textit{J. L. Edmunds}, Theor. Popul. Biol. 72, No. 3, 379--388 (2007; Zbl 1147.92322) Full Text: DOI
Nusse, Helena E.; Yorke, James A. Bifurcations of basins of attraction from the view point of prime ends. (English) Zbl 1118.37028 Topology Appl. 154, No. 13, 2567-2579 (2007). MSC: 37G35 37C70 37E30 PDF BibTeX XML Cite \textit{H. E. Nusse} and \textit{J. A. Yorke}, Topology Appl. 154, No. 13, 2567--2579 (2007; Zbl 1118.37028) Full Text: DOI
Awrejcewicz, J.; Dzyubak, O.; Dzyubak, L. Chaos in the three-well potential system. (English) Zbl 1082.70010 Mech. Res. Commun. 31, No. 3, 287-294 (2004). MSC: 70K55 70K05 37N05 PDF BibTeX XML Cite \textit{J. Awrejcewicz} et al., Mech. Res. Commun. 31, No. 3, 287--294 (2004; Zbl 1082.70010) Full Text: DOI
Yakubu, Abdul-Aziz Multiple attractors in juvenile-adult single species models. (English) Zbl 1319.92053 J. Difference Equ. Appl. 9, No. 12, 1083-1098 (2003). MSC: 92D25 34C60 37N25 92D15 PDF BibTeX XML Cite \textit{A.-A. Yakubu}, J. Difference Equ. Appl. 9, No. 12, 1083--1098 (2003; Zbl 1319.92053) Full Text: DOI
Todd, M. D.; Virgin, L. N. An experimental verification of basin metamorphoses in a nonlinear mechanical system. (English) Zbl 0919.70016 Int. J. Bifurcation Chaos Appl. Sci. Eng. 7, No. 6, 1337-1357 (1997). MSC: 70K50 37D45 37C70 PDF BibTeX XML Cite \textit{M. D. Todd} and \textit{L. N. Virgin}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 7, No. 6, 1337--1357 (1997; Zbl 0919.70016) Full Text: DOI
Iobe, Atsushi; Abe, Yutaka Fractal-like basin boundaries and indeterminate transition in nonlinear resonance of a Toda oscillator. (English) Zbl 0899.58046 Int. J. Bifurcation Chaos Appl. Sci. Eng. 7, No. 7, 1673-1678 (1997). MSC: 37G99 PDF BibTeX XML Cite \textit{A. Iobe} and \textit{Y. Abe}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 7, No. 7, 1673--1678 (1997; Zbl 0899.58046) Full Text: DOI
Chawanya, Tsuyoshi Coexistence of infinitely many attractors in a simple flow. (English) Zbl 0925.58049 Physica D 109, No. 3-4, 201-241 (1997). MSC: 37C70 37D45 37N99 34C37 92D25 PDF BibTeX XML Cite \textit{T. Chawanya}, Physica D 109, No. 3--4, 201--241 (1997; Zbl 0925.58049) Full Text: DOI
Soliman, Mohamed S. Global stability properties of equilibria, periodic, and chaotic solutions. (English) Zbl 0857.34054 Appl. Math. Modelling 20, No. 7, 486-500 (1996). Reviewer: Ding Tongren (Beijing) MSC: 34D20 34C15 37C75 34C25 34C28 34D45 PDF BibTeX XML Cite \textit{M. S. Soliman}, Appl. Math. Modelling 20, No. 7, 486--500 (1996; Zbl 0857.34054) Full Text: DOI
Fazekas, F. Fractal concepts and control algorithms for chaotic motions. (English) Zbl 0929.37004 Proceedings of the sixth symposium of mathematics and its applications, Timişoara, Romania, November 3–4, 1995. Timişoara: Editura Mirton, 63-68 (1995). Reviewer: Messoud Efendiev (Berlin) MSC: 37C45 37L30 PDF BibTeX XML Cite \textit{F. Fazekas}, in: Proceedings of the sixth symposium of mathematics and its applications, Timişoara, Romania, November 3--4, 1995. Timişoara: Editura Mirton. 63--68 (1995; Zbl 0929.37004)
Peinke, Joachim On a fractal model for turbulence. (English) Zbl 0804.76047 Z. Naturforsch. A 48, No. 5-6, 646-650 (1993). MSC: 76F99 28A80 PDF BibTeX XML Cite \textit{J. Peinke}, Z. Nat.forsch., A: Phys. Sci. 48, No. 5--6, 646--650 (1993; Zbl 0804.76047) Full Text: DOI
Androulakakis, Stavros P.; Hartley, Tom T.; Greenspan, Bernard; Qammar, Helen Practical considerations on the calculation of the uncertainty exponent and the fractal dimension of basin boundaries. (English) Zbl 0876.58026 Int. J. Bifurcation Chaos Appl. Sci. Eng. 1, No. 2, 327-333 (1991). MSC: 37C70 28A25 37D45 PDF BibTeX XML Cite \textit{S. P. Androulakakis} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 1, No. 2, 327--333 (1991; Zbl 0876.58026) Full Text: DOI
Ueda, Yoshisuke Survey of regular and chaotic phenomena in the forced Duffing oscillator. (English) Zbl 0748.34022 Chaos Solitons Fractals 1, No. 3, 199-231 (1991). Reviewer: Á.Bosznay (Budapest) MSC: 34C15 37-XX 70K50 34C23 34D45 PDF BibTeX XML Cite \textit{Y. Ueda}, Chaos Solitons Fractals 1, No. 3, 199--231 (1991; Zbl 0748.34022) Full Text: DOI
Bishop, Steve R.; Virgin, Lawrence N.; Leung, Dennis L. M. On the computation of domains of attraction during the dynamic modelling of oscillating systems. (English) Zbl 0657.70025 Appl. Math. Modelling 12, No. 5, 503-516 (1988). MSC: 70K30 PDF BibTeX XML Cite \textit{S. R. Bishop} et al., Appl. Math. Modelling 12, No. 5, 503--516 (1988; Zbl 0657.70025) Full Text: DOI
Eykholt, R.; Umberger, D. K. Relating the various scaling exponents used to characterize fat fractals in nonlinear dynamical systems. (English) Zbl 0656.58018 Physica D 30, No. 1-2, 43-60 (1988). Reviewer: K.Brod MSC: 37B99 37D45 37A99 PDF BibTeX XML Cite \textit{R. Eykholt} and \textit{D. K. Umberger}, Physica D 30, No. 1--2, 43--60 (1988; Zbl 0656.58018) Full Text: DOI