Tang, Zhijun; Yan, Senlin; Xu, Yao; Zhong, Chengkui Finite-dimensionality of attractors for wave equations with degenerate nonlocal damping. (English) Zbl 07906828 Discrete Contin. Dyn. Syst. 45, No. 1, 219-247 (2025). MSC: 37L30 35L05 35L71 35L20 35B41 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Kumar, D.; Chand, A. K. B.; Massopust, P. R. Approximation with fractal radial basis functions. (English) Zbl 07901832 J. Comput. Appl. Math. 454, Article ID 116200, 21 p. (2025). MSC: 28A80 41A05 41A29 65D12 × Cite Format Result Cite Review PDF Full Text: DOI
Armonaite, Karolina; Conti, Livio; Olejarczyk, Elzbieta; Tecchio, Franca Insights on neural signal analysis with Higuchi fractal dimension. (English) Zbl 07956309 Commun. Appl. Ind. Math. 15, No. 2, 17-27 (2024). MSC: 92-XX 37-XX × Cite Format Result Cite Review PDF Full Text: DOI
Kern, Peter; Pleschberger, Leonard Parabolic fractal geometry of stable Lévy processes with drift. (English) Zbl 07954199 J. Fractal Geom. 11, No. 3-4, 343-371 (2024). MSC: 60G51 28A78 28A80 60G17 60G18 60G52 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Block Gorman, Alexi; Schulz, Chris Fractal dimensions of \(k\)-automatic sets. (English) Zbl 07948997 J. Symb. Log. 89, No. 3, 1128-1157 (2024). MSC: 03D05 28A80 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Pratsiovytyi, M. V.; Lysenko, I. M.; Ratushniak, S. P.; Tsokolenko, O. A. Distribution of unit mass on one fractal self-similar web-type curve. (English) Zbl 07938359 Mat. Stud. 62, No. 1, 21-30 (2024). MSC: 28A80 28A78 30G35 × Cite Format Result Cite Review PDF Full Text: DOI
Cui, Hongyong; Figueroa-López, Rodiak N.; Langa, José A.; Nascimento, Marcelo J. D. Forward attraction of nonautonomous dynamical systems and applications to Navier-Stokes equations. (English) Zbl 07935907 SIAM J. Appl. Dyn. Syst. 23, No. 3, 2407-2443 (2024). MSC: 37L30 37L05 37C60 35Q30 × Cite Format Result Cite Review PDF Full Text: DOI
David, Claire; Lapidus, Michel L. Weierstrass fractal drums. II: Towards a fractal cohomology. (English) Zbl 07930930 Math. Z. 308, No. 2, Paper No. 35, 56 p. (2024). MSC: 11M36 11M41 28A75 28A80 35R02 53A70 55N10 55N20 × Cite Format Result Cite Review PDF Full Text: DOI
Abril, Leidy M. L.; Oliveira, Erneson A.; Moreira, André A.; Andrade, José S.; Herrmann, Hans J. Coastlines violate the Schramm-Loewner evolution. (English) Zbl 07930378 Physica A 653, Article ID 130066, 11 p. (2024). MSC: 82-XX × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Priyadarshi, Amit; Verma, Manuj On the decomposition of functions as sum and product in terms of various fractal dimensions. (English) Zbl 07928821 Real Anal. Exch. 49, No. 2, 299-314 (2024). MSC: 28A80 54C05 37C45 × Cite Format Result Cite Review PDF Full Text: DOI Link
Hu, Wenjie; Caraballo, Tomás Exponential attractors for a nonlocal delayed reaction-diffusion equation on an unbounded domain. (English) Zbl 07928597 Proc. Am. Math. Soc. 152, No. 11, 4785-4797 (2024). MSC: 35B41 35B40 35K15 35K57 35R09 37G35 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Yu, Binyan; Liang, Yongshun; Liu, Jia The intrinsic connection between the fractal dimension of a real number sequence and convergence or divergence of the series formed by it. (English) Zbl 07922112 J. Math. Anal. Appl. 539, No. 1, Part 1, Article ID 128485, 19 p. (2024). MSC: 28Axx 37Cxx 37Dxx × Cite Format Result Cite Review PDF Full Text: DOI
Sabelfeld, Karl K.; Glazkov, Stepan Simulation of doubly stochastic Poisson point processes and application to nucleation of nanocrystals and evaluation of exciton fluxes. (English) Zbl 07922098 Monte Carlo Methods Appl. 30, No. 3, 315-330 (2024). MSC: 65C20 60G55 82D05 28A80 × Cite Format Result Cite Review PDF Full Text: DOI
Wang, Kang-Le A novel computational approach to the local fractional Lonngren wave equation in fractal media. (English) Zbl 07915219 Math. Sci., Springer 18, No. 3, 413-418 (2024). MSC: 35C07 35R11 × Cite Format Result Cite Review PDF Full Text: DOI
Yu, Binyan; Liang, Yongshun On the Katugampola fractional integral and dimensional analysis of the fractal basin boundary for a random dynamical system. (English) Zbl 07908460 Physica D 468, Article ID 134289, 16 p. (2024). MSC: 26A33 28A80 37C45 × Cite Format Result Cite Review PDF Full Text: DOI
Lutz, Jack H.; Qi, Renrui; Yu, Liang The point-to-set principle and the dimensions of Hamel bases. (English) Zbl 07903167 Computability 13, No. 2, 105-112 (2024). MSC: 03Dxx × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Pandey, Megha; Som, Tanmoy; Verma, Saurabh Set-valued \(\alpha \)-fractal functions. (English) Zbl 07901577 Constr. Approx. 60, No. 1, 105-133 (2024). MSC: 28A80 41A10 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Xiao, Jian-Ci Estimates on the topological Hausdorff dimensions of fractal squares. (English) Zbl 07900737 Topology Appl. 355, Article ID 109003, 14 p. (2024). MSC: 28A80 54A05 × Cite Format Result Cite Review PDF Full Text: DOI
Li, Fang; You, Bo Global attractor of the Euler-Bernoulli equations with a localized nonlinear damping. (English) Zbl 07896604 Discrete Contin. Dyn. Syst. 44, No. 9, 2641-2659 (2024). MSC: 35B41 37L30 35L35 35L76 35R09 × Cite Format Result Cite Review PDF Full Text: DOI
Miguel, Antonio F. Low dissipative configuration in flow networks subject to constraints. (English) Zbl 1542.76016 Physica D 467, Article ID 134269, 5 p. (2024). MSC: 76B75 × Cite Format Result Cite Review PDF Full Text: DOI
Gašpar, František; Kukal, Jaromír Butterfly diffusion over sparse point sets. (English) Zbl 07893009 Physica A 646, Article ID 129893, 7 p. (2024). MSC: 82-XX × Cite Format Result Cite Review PDF Full Text: DOI
Cheng, Qingjin; Luo, Chunyan Analytical properties, fractal dimensions and related inequalities of \((k, h)\)-Riemann-Liouville fractional integrals. (English) Zbl 07890850 J. Comput. Appl. Math. 450, Article ID 115999, 19 p. (2024). MSC: 26A33 26B30 28A78 28A80 × Cite Format Result Cite Review PDF Full Text: DOI
Kim, Taehyeong; Park, Jaemin On a lower bound of Hausdorff dimension of weighted singular vectors. (English) Zbl 07890748 Mathematika 70, No. 3, Article ID e12252, 31 p. (2024). Reviewer: Symon Serbenyuk (Kyïv) MSC: 11J13 11K55 37A17 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Li, Yanjiao; Li, Xiaojun Fractal dimension of random attractors for nonautonomous stochastic strongly damped wave equations on \(\mathbb{R}^N\). (English) Zbl 07869461 Math. Methods Appl. Sci. 47, No. 10, 8105-8134 (2024). MSC: 37L55 35B40 37B55 35B41 × Cite Format Result Cite Review PDF Full Text: DOI
Costa, Fernando jun. Self-similar fractals and common hypercyclicity. (English) Zbl 07852278 J. Funct. Anal. 287, No. 3, Article ID 110473, 36 p. (2024). MSC: 47A16 47B37 28A80 28A78 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Hirano, Mitsuhiro; Nagahama, Hiroyuki Corrigendum to: “Informative fractal dimension associated with nonmetricity in information geometry”. (English) Zbl 07849158 Physica A 639, Article ID 129652, 3 p. (2024). MSC: 82-XX × Cite Format Result Cite Review PDF Full Text: DOI
Gurubachan; Chandramouli, V. V. M. S.; Verma, S. Fractal dimension of \(\alpha\)-fractal functions without endpoint conditions. (English) Zbl 07846858 Mediterr. J. Math. 21, No. 3, Paper No. 71, 23 p. (2024). MSC: 28A80 46E15 47H09 × Cite Format Result Cite Review PDF Full Text: DOI
Glasscock, Daniel; Moreira, Joel; Richter, Florian K. Additive and geometric transversality of fractal sets in the integers. (English) Zbl 1541.11017 J. Lond. Math. Soc., II. Ser. 109, No. 5, Article ID e12902, 55 p. (2024). Reviewer: Jörg Neunhäuserer (Goslar) MSC: 11A63 28A80 11K55 37C45 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Cheraghalizadeh, Jafar; Luković, Mirko; Najafi, Morteza N. Simulating cumulus clouds based on self-organized criticality. (English) Zbl 07845798 Physica A 636, Article ID 129553, 10 p. (2024). MSC: 82-XX × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Wang, Renhai; Guo, Boling; Liu, Wei; Nguyen, Da Tien Fractal dimension of random invariant sets and regular random attractors for stochastic hydrodynamical equations. (English) Zbl 1545.37065 Math. Ann. 389, No. 1, 671-718 (2024). MSC: 37L55 37L30 60H15 × Cite Format Result Cite Review PDF Full Text: DOI
Le Tran Tinh Finite-dimensional global attractor for the three-dimensional viscous Camassa-Holm equations with fractional diffusion on bounded domains. (English) Zbl 1537.35096 Discrete Contin. Dyn. Syst., Ser. B 29, No. 7, 2880-2902 (2024). MSC: 35B41 35D30 35R11 76F20 × Cite Format Result Cite Review PDF Full Text: DOI
Verma, Manuj; Priyadarshi, Amit Fractal functions using weak contraction theory in some function spaces and generalized \(\alpha\)-fractal functions. (English) Zbl 07840367 Jha, Sangita (ed.) et al., Recent developments in fractal geometry and dynamical systems. AMS special session. Fractal geometry and dynamical systems, virtual, May 14–15, 2022. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 797, 219-236 (2024). MSC: 28A80 33C47 41A30 × Cite Format Result Cite Review PDF Full Text: DOI
Chandra, Subhash; Abbas, Syed On fractal dimension of the graph of nonstationary fractal interpolation function. (English) Zbl 07840364 Jha, Sangita (ed.) et al., Recent developments in fractal geometry and dynamical systems. AMS special session. Fractal geometry and dynamical systems, virtual, May 14–15, 2022. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 797, 173-187 (2024). MSC: 28A80 41A30 33C47 × Cite Format Result Cite Review PDF Full Text: DOI
Yu, Binyan; Liang, Yongshun On two special classes of fractal surfaces with certain Hausdorff and Box dimensions. (English) Zbl 1545.28003 Appl. Math. Comput. 468, Article ID 128509, 22 p. (2024). MSC: 28A80 54C05 × Cite Format Result Cite Review PDF Full Text: DOI
Bosch, Tillmann; Winter, Steffen On the radial growth of ballistic aggregation and other aggregation models. (English) Zbl 07832558 J. Stat. Phys. 191, No. 4, Paper No. 42, 24 p. (2024). Reviewer: Nenad Manojlović (Faro) MSC: 82B24 60J10 60D05 28A80 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Qin, Yuming; Wang, Hongli; Yang, Bin Fractal dimension of global attractors for a Kirchhoff wave equation with a strong damping and a memory term. (English) Zbl 1536.35322 Asymptotic Anal. 137, No. 1-2, 85-95 (2024). MSC: 35Q74 74K05 74B20 35B33 35B41 35B40 35L05 28A80 × Cite Format Result Cite Review PDF Full Text: DOI
López-Lázaro, Heraclio; Nascimento, Marcelo J. D.; Takaessu, Carlos R. jun.; Azevedo, Vinicius T. Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain. (English) Zbl 1536.35087 J. Differ. Equations 393, 58-101 (2024). MSC: 35B41 35K20 35K58 35R37 37L30 35Q79 × Cite Format Result Cite Review PDF Full Text: DOI
Ren, Haojie A dichotomy for the dimension of SRB measure. (English) Zbl 07826186 Adv. Math. 442, Article ID 109587, 41 p. (2024). Reviewer: Luis Hernández Corbato (Madrid) MSC: 37C45 37C40 37E30 28A78 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Baker, Simon; Koivusalo, Henna Quantitative recurrence and the shrinking target problem for overlapping iterated function systems. (English) Zbl 07826167 Adv. Math. 442, Article ID 109538, 65 p. (2024). MSC: 28A80 28D05 37C45 60F20 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Lutz, Neil; Stull, D. M. Projection theorems using effective dimension. (English) Zbl 07825549 Inf. Comput. 297, Article ID 105137, 21 p. (2024). MSC: 68Q30 × Cite Format Result Cite Review PDF Full Text: DOI
Xu, Ling; Liu, Runjie; Bai, Xue Random exponential attractor for stochastic non-autonomous suspension bridge equation with linear multiplicative white noise. (English) Zbl 07808683 J. Math. Res. Appl. 44, No. 1, 81-112 (2024). MSC: 60H15 35Q35 35B40 × Cite Format Result Cite Review PDF Full Text: DOI
Pasupathi, R.; Miculescu, Radu A very general framework for fractal interpolation functions. (English) Zbl 07808100 J. Math. Anal. Appl. 534, No. 2, Article ID 128093, 17 p. (2024). MSC: 28Axx 41Axx 26Axx × Cite Format Result Cite Review PDF Full Text: DOI
Liang, Yong Shun; Su, Wei Yi A geometric based connection between fractional calculus and fractal functions. (English) Zbl 1541.26025 Acta Math. Sin., Engl. Ser. 40, No. 2, 537-567 (2024). MSC: 26A33 28A80 × Cite Format Result Cite Review PDF Full Text: DOI
Ruan, Huo-Jun; Xiao, Jian-Ci Correction to: “Existence and box dimension of general recurrent fractal interpolation functions”. (English) Zbl 07802976 Bull. Aust. Math. Soc. 109, No. 1, 174-176 (2024). MSC: 28A80 41A30 × Cite Format Result Cite Review PDF Full Text: DOI
Figueroa-López, Rodiak N.; Nascimento, Marcelo J. D. Long-time behavior for evolution processes associated with non-autonomous nonlinear Schrödinger equation. (English) Zbl 1532.35422 J. Differ. Equations 386, 80-112 (2024). MSC: 35Q55 35Q41 35B40 35B41 35B45 28A80 35A01 35A02 × Cite Format Result Cite Review PDF Full Text: DOI
Hu, Wenjie; Caraballo, Tomás Hausdorff and fractal dimensions of attractors for functional differential equations in Banach spaces. (English) Zbl 1536.35084 J. Differ. Equations 385, 395-423 (2024). Reviewer: Pengyu Chen (Lanzhou) MSC: 35B41 35K90 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Hu, Wenjie; Caraballo, Tomás Pullback exponential attractors with explicit fractal dimensions for non-autonomous partial functional differential equations. (English) Zbl 1536.37074 J. Nonlinear Sci. 34, No. 1, Paper No. 27, 36 p. (2024). MSC: 37L25 37L30 37L55 37B55 60H15 35R60 × Cite Format Result Cite Review PDF Full Text: DOI
Das, Tushar; Fishman, Lior; Simmons, David; Urbański, Mariusz A variational principle in the parametric geometry of numbers. (English) Zbl 07794565 Adv. Math. 437, Article ID 109435, 130 p. (2024). Reviewer: Takao Komatsu (Hangzhou) MSC: 11K55 11J13 28A80 28A78 37A15 37A17 91A05 91A44 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Khan, Hasib; Rajpar, Altaf Hussain; Alzabut, Jehad; Aslam, Muhammad; Etemad, Sina; Rezapour, Shahram On a fractal-fractional-based modeling for influenza and its analytical results. (English) Zbl 1532.34057 Qual. Theory Dyn. Syst. 23, No. 2, Paper No. 70, 21 p. (2024). MSC: 34C60 92D30 34A08 34D10 × Cite Format Result Cite Review PDF Full Text: DOI
Bian, Junhao; Ma, Zhiqin; Wang, Chunping; Huang, Tao; Zeng, Chunhua Early warning for spatial ecological system: fractal dimension and deep learning. (English) Zbl 07791896 Physica A 633, Article ID 129401, 12 p. (2024). MSC: 82-XX × Cite Format Result Cite Review PDF Full Text: DOI
Koch, Gabriel S. Parabolic fractal dimension of forward-singularities for Navier-Stokes and liquid crystals inequalities. (English) Zbl 1531.35261 Discrete Contin. Dyn. Syst. 44, No. 3, 678-701 (2024). MSC: 35Q35 76A15 76D05 35A21 35K99 35D30 35B50 35B44 35B65 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Mondal, Anarul Islam; Jha, Sangita Non-stationary \(\alpha \)-fractal functions and their dimensions in various function spaces. (English) Zbl 07786249 Indag. Math., New Ser. 35, No. 1, 159-180 (2024). MSC: 28A80 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Ai, Chengfei; Shen, Jun Finite fractal dimensional pullback attractors for a class of 2D magneto-viscoelastic flows. (English) Zbl 1530.35203 Bull. Malays. Math. Sci. Soc. (2) 47, No. 1, Paper No. 17, 31 p. (2024). MSC: 35Q35 76A10 76W05 35B41 37L30 28A80 × Cite Format Result Cite Review PDF Full Text: DOI
El Jarroudi, Mustapha; El Merzguioui, Mhamed; Er-Riani, Mustapha; Lahrouz, Aadil; El Amrani, Jamal Dimension reduction analysis of a three-dimensional thin elastic plate reinforced with fractal ribbons. (English) Zbl 07930492 Eur. J. Appl. Math. 34, No. 4, 838-869 (2023). MSC: 35B40 28A80 35B27 35J20 × Cite Format Result Cite Review PDF Full Text: DOI
Porter, Christopher P. Length functions and the dimension of points in self-similar fractal trees. (English) Zbl 07883499 IEEE Trans. Inf. Theory 69, No. 10, 6221-6230 (2023). MSC: 68Q30 28A80 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Pollicott, Mark; Sewell, Benedict An upper bound on the dimension of the Rauzy gasket. (Une borne supérieure de la dimension de la baderne de Rauzy.) (English. French summary) Zbl 07834025 Bull. Soc. Math. Fr. 151, No. 4, 595-611 (2023). MSC: 28A80 37G35 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Ishiki, Yoshito Fractal dimensions in the Gromov-Hausdorff space. (English) Zbl 07826888 Bull. Pol. Acad. Sci., Math. 71, No. 2, 147-168 (2023). Reviewer: Jörg Neunhäuserer (Goslar) MSC: 54E35 28A78 28A80 54F45 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Varjú, Péter P. Self-similar sets and measures on the line. (English) Zbl 07823079 Beliaev, Dmitry (ed.) et al., International congress of mathematicians 2022, ICM 2022, Helsinki, Finland, virtual, July 6–14, 2022. Volume 5. Sections 9–11. Berlin: European Mathematical Society (EMS). 3610-3634 (2023). MSC: 28A80 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Pandey, Megha; Som, Tanmoy; Verma, Saurabh Dimensional analysis of mixed Riemann-Liouville fractional integral of vector-valued functions. (English) Zbl 1532.28013 Som, Tanmoy (ed.) et al., Applied analysis, optimization and soft computing. ICNAAO-2021, Varanasi, India, December 21–23, 2021. Singapore: Springer. Springer Proc. Math. Stat. 419, 93-109 (2023). MSC: 28A80 26A33 26B30 × Cite Format Result Cite Review PDF Full Text: DOI
Verma, Manuj; Priyadarshi, Amit; Verma, Saurabh Fractal dimension for a class of complex-valued fractal interpolation functions. (English) Zbl 1532.28017 Som, Tanmoy (ed.) et al., Applied analysis, optimization and soft computing. ICNAAO-2021, Varanasi, India, December 21–23, 2021. Singapore: Springer. Springer Proc. Math. Stat. 419, 63-77 (2023). MSC: 28A80 41A30 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Cholewa, Jan W.; Czaja, Radosław Exponential attractor for the Cahn-Hilliard-Oono equation in \(\mathbb{R}^N\). (English) Zbl 1536.37076 Topol. Methods Nonlinear Anal. 62, No. 2, 485-508 (2023). MSC: 37L30 35B41 35K58 35K25 × Cite Format Result Cite Review PDF Full Text: DOI Link
Rodríguez Velásquez, Javier Oswaldo; Prieto Bohórquez, Signed Esperanza; Correa Herrera, Sandra Catalina; Rodríguez Correa, Dharma; Rodríguez, Sefirot; Rodríguez, Jehoshua; Rodríguez, Johanan; Soracipa Muñoz, Ribká; Jattin Balcázar, Jairo Javier; Guzmán de la Rosa, Esmeralda Mathematical characterization of the statistical fractal behavior of the distance distribution between consecutive prime numbers. (Caracterización matemática del comportamiento fractal estadístico de la distribución de distancias entre números primos consecutivos.) (Spanish. English summary) Zbl 1523.11008 Rev. Invest. Oper. 44, No. 1, 45-50 (2023). MSC: 11A41 28A80 62P35 × Cite Format Result Cite Review PDF Full Text: Link
Kumar, D.; Chand, A. K. B.; Massopust, P. R. Multivariate zipper fractal functions. (English) Zbl 07762548 Numer. Funct. Anal. Optim. 44, No. 14, 1538-1569 (2023). MSC: 28A80 41A63 41A05 41A29 41A30 65D05 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Bárány, Balázs; Simon, Károly; Solomyak, Boris Self-similar and self-affine sets and measures. (English) Zbl 1543.28001 Mathematical Surveys and Monographs 276. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-7046-3/pbk; 978-1-4704-7550-5/ebook). xii, 451 p. (2023). Reviewer: Peter Massopust (München) MSC: 28-02 28A78 28A80 28D05 28D20 37C25 37C40 37C45 × Cite Format Result Cite Review PDF Full Text: DOI
Jiang, Lai; Ruan, Huo-Jun Box dimension of generalized affine fractal interpolation functions. (English) Zbl 1543.28004 J. Fractal Geom. 10, No. 3-4, 279-302 (2023). Reviewer: Peter Massopust (München) MSC: 28A80 41A30 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Verma, Manuj; Priyadarshi, Amit New type of fractal functions for the general data sets. (English) Zbl 1543.28006 Acta Appl. Math. 187, Paper No. 12, 23 p. (2023). Reviewer: Peter Massopust (München) MSC: 28A80 33C47 41A05 × Cite Format Result Cite Review PDF Full Text: DOI
Verma, Manuj; Priyadarshi, Amit; Verma, Saurabh Analytical and dimensional properties of fractal interpolation functions on the Sierpiński gasket. (English) Zbl 1522.28011 Fract. Calc. Appl. Anal. 26, No. 3, 1294-1325 (2023). MSC: 28A80 26A33 28A78 41A05 × Cite Format Result Cite Review PDF Full Text: DOI
Wang, Jing; Ma, Qiaozhen; Zhou, Wenxue; Yao, Xiaobin Dynamic of the nonclassical diffusion equation with memory. (English) Zbl 1522.35097 Bound. Value Probl. 2023, Paper No. 79, 22 p. (2023). MSC: 35B41 35B25 35K20 35K58 35K70 35R09 45K05 × Cite Format Result Cite Review PDF Full Text: DOI
Feng, De-Jun; Lo, Chiu-Hong; Ma, Cai-Yun Dimensions of projected sets and measures on typical self-affine sets. (English) Zbl 07741087 Adv. Math. 431, Article ID 109237, 62 p. (2023). MSC: 28A80 37C45 31A15 49Q15 60B05 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Verma, Manuj; Priyadarshi, Amit Dimensions of new fractal functions and associated measures. (English) Zbl 07736710 Numer. Algorithms 94, No. 2, 817-846 (2023). MSC: 65-XX 28A80 33C47 41A30 × Cite Format Result Cite Review PDF Full Text: DOI
Uddin, Md. Jasim; Rana, S. M. Sohel Chaotic dynamics of the fractional order Schnakenberg model and its control. (English) Zbl 1527.37100 Math. Appl. Sci. Eng. 4, No. 1, 40-60 (2023). MSC: 37N35 37C25 34A08 34H10 34H05 26A33 39A28 39A33 93B52 × Cite Format Result Cite Review PDF Full Text: DOI
Han, Pigong; Lei, Keke; Liu, Chenggang; Wang, Xuewen Global attractors for a tropical climate model. (English) Zbl 07729500 Appl. Math., Praha 68, No. 3, 329-356 (2023). MSC: 35Q35 35B40 76D07 × Cite Format Result Cite Review PDF Full Text: DOI
Yu, Binyan; Liang, Yongshun Fractal dimension variation of continuous functions under certain operations. (English) Zbl 1532.28018 Fractals 31, No. 5, Article ID 2350044, 16 p. (2023). MSC: 28A80 28A78 26A33 × Cite Format Result Cite Review PDF Full Text: DOI
Li, Kun Yuan; Yao, Kui; Zhang, Kai On the fractional derivative of a type of self-affine curves. (English) Zbl 1532.26003 Fractals 31, No. 5, Article ID 2350039, 7 p. (2023). MSC: 26A33 28A80 28A78 × Cite Format Result Cite Review PDF Full Text: DOI
Hirano, Mitsuhiro; Nagahama, Hiroyuki Informative fractal dimension associated with nonmetricity in information geometry. (English) Zbl 07723558 Physica A 625, Article ID 129017, 15 p. (2023); corrigendum ibid. 639, Article ID 129652, 3 p. (2024). MSC: 82-XX × Cite Format Result Cite Review PDF Full Text: DOI
Tang, W.; Wang, Z. Y. Weyl’s asymptotic formula for fractal Laplacians defined by a class of self-similar measures with overlaps. (English) Zbl 1538.28034 Anal. Math. 49, No. 2, 661-679 (2023). Reviewer: Włodzimierz Ślęzak (Bydgoszcz) MSC: 28A80 35P20 35J05 43A05 47A75 × Cite Format Result Cite Review PDF Full Text: DOI
Ren, Haojie Box dimension of the graphs of the generalized Weierstrass-type functions. (English) Zbl 07721216 Discrete Contin. Dyn. Syst. 43, No. 10, 3830-3838 (2023). MSC: 28A80 37D45 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Agrawal, V.; Som, T.; Verma, S. A note on stability and fractal dimension of bivariate \(\alpha\)-fractal functions. (English) Zbl 1522.65021 Numer. Algorithms 93, No. 4, 1811-1833 (2023). MSC: 65D15 28A80 28A78 × Cite Format Result Cite Review PDF Full Text: DOI
Cheng, Yu; Wan, Zhenping; Bu, Yingbin; Zhou, Peiyang A three-dimensional fractal contact model of rough surfaces considering strain hardening. (English) Zbl 1520.74064 Acta Mech. 234, No. 9, 4259-4268 (2023). MSC: 74M15 28A80 × Cite Format Result Cite Review PDF Full Text: DOI
Ban, Ailing Fractal dimension of random attractor for a stochastic lattice system with white noise. (English) Zbl 1540.37101 Acta Appl. Math. 186, Paper No. 1, 15 p. (2023). MSC: 37L55 37L30 37L60 35B41 35B40 × Cite Format Result Cite Review PDF Full Text: DOI
Legaria-Peña, Juan Uriel; Sánchez-Morales, Félix; Cortés-Poza, Yuriria Evaluation of entropy and fractal dimension as biomarkers for tumor growth and treatment response using cellular automata. (English) Zbl 1518.92045 J. Theor. Biol. 564, Article ID 111462, 10 p. (2023). MSC: 92C32 92C50 28A80 68Q80 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Da, Nguyen Tien; Van Loi, Do On the random attractor for stochastic 2D hydrodynamical type equations with additive white noise. (English) Zbl 1524.60142 Stochastics 95, No. 3, 356-376 (2023). MSC: 60H15 28A78 28A80 × Cite Format Result Cite Review PDF Full Text: DOI
Shamsyeh Zahedi, Moosarreza R.; Mohammadi, Siavash; Heydari, Aghileh Kaiser window efficiency in calculating the exact fractal dimension by the power spectrum method. (English) Zbl 1538.42084 J. Math. Ext. 17, No. 2, Paper No. 3, 25 p. (2023). MSC: 42C40 28A80 × Cite Format Result Cite Review PDF Full Text: DOI
Jetti, Yaswanth Sai; Porcu, Emilio; Ostoja-Starzewski, Martin New decouplers of fractal dimension and Hurst effects. (English) Zbl 1515.60155 Z. Angew. Math. Phys. 74, No. 3, Paper No. 123, 12 p. (2023). MSC: 60G60 62P35 × Cite Format Result Cite Review PDF Full Text: DOI
Arulperumjothi, M.; Klavžar, Sandi; Prabhu, S. Redefining fractal cubic networks and determining their metric dimension and fault-tolerant metric dimension. (English) Zbl 1545.05061 Appl. Math. Comput. 452, Article ID 128037, 6 p. (2023). MSC: 05C12 05C69 × Cite Format Result Cite Review PDF Full Text: DOI
O’Malley, Miguel; Kalisnik, Sara; Otter, Nina Alpha magnitude. (English) Zbl 1529.55008 J. Pure Appl. Algebra 227, No. 11, Article ID 107396, 30 p. (2023). Reviewer: Elizabeth Munch (East Lansing) MSC: 55N31 62R40 28A80 28A78 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Liu, Peizhi; Du, Yumeng; Liang, Yongshun Fractal dimension of product of continuous functions with box dimension. (English) Zbl 1532.28010 Fractals 31, No. 3, Article ID 2350021, 8 p. (2023). MSC: 28A80 28A78 26A33 × Cite Format Result Cite Review PDF Full Text: DOI
Zeng, Qingcheng; Xi, Lifeng Hausdorff dimension of a family of networks. (English) Zbl 1532.28004 Fractals 31, No. 1, Article ID 2350016, 10 p. (2023). MSC: 28A78 28A80 05C82 × Cite Format Result Cite Review PDF Full Text: DOI
Nieto, Blanca; Durán-Poveda, Manuel; Seoane, Jesús M.; Sanjuán, Miguel A. F. A dynamical model of the immune system interaction in a melanoma. (English) Zbl 1522.35520 Commun. Nonlinear Sci. Numer. Simul. 122, Article ID 107248, 14 p. (2023). Reviewer: Mohamed Majdoub (Dammam) MSC: 35Q92 92C37 92C50 92C32 × Cite Format Result Cite Review PDF Full Text: DOI
Yi, Jaeyun Macroscopic multi-fractality of Gaussian random fields and linear stochastic partial differential equations with colored noise. (English) Zbl 1518.60063 J. Theor. Probab. 36, No. 2, 926-947 (2023). Reviewer: Udhayakumar Ramalingam (Vellore) MSC: 60H15 60G15 60K37 35R60 60H40 × Cite Format Result Cite Review PDF Full Text: DOI
Verma, Manuj; Priyadarshi, Amit; Verma, Saurabh Vector-valued fractal functions: fractal dimension and fractional calculus. (English) Zbl 1517.28010 Indag. Math., New Ser. 34, No. 4, 830-853 (2023). Reviewer: Peter Massopust (München) MSC: 28A80 26A33 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Agrawal, Vishal; Pandey, Megha; Som, Tanmoy Box dimension and fractional integrals of multivariate \(\alpha\)-fractal functions. (English) Zbl 1518.28008 Mediterr. J. Math. 20, No. 3, Paper No. 164, 23 p. (2023). Reviewer: Jörg Neunhäuserer (Goslar) MSC: 28A80 41A29 41A30 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Flores, J. C. Spatial dimension of atoms arrangement as a function of temperature: a fractons’ functional. (English) Zbl 1538.74012 Phys. Lett., A 473, Article ID 128816, 4 p. (2023). MSC: 74A40 80A10 26A33 × Cite Format Result Cite Review PDF Full Text: DOI
Radunović, Goran Quasiperiodic sets at infinity and meromorphic extensions of their fractal zeta functions. (English) Zbl 1524.11169 Bull. Malays. Math. Sci. Soc. (2) 46, No. 3, Paper No. 107, 32 p. (2023). MSC: 11M41 28A12 28A75 28A80 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Kon’kov, A. A.; Shishkov, A. E. On removable singular sets for solutions of higher order differential inequalities. (English) Zbl 1509.26014 Fract. Calc. Appl. Anal. 26, No. 1, 91-110 (2023). MSC: 26D10 34A40 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Yu, Han Fractal projections with an application in number theory. (English) Zbl 1527.11008 Ergodic Theory Dyn. Syst. 43, No. 5, 1760-1784 (2023). Reviewer: Lukas Spiegelhofer (Leoben) MSC: 11A63 11K55 28A80 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Das, Tushar; Fishman, Lior; Simmons, David; Urbański, Mariusz Hausdorff dimensions of perturbations of a conformal iterated function system via thermodynamic formalism. (English) Zbl 1523.37032 Sel. Math., New Ser. 29, No. 2, Paper No. 19, 56 p. (2023). MSC: 37C45 37C30 37D35 37E05 37B10 28A78 28A80 11K50 11K55 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Lyakhov, L. N.; Sanina, E. L. Differential and integral operations in hidden spherical symmetry and the dimension of the Koch curve. (English. Russian original) Zbl 07676243 Math. Notes 113, No. 4, 502-511 (2023); translation from Mat. Zametki 113, No. 4, 517-528 (2023). MSC: 28A78 28A80 35R02 45P05 47F05 × Cite Format Result Cite Review PDF Full Text: DOI
Czaja, Radosław; Kania, Maria Exponential attractors for modified Swift-Hohenberg equation in \(\mathbb{R}^N\). (English) Zbl 1524.37073 Differ. Integral Equ. 36, No. 5-6, 347-366 (2023). Reviewer: Philippe Laurençot (Chambéry) MSC: 37L30 35B41 35G25 35Q92 × Cite Format Result Cite Review PDF Full Text: DOI
Falconer, Kenneth J.; Troscheit, Sascha Box-counting dimension in one-dimensional random geometry of multiplicative cascades. (English) Zbl 1512.28008 Commun. Math. Phys. 399, No. 1, 57-83 (2023). Reviewer: Peter Massopust (München) MSC: 28A80 × Cite Format Result Cite Review PDF Full Text: DOI arXiv