Cheng, Panhong; Xu, Zhihong; Dai, Zexing Valuation of vulnerable options with stochastic corporate liabilities in a mixed fractional Brownian motion environment. (English) Zbl 07740223 Math. Financ. Econ. 17, No. 3, 429-455 (2023). MSC: 91-XX 60H10 60J70 60J76 PDF BibTeX XML Cite \textit{P. Cheng} et al., Math. Financ. Econ. 17, No. 3, 429--455 (2023; Zbl 07740223) Full Text: DOI
Balde, Maoudo Faramba; Belfadli, Rachid; Es-Sebaiy, Khalifa Kolmogorov bounds in the CLT of the LSE for Gaussian Ornstein Uhlenbeck processes. (English) Zbl 07740132 Stoch. Dyn. 23, No. 4, Article ID 2350029, 17 p. (2023). MSC: 60G15 60G22 62F12 62M09 60H07 PDF BibTeX XML Cite \textit{M. F. Balde} et al., Stoch. Dyn. 23, No. 4, Article ID 2350029, 17 p. (2023; Zbl 07740132) Full Text: DOI
Wang, Ruifang; Xu, Yong; Pei, Bin Stochastic averaging for a completely integrable Hamiltonian system with fractional Brownian motion. (English) Zbl 07740129 Stoch. Dyn. 23, No. 4, Article ID 2350026, 23 p. (2023). MSC: 60G22 60H10 34C29 37J35 PDF BibTeX XML Cite \textit{R. Wang} et al., Stoch. Dyn. 23, No. 4, Article ID 2350026, 23 p. (2023; Zbl 07740129) Full Text: DOI
Dai, Xinjie; Hong, Jialin; Sheng, Derui; Zhou, Tau Strong error analysis of Euler methods for overdamped generalized Langevin equations with fractional noise: nonlinear case. (English) Zbl 07739203 ESAIM, Math. Model. Numer. Anal. 57, No. 4, 1981-2006 (2023). MSC: 65C20 65C30 65C05 60H07 PDF BibTeX XML Cite \textit{X. Dai} et al., ESAIM, Math. Model. Numer. Anal. 57, No. 4, 1981--2006 (2023; Zbl 07739203) Full Text: DOI arXiv
Aidara, Sadibou; Sane, Ibrahima Delay BSDEs driven by fractional Brownian motion. (English) Zbl 07739190 Random Oper. Stoch. Equ. 31, No. 3, 273-284 (2023). MSC: 60H05 60H07 60G22 60G44 PDF BibTeX XML Cite \textit{S. Aidara} and \textit{I. Sane}, Random Oper. Stoch. Equ. 31, No. 3, 273--284 (2023; Zbl 07739190) Full Text: DOI
El Barrimi, Oussama Stability results for stochastic differential equations driven by an additive fractional Brownian sheet. (English) Zbl 07739189 Random Oper. Stoch. Equ. 31, No. 3, 257-272 (2023). MSC: 60G15 60G22 PDF BibTeX XML Cite \textit{O. El Barrimi}, Random Oper. Stoch. Equ. 31, No. 3, 257--272 (2023; Zbl 07739189) Full Text: DOI
Wang, Xiaohu; Yu, Jun Latent local-to-unity models. (English) Zbl 07739041 Econom. Rev. 42, No. 7, 586-611 (2023). MSC: 62P20 PDF BibTeX XML Cite \textit{X. Wang} and \textit{J. Yu}, Econom. Rev. 42, No. 7, 586--611 (2023; Zbl 07739041) Full Text: DOI
Fan, Xiliang; Yu, Ting; Yuan, Chenggui Asymptotic behaviors for distribution dependent SDEs driven by fractional Brownian motions. (English) Zbl 07738478 Stochastic Processes Appl. 164, 383-415 (2023). MSC: 60H10 60G22 PDF BibTeX XML Cite \textit{X. Fan} et al., Stochastic Processes Appl. 164, 383--415 (2023; Zbl 07738478) Full Text: DOI arXiv
Liu, Jicheng; Zhao, Meiling Convergence rate of synchronization of coupled stochastic lattice systems with additive fractional noise. (English) Zbl 07735785 J. Dyn. Differ. Equations 35, No. 1, 947-981 (2023). MSC: 37-XX 60-XX PDF BibTeX XML Cite \textit{J. Liu} and \textit{M. Zhao}, J. Dyn. Differ. Equations 35, No. 1, 947--981 (2023; Zbl 07735785) Full Text: DOI
Mendes, R. Vilela The fractional volatility model and rough volatility. (English) Zbl 07735468 Int. J. Theor. Appl. Finance 26, No. 2-3, Article ID 2350010, 12 p. (2023). MSC: 91G20 60H07 60G22 PDF BibTeX XML Cite \textit{R. V. Mendes}, Int. J. Theor. Appl. Finance 26, No. 2--3, Article ID 2350010, 12 p. (2023; Zbl 07735468) Full Text: DOI arXiv
Gupta, Reema; Saha Ray, S. A new effective coherent numerical technique based on shifted Vieta-Fibonacci polynomials for solving stochastic fractional integro-differential equation. (English) Zbl 07735372 Comput. Appl. Math. 42, No. 6, Paper No. 256, 25 p. (2023). MSC: 60H20 34A08 97N50 65D30 41A15 PDF BibTeX XML Cite \textit{R. Gupta} and \textit{S. Saha Ray}, Comput. Appl. Math. 42, No. 6, Paper No. 256, 25 p. (2023; Zbl 07735372) Full Text: DOI
Chowdhury, Indranil; Ersland, Olav; Jakobsen, Espen R. On numerical approximations of fractional and nonlocal mean field games. (English) Zbl 07735214 Found. Comput. Math. 23, No. 4, 1381-1431 (2023). MSC: 35Q89 35Q84 91A16 47G20 49L12 49L25 45K05 35K61 35F21 65M12 65M22 93B52 93C20 60J65 60G55 26A33 35R11 35R06 PDF BibTeX XML Cite \textit{I. Chowdhury} et al., Found. Comput. Math. 23, No. 4, 1381--1431 (2023; Zbl 07735214) Full Text: DOI arXiv
Ślęzak, Jakub; Metzler, Ralf Minimal model of diffusion with time changing Hurst exponent. (English) Zbl 07733835 J. Phys. A, Math. Theor. 56, No. 35, Article ID 35LT01, 13 p. (2023). MSC: 60-XX 82-XX PDF BibTeX XML Cite \textit{J. Ślęzak} and \textit{R. Metzler}, J. Phys. A, Math. Theor. 56, No. 35, Article ID 35LT01, 13 p. (2023; Zbl 07733835) Full Text: DOI arXiv
Noupelah, Aurelien Junior; Tambue, Antoine; Woukeng, Jean Louis Strong convergence of a fractional exponential integrator scheme for finite element discretization of time-fractional SPDE driven by fractional and standard Brownian motions. (English) Zbl 07733040 Commun. Nonlinear Sci. Numer. Simul. 125, Article ID 107371, 25 p. (2023). MSC: 65-XX 37-XX PDF BibTeX XML Cite \textit{A. J. Noupelah} et al., Commun. Nonlinear Sci. Numer. Simul. 125, Article ID 107371, 25 p. (2023; Zbl 07733040) Full Text: DOI arXiv
Xu, Xiao; Wang, Li; Kao, Yonggui; Du, Zhenbin Stabilization of delayed neutral semi-Markovian jumping stochastic systems driven by fractional Brownian motions: \(H_\infty\) control approach. (English) Zbl 07732923 J. Franklin Inst. 360, No. 12, 7851-7877 (2023). MSC: 93E15 60G22 93B36 93C43 PDF BibTeX XML Cite \textit{X. Xu} et al., J. Franklin Inst. 360, No. 12, 7851--7877 (2023; Zbl 07732923) Full Text: DOI
Pavlopoulos, Harry; Chronis, George On highly skewed fractional log-stable noise sequences and their application. (English) Zbl 07731481 J. Time Ser. Anal. 44, No. 4, 337-358 (2023). MSC: 62Mxx 60G10 60G22 60G52 PDF BibTeX XML Cite \textit{H. Pavlopoulos} and \textit{G. Chronis}, J. Time Ser. Anal. 44, No. 4, 337--358 (2023; Zbl 07731481) Full Text: DOI
El Omari, Mohamed An \(\alpha\)-order fractional Brownian motion with Hurst index \(H \in (0,1)\) and \(\alpha \in \mathbb{R}_+\). (English) Zbl 07730310 Sankhyā, Ser. A 85, No. 1, 572-599 (2023). MSC: 60G22 60G18 60G17 PDF BibTeX XML Cite \textit{M. El Omari}, Sankhyā, Ser. A 85, No. 1, 572--599 (2023; Zbl 07730310) Full Text: DOI
Uma, D.; Balachandar, S. Raja; Venkatesh, S. G.; Balasubramanian, K.; Masetshaba, Mantepu Tshepo Numerical solution of persistent processes-based fractional stochastic differential equations. (English) Zbl 07726755 Fractals 31, No. 4, Article ID 2340052, 14 p. (2023). MSC: 65C30 65R20 60H35 PDF BibTeX XML Cite \textit{D. Uma} et al., Fractals 31, No. 4, Article ID 2340052, 14 p. (2023; Zbl 07726755) Full Text: DOI
Chen, Zhen-Qing; Hu, Yaozhong Solvability of parabolic Anderson equation with fractional Gaussian noise. (English) Zbl 07726247 Commun. Math. Stat. 11, No. 3, 563-582 (2023). MSC: 60H15 60G60 60G15 60G22 35R60 PDF BibTeX XML Cite \textit{Z.-Q. Chen} and \textit{Y. Hu}, Commun. Math. Stat. 11, No. 3, 563--582 (2023; Zbl 07726247) Full Text: DOI arXiv
Chakrabarty, Arijit; Samorodnitsky, Gennady Clustering of large deviations in moving average processes: the long memory regime. (English) Zbl 07726176 Stochastic Processes Appl. 163, 387-423 (2023). Reviewer: Pavel Stoynov (Sofia) MSC: 60F10 60G22 PDF BibTeX XML Cite \textit{A. Chakrabarty} and \textit{G. Samorodnitsky}, Stochastic Processes Appl. 163, 387--423 (2023; Zbl 07726176) Full Text: DOI arXiv
Aidara, Sadibou; Sagna, Yaya; Faye, Ibrahima Averaging principle for BSDEs driven by two mutually independent fractional Brownian motions. (English) Zbl 07725537 Appl. Anal. 102, No. 8, 2189-2199 (2023). MSC: 60H10 60H05 60G22 PDF BibTeX XML Cite \textit{S. Aidara} et al., Appl. Anal. 102, No. 8, 2189--2199 (2023; Zbl 07725537) Full Text: DOI
Singh, P. K.; Saha Ray, S. A novel study based on shifted Jacobi polynomials to find the numerical solutions of nonlinear stochastic differential equations driven by fractional Brownian motion. (English) Zbl 07723609 Comput. Methods Appl. Math. 23, No. 3, 715-728 (2023). MSC: 65C30 65R20 60H20 45D05 60G22 PDF BibTeX XML Cite \textit{P. K. Singh} and \textit{S. Saha Ray}, Comput. Methods Appl. Math. 23, No. 3, 715--728 (2023; Zbl 07723609) Full Text: DOI
Litovchenko, V. A. Local Polya fluctuations of Riesz gravitational fields and the Cauchy problem. (English) Zbl 07723425 Carpathian Math. Publ. 15, No. 1, 222-235 (2023). MSC: 35R11 35A08 35K15 35S05 60G22 PDF BibTeX XML Cite \textit{V. A. Litovchenko}, Carpathian Math. Publ. 15, No. 1, 222--235 (2023; Zbl 07723425) Full Text: DOI
Ma, Chunsheng Vector random fields on the probability simplex with metric-dependent covariance matrix functions. (English) Zbl 07722793 J. Theor. Probab. 36, No. 3, 1922-1938 (2023). MSC: 60G60 60G22 62M10 62M20 PDF BibTeX XML Cite \textit{C. Ma}, J. Theor. Probab. 36, No. 3, 1922--1938 (2023; Zbl 07722793) Full Text: DOI
Geng, Xi; Ouyang, Cheng; Tindel, Samy Precise local estimates for differential equations driven by fractional Brownian motion: elliptic case. (English) Zbl 07722772 J. Theor. Probab. 36, No. 3, 1341-1367 (2023). MSC: 60H10 60H07 60G15 PDF BibTeX XML Cite \textit{X. Geng} et al., J. Theor. Probab. 36, No. 3, 1341--1367 (2023; Zbl 07722772) Full Text: DOI arXiv
Yang, Qigui; Lin, Xiaofang; Zeng, Caibin Random attractors for rough stochastic partial differential equations. (English) Zbl 07721610 J. Differ. Equations 371, 50-82 (2023). MSC: 37-XX 60H15 60G22 PDF BibTeX XML Cite \textit{Q. Yang} et al., J. Differ. Equations 371, 50--82 (2023; Zbl 07721610) Full Text: DOI
Zhuang, Yuanying; Song, Xiao Towards a better understanding of fractional Brownian motion and its application to finance. (English) Zbl 1515.60102 Bull. Malays. Math. Sci. Soc. (2) 46, No. 5, Paper No. 150, 55 p. (2023). MSC: 60G22 91G10 PDF BibTeX XML Cite \textit{Y. Zhuang} and \textit{X. Song}, Bull. Malays. Math. Sci. Soc. (2) 46, No. 5, Paper No. 150, 55 p. (2023; Zbl 1515.60102) Full Text: DOI
Abdelhamid, Ouaddah; Graef, John R.; Ouahab, Abdelghani Existence and uniqueness of solutions of nonlinear fractional stochastic differential systems with nonlocal functional boundary conditions. (English) Zbl 07717089 Stochastic Anal. Appl. 41, No. 4, 713-733 (2023). MSC: 34A08 34G20 34F05 60H10 60G22 47H10 47H11 PDF BibTeX XML Cite \textit{O. Abdelhamid} et al., Stochastic Anal. Appl. 41, No. 4, 713--733 (2023; Zbl 07717089) Full Text: DOI
Dung, Nguyen Tien; Son, Ta Cong Lipschitz continuity in the Hurst index of the solutions of fractional stochastic Volterra integro-differential equations. (English) Zbl 1515.60243 Stochastic Anal. Appl. 41, No. 4, 693-712 (2023). MSC: 60H20 60G22 60H07 PDF BibTeX XML Cite \textit{N. T. Dung} and \textit{T. C. Son}, Stochastic Anal. Appl. 41, No. 4, 693--712 (2023; Zbl 1515.60243) Full Text: DOI
Michta, Mariusz; Motyl, Jerzy Solution sets for Young differential inclusions. (English) Zbl 07717006 Qual. Theory Dyn. Syst. 22, No. 4, Paper No. 132, 24 p. (2023). Reviewer: Aurelian Cernea (Bucureşti) MSC: 34A60 34A08 26E25 28B20 26A33 60G22 PDF BibTeX XML Cite \textit{M. Michta} and \textit{J. Motyl}, Qual. Theory Dyn. Syst. 22, No. 4, Paper No. 132, 24 p. (2023; Zbl 07717006) Full Text: DOI
El Omari, Mohamed Parameter estimation for \(n\)th-order mixed fractional Brownian motion with polynomial drift. (English) Zbl 07716682 J. Korean Stat. Soc. 52, No. 2, 450-461 (2023). MSC: 62F10 62F12 60G22 PDF BibTeX XML Cite \textit{M. El Omari}, J. Korean Stat. Soc. 52, No. 2, 450--461 (2023; Zbl 07716682) Full Text: DOI
Nakajima, Shohei; Shimizu, Yasutaka Asymptotic inference for stochastic differential equations driven by fractional Brownian motion. (English) Zbl 07716669 Jpn. J. Stat. Data Sci. 6, No. 1, 431-455 (2023). MSC: 62M09 60G22 62F12 PDF BibTeX XML Cite \textit{S. Nakajima} and \textit{Y. Shimizu}, Jpn. J. Stat. Data Sci. 6, No. 1, 431--455 (2023; Zbl 07716669) Full Text: DOI
Gamain, Julie; Tudor, Ciprian A. Exact variation and drift parameter estimation for the nonlinear fractional stochastic heat equation. (English) Zbl 1515.60234 Jpn. J. Stat. Data Sci. 6, No. 1, 381-406 (2023). MSC: 60H15 62F10 62M40 35R60 PDF BibTeX XML Cite \textit{J. Gamain} and \textit{C. A. Tudor}, Jpn. J. Stat. Data Sci. 6, No. 1, 381--406 (2023; Zbl 1515.60234) Full Text: DOI
Dung, Nguyen Tien; Son, Ta Cong The total variation distance between the solutions to stochastic Volterra equations and SDEs with its applications. (English) Zbl 1515.60174 Acta Appl. Math. 186, Paper No. 3, 27 p. (2023). MSC: 60H07 60G22 91G30 PDF BibTeX XML Cite \textit{N. T. Dung} and \textit{T. C. Son}, Acta Appl. Math. 186, Paper No. 3, 27 p. (2023; Zbl 1515.60174) Full Text: DOI
Gerencsér, Máté Regularisation by regular noise. (English) Zbl 07714079 Stoch. Partial Differ. Equ., Anal. Comput. 11, No. 2, 714-729 (2023). Reviewer: Alexandra Rodkina (College Station) MSC: 60H50 60H10 60G22 PDF BibTeX XML Cite \textit{M. Gerencsér}, Stoch. Partial Differ. Equ., Anal. Comput. 11, No. 2, 714--729 (2023; Zbl 07714079) Full Text: DOI arXiv
Jafari, Hossein; Farahani, Hamed An approximate approach to fuzzy stochastic differential equations under sub-fractional Brownian motion. (English) Zbl 07713318 Stoch. Dyn. 23, No. 3, Article ID 2350017, 16 p. (2023). MSC: 60A86 60H10 60G22 65C30 PDF BibTeX XML Cite \textit{H. Jafari} and \textit{H. Farahani}, Stoch. Dyn. 23, No. 3, Article ID 2350017, 16 p. (2023; Zbl 07713318) Full Text: DOI
Yakubovich, Yu. V.; Rusakov, O. V. On spectral properties of stationary random processes connected by a special random time change. (English. Russian original) Zbl 1515.60085 J. Math. Sci., New York 273, No. 5, 871-883 (2023); translation from Zap. Nauchn. Semin. POMI 501, 315-334 (2021). MSC: 60G10 60G55 60G22 PDF BibTeX XML Cite \textit{Yu. V. Yakubovich} and \textit{O. V. Rusakov}, J. Math. Sci., New York 273, No. 5, 871--883 (2023; Zbl 1515.60085); translation from Zap. Nauchn. Semin. POMI 501, 315--334 (2021) Full Text: DOI
Fatima-Ezzahra, Farah Estimation of the drift of Riemann-Liouville fractional Brownian motion. (English) Zbl 07710562 Commun. Stat., Theory Methods 52, No. 13, 4719-4728 (2023). MSC: 60G15 62G05 62B05 62M09 PDF BibTeX XML Cite \textit{F. Fatima-Ezzahra}, Commun. Stat., Theory Methods 52, No. 13, 4719--4728 (2023; Zbl 07710562) Full Text: DOI
Cai, Chunhao; Wang, Qinghua; Xiao, Weilin Mixed sub-fractional Brownian motion and drift estimation of related Ornstein-Uhlenbeck process. (English) Zbl 07710042 Commun. Math. Stat. 11, No. 2, 229-255 (2023). Reviewer: B. L. S. Prakasa Rao (Hyderabad) MSC: 60G22 PDF BibTeX XML Cite \textit{C. Cai} et al., Commun. Math. Stat. 11, No. 2, 229--255 (2023; Zbl 07710042) Full Text: DOI arXiv
Kuang, Nenghui; Xie, Huantian Least squares type estimators for the drift parameters in the sub-bifractional Vasicek processes. (English) Zbl 07709793 Infin. Dimens. Anal. Quantum Probab. Relat. Top. 26, No. 2, Article ID 2350004, 20 p. (2023). MSC: 62F12 60G22 62M09 PDF BibTeX XML Cite \textit{N. Kuang} and \textit{H. Xie}, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 26, No. 2, Article ID 2350004, 20 p. (2023; Zbl 07709793) Full Text: DOI
Tuan, Nguyen Huy; Caraballo, Tomás; Thach, Tran Ngoc Continuity with respect to the Hurst parameter of solutions to stochastic evolution equations driven by \(H\)-valued fractional Brownian motion. (English) Zbl 1515.60240 Appl. Math. Lett. 144, Article ID 108715, 9 p. (2023). MSC: 60H15 60G22 60G15 60B12 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Appl. Math. Lett. 144, Article ID 108715, 9 p. (2023; Zbl 1515.60240) Full Text: DOI
Xu, Jie; Lian, Qiqi; Wu, Jiang-Lun A strong averaging principle rate for two-time-scale coupled forward-backward stochastic differential equations driven by fractional Brownian motion. (English) Zbl 1515.60222 Appl. Math. Optim. 88, No. 2, Paper No. 32, 35 p. (2023). MSC: 60H10 60H20 60H07 PDF BibTeX XML Cite \textit{J. Xu} et al., Appl. Math. Optim. 88, No. 2, Paper No. 32, 35 p. (2023; Zbl 1515.60222) Full Text: DOI
Canino, Annamaria; Montoro, Luigi; Sciunzi, Berardino; Trombetta, Alessandro Variational properties of nonlocal singular problems. (English) Zbl 07707713 Nonlinearity 36, No. 8, 4034-4052 (2023). MSC: 35A15 35J25 35R11 35S15 60G22 PDF BibTeX XML Cite \textit{A. Canino} et al., Nonlinearity 36, No. 8, 4034--4052 (2023; Zbl 07707713) Full Text: DOI
Diez, Charles-Philippe; Tudor, Ciprian A. Berry-Essén theorem for random determinants. (English) Zbl 07707283 Stat. Probab. Lett. 197, Article ID 109804, 11 p. (2023). Reviewer: Roksana Słowik (Gliwice) MSC: 60B20 60F05 60H07 60G22 15B52 PDF BibTeX XML Cite \textit{C.-P. Diez} and \textit{C. A. Tudor}, Stat. Probab. Lett. 197, Article ID 109804, 11 p. (2023; Zbl 07707283) Full Text: DOI
Kuehn, Christian; Neamţu, Alexandra Center manifolds for rough partial differential equations. (English) Zbl 07707072 Electron. J. Probab. 28, Paper No. 48, 31 p. (2023). MSC: 60L20 35K57 60H15 60G22 60L50 37L55 PDF BibTeX XML Cite \textit{C. Kuehn} and \textit{A. Neamţu}, Electron. J. Probab. 28, Paper No. 48, 31 p. (2023; Zbl 07707072) Full Text: DOI arXiv Link
Guo, Changhong; Fang, Shaomei; He, Yong A generalized stochastic process: fractional \(G\)-Brownian motion. (English) Zbl 1515.60097 Methodol. Comput. Appl. Probab. 25, No. 1, Paper No. 22, 34 p. (2023). MSC: 60G22 60H05 60H35 PDF BibTeX XML Cite \textit{C. Guo} et al., Methodol. Comput. Appl. Probab. 25, No. 1, Paper No. 22, 34 p. (2023; Zbl 1515.60097) Full Text: DOI
Assaad, Obayda; Diez, Charles-Phillipe; Tudor, Ciprian A. Generalized Wiener-Hermite integrals and rough non-Gaussian Ornstein-Uhlenbeck process. (English) Zbl 07706364 Stochastics 95, No. 2, 191-210 (2023). Reviewer: Yuliya S. Mishura (Kyjiw) MSC: 60G18 60H07 60G22 PDF BibTeX XML Cite \textit{O. Assaad} et al., Stochastics 95, No. 2, 191--210 (2023; Zbl 07706364) Full Text: DOI
El Omari, Mohamed Mixtures of higher-order fractional Brownian motions. (English) Zbl 07706310 Commun. Stat., Theory Methods 52, No. 12, 4200-4215 (2023). MSC: 60G18 60G22 60G48 PDF BibTeX XML Cite \textit{M. El Omari}, Commun. Stat., Theory Methods 52, No. 12, 4200--4215 (2023; Zbl 07706310) Full Text: DOI
Prakasa Rao, B. L. S. Maximum likelihood estimation for stochastic differential equations driven by a mixed fractional Brownian motion with random effects. (English) Zbl 07706269 Commun. Stat., Theory Methods 52, No. 11, 3816-3824 (2023). MSC: 60G22 62M09 PDF BibTeX XML Cite \textit{B. L. S. Prakasa Rao}, Commun. Stat., Theory Methods 52, No. 11, 3816--3824 (2023; Zbl 07706269) Full Text: DOI arXiv
Roa, Tania; Torres, Soledad; Tudor, Ciprian Limit distribution of the least square estimator with observations sampled at random times driven by standard Brownian motion. (English) Zbl 07706265 Commun. Stat., Theory Methods 52, No. 11, 3730-3750 (2023). MSC: 60G22 62J86 62M09 PDF BibTeX XML Cite \textit{T. Roa} et al., Commun. Stat., Theory Methods 52, No. 11, 3730--3750 (2023; Zbl 07706265) Full Text: DOI arXiv
Yu, Qian; Chang, Qiangqiang; Shen, Guangjun Smoothness of higher order derivative of self-intersection local time for fractional Brownian motion. (English) Zbl 07706254 Commun. Stat., Theory Methods 52, No. 10, 3541-3556 (2023). MSC: 60G22 60H07 PDF BibTeX XML Cite \textit{Q. Yu} et al., Commun. Stat., Theory Methods 52, No. 10, 3541--3556 (2023; Zbl 07706254) Full Text: DOI
Gao, Fei; Liu, Shuaiqiang; Oosterlee, Cornelis W.; Temme, Nico M. Evaluation of integrals with fractional Brownian motion for different Hurst indices. (English) Zbl 07705599 Int. J. Comput. Math. 100, No. 4, 847-866 (2023). MSC: 60G22 65D30 91G60 91G20 PDF BibTeX XML Cite \textit{F. Gao} et al., Int. J. Comput. Math. 100, No. 4, 847--866 (2023; Zbl 07705599) Full Text: DOI arXiv
Bolko, Anine E.; Christensen, Kim; Pakkanen, Mikko S.; Veliyev, Bezirgen A GMM approach to estimate the roughness of stochastic volatility. (English) Zbl 07704472 J. Econom. 235, No. 2, 745-778 (2023). MSC: 62-XX 91-XX PDF BibTeX XML Cite \textit{A. E. Bolko} et al., J. Econom. 235, No. 2, 745--778 (2023; Zbl 07704472) Full Text: DOI arXiv
Hendy, Ahmed S.; Zaky, Mahmoud A.; Doha, Eid H. On a discrete fractional stochastic Grönwall inequality and its application in the numerical analysis of stochastic FDEs involving a martingale. (English) Zbl 07702451 Int. J. Nonlinear Sci. Numer. Simul. 24, No. 2, 531-537 (2023). MSC: 65C30 60G22 60G42 PDF BibTeX XML Cite \textit{A. S. Hendy} et al., Int. J. Nonlinear Sci. Numer. Simul. 24, No. 2, 531--537 (2023; Zbl 07702451) Full Text: DOI
Tuan, Nguyen Huy; Caraballo, Tomás; Thach, Tran Ngoc Stochastic fractional diffusion equations containing finite and infinite delays with multiplicative noise. (English) Zbl 07702115 Asymptotic Anal. 133, No. 1-2, 227-254 (2023). MSC: 35Qxx PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Asymptotic Anal. 133, No. 1--2, 227--254 (2023; Zbl 07702115) Full Text: DOI
Mishura, Yuliya; Yurchenko-Tytarenko, Anton Standard and fractional reflected Ornstein-Uhlenbeck processes as the limits of square roots of Cox-Ingersoll-Ross processes. (English) Zbl 07701608 Stochastics 95, No. 1, 99-117 (2023). MSC: 60H10 60G22 91G30 PDF BibTeX XML Cite \textit{Y. Mishura} and \textit{A. Yurchenko-Tytarenko}, Stochastics 95, No. 1, 99--117 (2023; Zbl 07701608) Full Text: DOI arXiv
Zhang, Bin; Yao, Zhigang; Liu, Junfeng On a class of mixed stochastic heat equations driven by spatially homogeneous Gaussian noise. (English) Zbl 1515.60242 Stat. Probab. Lett. 196, Article ID 109807, 12 p. (2023). MSC: 60H15 60H07 60H30 60G22 PDF BibTeX XML Cite \textit{B. Zhang} et al., Stat. Probab. Lett. 196, Article ID 109807, 12 p. (2023; Zbl 1515.60242) Full Text: DOI
Maheshwari, Aditya Tempered space fractional negative binomial process. (English) Zbl 1515.60100 Stat. Probab. Lett. 196, Article ID 109799, 11 p. (2023). MSC: 60G22 60G55 60G51 PDF BibTeX XML Cite \textit{A. Maheshwari}, Stat. Probab. Lett. 196, Article ID 109799, 11 p. (2023; Zbl 1515.60100) Full Text: DOI
Mohammed, Wael W.; Al-Askar, Farah M.; El-Morshedy, Mahmoud Impacts of Brownian motion and fractional derivative on the solutions of the stochastic fractional Davey-Stewartson equations. (English) Zbl 07700919 Demonstr. Math. 56, Article ID 20220233, 12 p. (2023). MSC: 35Q51 76B15 60H10 60H15 60J65 60G22 35A20 35C08 26A33 35R11 35R60 PDF BibTeX XML Cite \textit{W. W. Mohammed} et al., Demonstr. Math. 56, Article ID 20220233, 12 p. (2023; Zbl 07700919) Full Text: DOI
Ghaemi, Mohammad Bagher; Mottaghi, Fatemeh; Saadati, Reza; Allahviranloo, Tofigh \(\alpha\)-Whittaker controllability of \(\vartheta\)-Hilfer fractional stochastic evolution equations driven by fractional Brownian motion. (English) Zbl 07700518 Comput. Appl. Math. 42, No. 5, Paper No. 211, 12 p. (2023). MSC: 45E10 65R20 PDF BibTeX XML Cite \textit{M. B. Ghaemi} et al., Comput. Appl. Math. 42, No. 5, Paper No. 211, 12 p. (2023; Zbl 07700518) Full Text: DOI
Avetisian, Diana; Ralchenko, Kostiantyn Parameter estimation in mixed fractional stochastic heat equation. (English) Zbl 07700004 Mod. Stoch., Theory Appl. 10, No. 2, 175-195 (2023). Reviewer: Yuliya S. Mishura (Kyjiw) MSC: 60G22 60H15 62F10 62F12 PDF BibTeX XML Cite \textit{D. Avetisian} and \textit{K. Ralchenko}, Mod. Stoch., Theory Appl. 10, No. 2, 175--195 (2023; Zbl 07700004) Full Text: DOI
Bianchi, Luigi Amedeo; Bonaccorsi, Stefano; Tubaro, Luciano A class of fractional Ornstein-Uhlenbeck processes mixed with a Gamma distribution. (English) Zbl 07699999 Mod. Stoch., Theory Appl. 10, No. 1, 37-57 (2023). MSC: 60G22 60G17 PDF BibTeX XML Cite \textit{L. A. Bianchi} et al., Mod. Stoch., Theory Appl. 10, No. 1, 37--57 (2023; Zbl 07699999) Full Text: DOI arXiv
Liu, Jiankang; Wei, Wei; Wang, Jinbin; Xu, Wei Limit behavior of the solution of Caputo-Hadamard fractional stochastic differential equations. (English) Zbl 07699070 Appl. Math. Lett. 140, Article ID 108586, 6 p. (2023). MSC: 34A08 34F05 34E10 34C29 60H10 60J65 PDF BibTeX XML Cite \textit{J. Liu} et al., Appl. Math. Lett. 140, Article ID 108586, 6 p. (2023; Zbl 07699070) Full Text: DOI
Kalemkerian, Juan Modelling and parameter estimation for discretely observed fractional iterated Ornstein-Uhlenbeck processes. (English) Zbl 07698956 J. Stat. Plann. Inference 225, 29-51 (2023). MSC: 62-XX PDF BibTeX XML Cite \textit{J. Kalemkerian}, J. Stat. Plann. Inference 225, 29--51 (2023; Zbl 07698956) Full Text: DOI arXiv
Li, Shengyue; Cao, Wanrong On spectral Petrov-Galerkin method for solving optimal control problem governed by fractional diffusion equations with fractional noise. (English) Zbl 07698826 J. Sci. Comput. 94, No. 3, Paper No. 62, 31 p. (2023). MSC: 65Nxx 44Axx 26Axx PDF BibTeX XML Cite \textit{S. Li} and \textit{W. Cao}, J. Sci. Comput. 94, No. 3, Paper No. 62, 31 p. (2023; Zbl 07698826) Full Text: DOI
Bayer, Christian; Breneis, Simon Markovian approximations of stochastic Volterra equations with the fractional kernel. (English) Zbl 07698361 Quant. Finance 23, No. 1, 53-70 (2023). MSC: 91G60 65C30 60G22 PDF BibTeX XML Cite \textit{C. Bayer} and \textit{S. Breneis}, Quant. Finance 23, No. 1, 53--70 (2023; Zbl 07698361) Full Text: DOI arXiv
Al-Askar, Farah M. Impact of fractional derivative and Brownian motion on the solutions of the Radhakrishnan-Kundu-Lakshmanan equation. (English) Zbl 07697693 J. Funct. Spaces 2023, Article ID 8721106, 8 p. (2023). MSC: 35R11 35C05 60J65 PDF BibTeX XML Cite \textit{F. M. Al-Askar}, J. Funct. Spaces 2023, Article ID 8721106, 8 p. (2023; Zbl 07697693) Full Text: DOI
Yamagishi, Hayate; Yoshida, Nakahiro Order estimate of functionals related to fractional Brownian motion. (English) Zbl 07697551 Stochastic Processes Appl. 161, 490-543 (2023). MSC: 60-XX PDF BibTeX XML Cite \textit{H. Yamagishi} and \textit{N. Yoshida}, Stochastic Processes Appl. 161, 490--543 (2023; Zbl 07697551) Full Text: DOI
Gassiat, Paul; Mądry, Łukasz Perturbations of singular fractional SDEs. (English) Zbl 07697541 Stochastic Processes Appl. 161, 137-172 (2023). Reviewer: Lucio Galeati (Lausanne) MSC: 60H10 60J60 60H05 PDF BibTeX XML Cite \textit{P. Gassiat} and \textit{Ł. Mądry}, Stochastic Processes Appl. 161, 137--172 (2023; Zbl 07697541) Full Text: DOI arXiv
Tuan, Nguyen Huy; Caraballo, Tomás; Thach, Tran Ngoc New results for stochastic fractional pseudo-parabolic equations with delays driven by fractional Brownian motion. (English) Zbl 07697538 Stochastic Processes Appl. 161, 24-67 (2023). MSC: 60G15 60G22 60G52 60G57 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Stochastic Processes Appl. 161, 24--67 (2023; Zbl 07697538) Full Text: DOI
Bayer, Christian; Hager, Paul P.; Riedel, Sebastian; Schoenmakers, John Optimal stopping with signatures. (English) Zbl 07692260 Ann. Appl. Probab. 33, No. 1, 238-273 (2023). MSC: 60L10 60L20 60G40 91G60 PDF BibTeX XML Cite \textit{C. Bayer} et al., Ann. Appl. Probab. 33, No. 1, 238--273 (2023; Zbl 07692260) Full Text: DOI arXiv
Jiang, Hui; Zhou, Jingying An exponential nonuniform Berry-Esseen bound for the fractional Ornstein-Uhlenbeck process. (English) Zbl 07692069 J. Theor. Probab. 36, No. 2, 1037-1058 (2023). Reviewer: Ilie Valuşescu (Bucureşti) MSC: 60F10 60G22 62N02 PDF BibTeX XML Cite \textit{H. Jiang} and \textit{J. Zhou}, J. Theor. Probab. 36, No. 2, 1037--1058 (2023; Zbl 07692069) Full Text: DOI
Xu, Jie; Sun, Yanhua; Ren, Jie A support theorem for stochastic differential equations driven by a fractional Brownian motion. (English) Zbl 07692060 J. Theor. Probab. 36, No. 2, 728-761 (2023). MSC: 60H10 60F15 PDF BibTeX XML Cite \textit{J. Xu} et al., J. Theor. Probab. 36, No. 2, 728--761 (2023; Zbl 07692060) Full Text: DOI
Ndaoud, Mohamed Harmonic analysis meets stationarity: a general framework for series expansions of special Gaussian processes. (English) Zbl 07691582 Bernoulli 29, No. 3, 2295-2317 (2023). MSC: 60G15 60E99 60G18 60G22 60J65 PDF BibTeX XML Cite \textit{M. Ndaoud}, Bernoulli 29, No. 3, 2295--2317 (2023; Zbl 07691582) Full Text: DOI arXiv Link
Garzón, Johanna; León, Jorge A.; Torres, Soledad Forward integration of bounded variation coefficients with respect to Hölder continuous processes. (English) Zbl 07691565 Bernoulli 29, No. 3, 1877-1904 (2023). MSC: 60H05 60H10 60G22 PDF BibTeX XML Cite \textit{J. Garzón} et al., Bernoulli 29, No. 3, 1877--1904 (2023; Zbl 07691565) Full Text: DOI Link
Gassiat, Paul Weak error rates of numerical schemes for rough volatility. (English) Zbl 07691066 SIAM J. Financ. Math. 14, No. 2, 475-496 (2023). MSC: 91G60 65C20 60G22 PDF BibTeX XML Cite \textit{P. Gassiat}, SIAM J. Financ. Math. 14, No. 2, 475--496 (2023; Zbl 07691066) Full Text: DOI arXiv
Jaramillo, Arturo; Nourdin, Ivan; Nualart, David; Peccati, Giovanni Limit theorems for additive functionals of the fractional Brownian motion. (English) Zbl 07690056 Ann. Probab. 51, No. 3, 1066-1111 (2023). MSC: 62E17 60F05 60G22 60J55 60H07 PDF BibTeX XML Cite \textit{A. Jaramillo} et al., Ann. Probab. 51, No. 3, 1066--1111 (2023; Zbl 07690056) Full Text: DOI arXiv
Shevchenko, Radomyra On quadratic variations for the fractional-white wave equation. (English) Zbl 1510.60056 Theory Probab. Math. Stat. 108, 185-207 (2023). MSC: 60H15 60F05 60G15 60G18 PDF BibTeX XML Cite \textit{R. Shevchenko}, Theory Probab. Math. Stat. 108, 185--207 (2023; Zbl 1510.60056) Full Text: DOI arXiv
Mishura, Yuliya; Ralchenko, Kostiantyn; Shklyar, Sergiy Gaussian Volterra processes: asymptotic growth and statistical estimation. (English) Zbl 07686923 Theory Probab. Math. Stat. 108, 149-167 (2023). Reviewer: B. L. S. Prakasa Rao (Hyderabad) MSC: 60G22 PDF BibTeX XML Cite \textit{Y. Mishura} et al., Theory Probab. Math. Stat. 108, 149--167 (2023; Zbl 07686923) Full Text: DOI arXiv
Leipus, Remigijus; Pilipauskaitė, Vytautė; Surgailis, Donatas Aggregation of network traffic and anisotropic scaling of random fields. (English) Zbl 07686921 Theory Probab. Math. Stat. 108, 77-126 (2023). MSC: 62M10 60G22 60G15 60G18 60G52 60H05 PDF BibTeX XML Cite \textit{R. Leipus} et al., Theory Probab. Math. Stat. 108, 77--126 (2023; Zbl 07686921) Full Text: DOI arXiv
Chaouch, Hicham; El Maroufy, Hamid; El Omari, Mohamed Statistical inference for models driven by \(n\)-th order fractional Brownian motion. (English) Zbl 07686918 Theory Probab. Math. Stat. 108, 29-43 (2023). MSC: 62F12 60G15 60G18 PDF BibTeX XML Cite \textit{H. Chaouch} et al., Theory Probab. Math. Stat. 108, 29--43 (2023; Zbl 07686918) Full Text: DOI
Bock, Wolfgang; Grothaus, Martin; Orge, Karlo Stochastic analysis for vector-valued generalized grey Brownian motion. (English) Zbl 1511.60064 Theory Probab. Math. Stat. 108, 1-27 (2023). MSC: 60G22 60G20 46F25 46F12 33E12 60H10 PDF BibTeX XML Cite \textit{W. Bock} et al., Theory Probab. Math. Stat. 108, 1--27 (2023; Zbl 1511.60064) Full Text: DOI arXiv
Lee, Cheuk Yin; Song, Jian; Xiao, Yimin; Yuan, Wangjun Hitting probabilities of Gaussian random fields and collision of eigenvalues of random matrices. (English) Zbl 07686401 Trans. Am. Math. Soc. 376, No. 6, 4273-4299 (2023). MSC: 60G15 60G22 60G17 60B20 PDF BibTeX XML Cite \textit{C. Y. Lee} et al., Trans. Am. Math. Soc. 376, No. 6, 4273--4299 (2023; Zbl 07686401) Full Text: DOI arXiv
Kern, Peter; Lage, Svenja On self-similar Bernstein functions and corresponding generalized fractional derivatives. (English) Zbl 07686375 J. Theor. Probab. 36, No. 1, 348-371 (2023). MSC: 26A33 35R11 44A10 60E07 60G22 60G51 60G52 PDF BibTeX XML Cite \textit{P. Kern} and \textit{S. Lage}, J. Theor. Probab. 36, No. 1, 348--371 (2023; Zbl 07686375) Full Text: DOI arXiv
Liu, Junfeng Moment bounds for a generalized Anderson model with Gaussian noise rough in space. (English) Zbl 07686370 J. Theor. Probab. 36, No. 1, 167-200 (2023). MSC: 60G22 60H15 60H07 PDF BibTeX XML Cite \textit{J. Liu}, J. Theor. Probab. 36, No. 1, 167--200 (2023; Zbl 07686370) Full Text: DOI
Dokuchaev, Nikolai On the fractional stochastic integration for random non-smooth integrands. (English) Zbl 1516.60023 Stochastic Anal. Appl. 41, No. 3, 425-446 (2023). MSC: 60G22 60H05 PDF BibTeX XML Cite \textit{N. Dokuchaev}, Stochastic Anal. Appl. 41, No. 3, 425--446 (2023; Zbl 1516.60023) Full Text: DOI arXiv
Di Nunno, Giulia; Mishura, Yuliya; Yurchenko-Tytarenko, Anton Drift-implicit Euler scheme for sandwiched processes driven by Hölder noises. (English) Zbl 07684715 Numer. Algorithms 93, No. 2, 459-491 (2023). MSC: 65C30 60H10 60H35 60G22 91G30 PDF BibTeX XML Cite \textit{G. Di Nunno} et al., Numer. Algorithms 93, No. 2, 459--491 (2023; Zbl 07684715) Full Text: DOI arXiv
Lu, T.; Ma, C.; Wang, F. Series expansions of fractional Brownian motions and strong local nondeterminism of bifractional Brownian motions on balls and spheres. (English) Zbl 1509.60095 Theory Probab. Appl. 68, No. 1, 88-110 (2023) and Teor. Veroyatn. Primen. 68, No. 1, 106-132 (2023). MSC: 60G22 60G60 60G15 60G17 PDF BibTeX XML Cite \textit{T. Lu} et al., Theory Probab. Appl. 68, No. 1, 88--110 (2023; Zbl 1509.60095) Full Text: DOI
Pei, Wenyi; Yan, Litan; Chen, Zhenlong Harnack type inequalities for SDEs driven by fractional Brownian motion with Markovian switching. (English) Zbl 07682827 Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 3, 1403-1414 (2023). MSC: 60H10 60G22 60H07 PDF BibTeX XML Cite \textit{W. Pei} et al., Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 3, 1403--1414 (2023; Zbl 07682827) Full Text: DOI
Aurzada, Frank; Mukherjee, Sumit Persistence probabilities of weighted sums of stationary Gaussian sequences. (English) Zbl 1509.60094 Stochastic Processes Appl. 159, 286-319 (2023). MSC: 60G22 60G15 60G10 PDF BibTeX XML Cite \textit{F. Aurzada} and \textit{S. Mukherjee}, Stochastic Processes Appl. 159, 286--319 (2023; Zbl 1509.60094) Full Text: DOI arXiv
Mahmoudi, Mohammad Reza Evaluating the relationship between two periodically correlated processes with Mandelbrot-Van Ness fractional Brownian motion errors using periodic copula. (English) Zbl 07677404 J. Stat. Comput. Simulation 93, No. 1, 46-57 (2023). MSC: 62-XX PDF BibTeX XML Cite \textit{M. R. Mahmoudi}, J. Stat. Comput. Simulation 93, No. 1, 46--57 (2023; Zbl 07677404) Full Text: DOI
Muszkieta, Monika; Janczura, Joanna A compressed sensing approach to interpolation of fractional Brownian trajectories for a single particle tracking experiment. (English) Zbl 1511.94020 Appl. Math. Comput. 446, Article ID 127900, 12 p. (2023). MSC: 94A12 60G22 65C35 PDF BibTeX XML Cite \textit{M. Muszkieta} and \textit{J. Janczura}, Appl. Math. Comput. 446, Article ID 127900, 12 p. (2023; Zbl 1511.94020) Full Text: DOI
Liu, Mingyu; Xie, Jing; Kao, Yonggui Stochastic bounded consensus for multi-agent systems with fractional Brownian motions via sliding mode control. (English) Zbl 1511.93012 Appl. Math. Comput. 446, Article ID 127879, 14 p. (2023). MSC: 93A16 93B12 93D50 93E15 PDF BibTeX XML Cite \textit{M. Liu} et al., Appl. Math. Comput. 446, Article ID 127879, 14 p. (2023; Zbl 1511.93012) Full Text: DOI
Drosinou, Ourania; Nikolopoulos, Christos V.; Matzavinos, Anastasios; Kavallaris, Nikos I. A stochastic parabolic model of MEMS driven by fractional Brownian motion. (English) Zbl 1515.60096 J. Math. Biol. 86, No. 5, Paper No. 73, 25 p. (2023). MSC: 60G22 60G65 60H30 92C50 PDF BibTeX XML Cite \textit{O. Drosinou} et al., J. Math. Biol. 86, No. 5, Paper No. 73, 25 p. (2023; Zbl 1515.60096) Full Text: DOI
Liu, Junfeng; Wang, Zhi; Wang, Zengwu Space-time fractional Anderson model driven by Gaussian noise rough in space. (English) Zbl 07674257 Stoch. Dyn. 23, No. 1, Article ID 2350003, 31 p. (2023). MSC: 60G22 60H07 60H15 PDF BibTeX XML Cite \textit{J. Liu} et al., Stoch. Dyn. 23, No. 1, Article ID 2350003, 31 p. (2023; Zbl 07674257) Full Text: DOI
Zhao, Qi; Chronopoulou, Alexandra Delta-hedging in fractional volatility models. (English) Zbl 1511.91156 Ann. Finance 19, No. 1, 119-140 (2023). MSC: 91G20 60G22 PDF BibTeX XML Cite \textit{Q. Zhao} and \textit{A. Chronopoulou}, Ann. Finance 19, No. 1, 119--140 (2023; Zbl 1511.91156) Full Text: DOI
Singh, P. K.; Saha Ray, S. Shifted Chebyshev spectral Galerkin method to solve stochastic Itô-Volterra integral equations driven by fractional Brownian motion appearing in mathematical physics. (English) Zbl 07671212 Comput. Appl. Math. 42, No. 3, Paper No. 120, 23 p. (2023). MSC: 45A05 60H05 60H30 60H20 60H35 PDF BibTeX XML Cite \textit{P. K. Singh} and \textit{S. Saha Ray}, Comput. Appl. Math. 42, No. 3, Paper No. 120, 23 p. (2023; Zbl 07671212) Full Text: DOI
Aichinger, Florian; Desmettre, Sascha Utility maximization in multivariate Volterra models. (English) Zbl 1509.91036 SIAM J. Financ. Math. 14, No. 1, 52-98 (2023). MSC: 91G10 93E20 60G22 60H20 PDF BibTeX XML Cite \textit{F. Aichinger} and \textit{S. Desmettre}, SIAM J. Financ. Math. 14, No. 1, 52--98 (2023; Zbl 1509.91036) Full Text: DOI arXiv
Yue, Jia; Wang, Ming-Hui; Huang, Nan-Jing; Yang, Ben-Zhang Asset prices with investor protection and past information. (English) Zbl 07668856 J. Ind. Manag. Optim. 19, No. 4, 2704-2741 (2023). MSC: 91G05 60G22 60H30 91G50 PDF BibTeX XML Cite \textit{J. Yue} et al., J. Ind. Manag. Optim. 19, No. 4, 2704--2741 (2023; Zbl 07668856) Full Text: DOI arXiv
Pei, Bin; Inahama, Yuzuru; Xu, Yong Corrigendum to: “Averaging principle for fast-slow system driven by mixed fractional Brownian rough path”. (English) Zbl 07668596 J. Differ. Equations 355, 437-440 (2023). MSC: 60G22 60L20 60H10 34C29 PDF BibTeX XML Cite \textit{B. Pei} et al., J. Differ. Equations 355, 437--440 (2023; Zbl 07668596) Full Text: DOI