Cao, Linfen; Fan, Linlin Symmetry and monotonicity of positive solutions for a system involving fractional \(p\&q\)-Laplacian in a ball. (English) Zbl 07665481 Complex Var. Elliptic Equ. 68, No. 4, 667-679 (2023). MSC: 35R11 35J57 35J92 PDF BibTeX XML Cite \textit{L. Cao} and \textit{L. Fan}, Complex Var. Elliptic Equ. 68, No. 4, 667--679 (2023; Zbl 07665481) Full Text: DOI OpenURL
Abdellaoui, B.; Attar, A.; Boukarabila, Y. O.; Laamri, E. -H. Multiplicity results for nonlocal critical problems involving Hardy potential in the whole space. (English) Zbl 07665177 Complex Var. Elliptic Equ. 68, No. 3, 461-497 (2023). MSC: 35R11 35B65 35J61 47G20 PDF BibTeX XML Cite \textit{B. Abdellaoui} et al., Complex Var. Elliptic Equ. 68, No. 3, 461--497 (2023; Zbl 07665177) Full Text: DOI OpenURL
Jiao, Caiyu; Li, Changpin Monte Carlo method for parabolic equations involving fractional Laplacian. (English) Zbl 07664804 Monte Carlo Methods Appl. 29, No. 1, 33-53 (2023). MSC: 26A33 35R11 65C05 PDF BibTeX XML Cite \textit{C. Jiao} and \textit{C. Li}, Monte Carlo Methods Appl. 29, No. 1, 33--53 (2023; Zbl 07664804) Full Text: DOI arXiv OpenURL
Su, Yu Fractional \(p\)-Laplacian problem with critical Stein-Weiss type term. (English) Zbl 07664059 J. Geom. Anal. 33, No. 5, Paper No. 160, 22 p. (2023). MSC: 35R11 35A15 35A23 46B50 PDF BibTeX XML Cite \textit{Y. Su}, J. Geom. Anal. 33, No. 5, Paper No. 160, 22 p. (2023; Zbl 07664059) Full Text: DOI OpenURL
Guo, Yuxia; Hu, Yichen; Liu, Ting; Nie, Jianjun Non-degeneracy of the bubble solutions for the fractional prescribed curvature problem and applications. (English) Zbl 07664040 J. Geom. Anal. 33, No. 5, Paper No. 141, 51 p. (2023). MSC: 35R11 35B33 35J91 PDF BibTeX XML Cite \textit{Y. Guo} et al., J. Geom. Anal. 33, No. 5, Paper No. 141, 51 p. (2023; Zbl 07664040) Full Text: DOI OpenURL
Lizama, Carlos; Murillo-Arcila, Marina The semidiscrete damped wave equation with a fractional Laplacian. (English) Zbl 07660708 Proc. Am. Math. Soc. 151, No. 5, 1987-1999 (2023). MSC: 35R11 39A06 26A33 44A10 PDF BibTeX XML Cite \textit{C. Lizama} and \textit{M. Murillo-Arcila}, Proc. Am. Math. Soc. 151, No. 5, 1987--1999 (2023; Zbl 07660708) Full Text: DOI OpenURL
Yan, Jin; Liu, Yan; Su, Xue-Li Lower bounds of distance Laplacian spectral radii of \(n\)-vertex graphs in terms of fractional matching number. (English) Zbl 07660462 J. Oper. Res. Soc. China 11, No. 1, 189-196 (2023). MSC: 05C50 05C72 PDF BibTeX XML Cite \textit{J. Yan} et al., J. Oper. Res. Soc. China 11, No. 1, 189--196 (2023; Zbl 07660462) Full Text: DOI OpenURL
Carrero, Lisbeth; Quaas, Alexander Periodic solutions for one-dimensional nonlinear nonlocal problem with drift including singular nonlinearities. (English) Zbl 07659839 Proc. R. Soc. Edinb., Sect. A, Math. 153, No. 1, 229-261 (2023). MSC: 34-XX 35B10 35B09 35B32 35B45 35J60 PDF BibTeX XML Cite \textit{L. Carrero} and \textit{A. Quaas}, Proc. R. Soc. Edinb., Sect. A, Math. 153, No. 1, 229--261 (2023; Zbl 07659839) Full Text: DOI arXiv OpenURL
Miyagaki, O. H.; Santana, C. R.; Toon, E.; Ubilla, P. Critical and subcritical fractional Hamiltonian systems of Schrödinger equations with vanishing potentials. (English) Zbl 07659801 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 229, Article ID 113203, 18 p. (2023). MSC: 35J10 35J50 35R11 35Q55 PDF BibTeX XML Cite \textit{O. H. Miyagaki} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 229, Article ID 113203, 18 p. (2023; Zbl 07659801) Full Text: DOI OpenURL
Biroud, Kheireddine Mixed local and nonlocal equation with singular nonlinearity having variable exponent. (English) Zbl 07659701 J. Pseudo-Differ. Oper. Appl. 14, No. 1, Paper No. 13, 24 p. (2023). MSC: 35R11 35J92 35J75 35B65 PDF BibTeX XML Cite \textit{K. Biroud}, J. Pseudo-Differ. Oper. Appl. 14, No. 1, Paper No. 13, 24 p. (2023; Zbl 07659701) Full Text: DOI OpenURL
Zhao, Leiga; Cai, Hongrui; Chen, Yutong Multiple nontrivial solutions of superlinear fractional Laplace equations without (AR) condition. (English) Zbl 07659011 Adv. Nonlinear Anal. 12, Article ID 20220281, 14 p. (2023). MSC: 34B10 58E05 PDF BibTeX XML Cite \textit{L. Zhao} et al., Adv. Nonlinear Anal. 12, Article ID 20220281, 14 p. (2023; Zbl 07659011) Full Text: DOI OpenURL
Alsaedi, Ahmed; Alghanmi, Madeaha; Ahmad, Bashir; Alharbi, Boshra Uniqueness of solutions for a \(\psi\)-Hilfer fractional integral boundary value problem with the \(p\)-Laplacian operator. (English) Zbl 07656728 Demonstr. Math. 56, Article ID 20220195, 11 p. (2023). MSC: 34A08 34B10 34B15 47N20 PDF BibTeX XML Cite \textit{A. Alsaedi} et al., Demonstr. Math. 56, Article ID 20220195, 11 p. (2023; Zbl 07656728) Full Text: DOI OpenURL
Alonso-Orán, Diego; Chamizo, Fernando; Martínez, Ángel D.; Mas, Albert Pointwise monotonicity of heat kernels. (English) Zbl 07655265 Rev. Mat. Complut. 36, No. 1, 207-220 (2023). MSC: 35K08 35B50 35R11 PDF BibTeX XML Cite \textit{D. Alonso-Orán} et al., Rev. Mat. Complut. 36, No. 1, 207--220 (2023; Zbl 07655265) Full Text: DOI arXiv OpenURL
Alazard, Thomas; Nguyen, Quoc-Hung Endpoint Sobolev theory for the Muskat equation. (English) Zbl 07654964 Commun. Math. Phys. 397, No. 3, 1043-1102 (2023). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q35 76S05 76T06 76D27 35B65 35A01 35A02 26A33 35R11 PDF BibTeX XML Cite \textit{T. Alazard} and \textit{Q.-H. Nguyen}, Commun. Math. Phys. 397, No. 3, 1043--1102 (2023; Zbl 07654964) Full Text: DOI arXiv OpenURL
Bu, Weichun; An, Tianqing; Li, Yingjie; He, Jianying Kirchhoff-type problems involving logarithmic nonlinearity with variable exponent and convection term. (English) Zbl 07654944 Mediterr. J. Math. 20, No. 2, Paper No. 77, 22 p. (2023). MSC: 35J91 35A15 35R11 35J67 PDF BibTeX XML Cite \textit{W. Bu} et al., Mediterr. J. Math. 20, No. 2, Paper No. 77, 22 p. (2023; Zbl 07654944) Full Text: DOI OpenURL
Daoues, Adel; Hammami, Amani; Saoudi, Kamel Multiplicity results of nonlocal singular PDEs with critical Sobolev-Hardy exponent. (English) Zbl 07653412 Electron. J. Differ. Equ. 2023, Paper No. 10, 19 p. (2023). MSC: 35R11 35J25 35J75 35J92 46E35 PDF BibTeX XML Cite \textit{A. Daoues} et al., Electron. J. Differ. Equ. 2023, Paper No. 10, 19 p. (2023; Zbl 07653412) Full Text: Link OpenURL
Bucur, Claudia; Dipierro, Serena; Lombardini, Luca; Mazón, José M.; Valdinoci, Enrico \(s,p\)-harmonic approximation of functions of least \(W^{s,l}\)-seminorm. (English) Zbl 07652758 Int. Math. Res. Not. 2023, No. 2, 1173-1235 (2023). MSC: 35R11 35A15 35B30 35J92 35R30 PDF BibTeX XML Cite \textit{C. Bucur} et al., Int. Math. Res. Not. 2023, No. 2, 1173--1235 (2023; Zbl 07652758) Full Text: DOI arXiv OpenURL
Boudjeriou, Tahir Asymptotic behavior of parabolic nonlocal equations in cylinders becoming unbounded. (English) Zbl 07649340 Bull. Malays. Math. Sci. Soc. (2) 46, No. 1, Paper No. 19, 25 p. (2023). MSC: 35B40 35K20 35R11 PDF BibTeX XML Cite \textit{T. Boudjeriou}, Bull. Malays. Math. Sci. Soc. (2) 46, No. 1, Paper No. 19, 25 p. (2023; Zbl 07649340) Full Text: DOI OpenURL
Chowdhury, Indranil; Roy, Prosenjit On fractional Poincaré inequality for unbounded domains with finite ball conditions: counter example. (English) Zbl 07649231 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 228, Article ID 113189, 16 p. (2023). MSC: 35A23 26D10 35P15 35P20 35R09 35R11 46E35 PDF BibTeX XML Cite \textit{I. Chowdhury} and \textit{P. Roy}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 228, Article ID 113189, 16 p. (2023; Zbl 07649231) Full Text: DOI arXiv OpenURL
Borthagaray, Juan Pablo; Nochetto, Ricardo H. Besov regularity for the Dirichlet integral fractional Laplacian in Lipschitz domains. (English) Zbl 07646946 J. Funct. Anal. 284, No. 6, Article ID 109829, 33 p. (2023). MSC: 35R11 35B45 35B65 35J25 PDF BibTeX XML Cite \textit{J. P. Borthagaray} and \textit{R. H. Nochetto}, J. Funct. Anal. 284, No. 6, Article ID 109829, 33 p. (2023; Zbl 07646946) Full Text: DOI arXiv OpenURL
Bhakta, Mousomi; Ganguly, Debdip; Montoro, Luigi Fractional Hardy equations with critical and supercritical exponents. (English) Zbl 07645556 Ann. Mat. Pura Appl. (4) 202, No. 1, 397-430 (2023). MSC: 35R11 35B33 35B07 35B65 35J61 35S05 47G30 PDF BibTeX XML Cite \textit{M. Bhakta} et al., Ann. Mat. Pura Appl. (4) 202, No. 1, 397--430 (2023; Zbl 07645556) Full Text: DOI arXiv OpenURL
Abatangelo, Nicola; Fall, Mouhamed Moustapha; Temgoua, Remi Yvant A Hopf lemma for the regional fractional Laplacian. (English) Zbl 07645544 Ann. Mat. Pura Appl. (4) 202, No. 1, 95-113 (2023). MSC: 47G20 35B50 45K05 PDF BibTeX XML Cite \textit{N. Abatangelo} et al., Ann. Mat. Pura Appl. (4) 202, No. 1, 95--113 (2023; Zbl 07645544) Full Text: DOI arXiv OpenURL
Manfredini, Maria; Palatucci, Giampiero; Piccinini, Mirco; Polidoro, Sergio Hölder continuity and boundedness estimates for nonlinear fractional equations in the Heisenberg group. (English) Zbl 07644331 J. Geom. Anal. 33, No. 3, Paper No. 77, 41 p. (2023). MSC: 35B45 35B65 35J92 35R03 35R11 47G20 PDF BibTeX XML Cite \textit{M. Manfredini} et al., J. Geom. Anal. 33, No. 3, Paper No. 77, 41 p. (2023; Zbl 07644331) Full Text: DOI arXiv OpenURL
Zhao, Nan; Liu, Yu Nonnegative solutions of a fractional differential inequality on Grushin spaces and nilpotent Lie groups. (English) Zbl 07643807 Forum Math. 35, No. 1, 123-145 (2023). MSC: 35R45 35R03 35R11 53C17 PDF BibTeX XML Cite \textit{N. Zhao} and \textit{Y. Liu}, Forum Math. 35, No. 1, 123--145 (2023; Zbl 07643807) Full Text: DOI OpenURL
Herrera-Hernández, E. C.; Aguilar-Madera, C. G.; Espinosa-Paredes, G.; Hernández, D. Modeling single-phase fluid flow in porous media through non-local fractal continuum equation. (English) Zbl 07642135 J. Eng. Math. 138, Paper No. 8, 18 p. (2023). MSC: 76S05 76-10 28A80 26A33 PDF BibTeX XML Cite \textit{E. C. Herrera-Hernández} et al., J. Eng. Math. 138, Paper No. 8, 18 p. (2023; Zbl 07642135) Full Text: DOI OpenURL
Hou, Wenwen; Zhang, Lihong Radial symmetry of a relativistic Schrödinger tempered fractional \(p\)-Laplacian model with logarithmic nonlinearity. (English) Zbl 07640676 Nonlinear Anal., Model. Control 28, No. 1, 20-33 (2023). MSC: 35B07 35J92 35R11 PDF BibTeX XML Cite \textit{W. Hou} and \textit{L. Zhang}, Nonlinear Anal., Model. Control 28, No. 1, 20--33 (2023; Zbl 07640676) Full Text: DOI OpenURL
Fall, Mouhamed Moustapha; Temgoua, Remi Yvant Existence results for nonlocal problems governed by the regional fractional Laplacian. (English) Zbl 07639048 NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 2, Paper No. 18, 32 p. (2023). MSC: 35R11 35J20 35J25 PDF BibTeX XML Cite \textit{M. M. Fall} and \textit{R. Y. Temgoua}, NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 2, Paper No. 18, 32 p. (2023; Zbl 07639048) Full Text: DOI arXiv OpenURL
Lin, Li; Yang, Meihua; Duan, Jinqiao Effective approximation for a nonlocal stochastic Schrödinger equation with oscillating potential. (English) Zbl 07638782 Z. Angew. Math. Phys. 74, No. 1, Paper No. 27, 20 p. (2023). MSC: 60H15 35B27 80M40 26A33 60G51 35R11 PDF BibTeX XML Cite \textit{L. Lin} et al., Z. Angew. Math. Phys. 74, No. 1, Paper No. 27, 20 p. (2023; Zbl 07638782) Full Text: DOI arXiv OpenURL
Nakamura, Kenta Harnack’s estimate for a mixed local-nonlocal doubly nonlinear parabolic equation. (English) Zbl 07637873 Calc. Var. Partial Differ. Equ. 62, No. 2, Paper No. 40, 45 p. (2023). Reviewer: Vincenzo Vespri (Firenze) MSC: 35B45 35B09 35K59 35M10 35R11 PDF BibTeX XML Cite \textit{K. Nakamura}, Calc. Var. Partial Differ. Equ. 62, No. 2, Paper No. 40, 45 p. (2023; Zbl 07637873) Full Text: DOI arXiv OpenURL
Kukuljan, Teo \(C^{2, \alpha}\) regularity of free boundaries in parabolic non-local obstacle problems. (English) Zbl 07637869 Calc. Var. Partial Differ. Equ. 62, No. 2, Paper No. 36, 40 p. (2023). MSC: 35R35 35B65 35J86 47G20 PDF BibTeX XML Cite \textit{T. Kukuljan}, Calc. Var. Partial Differ. Equ. 62, No. 2, Paper No. 36, 40 p. (2023; Zbl 07637869) Full Text: DOI arXiv OpenURL
Ayi, Nathalie; Herda, Maxime; Hivert, Hélène; Tristani, Isabelle On a structure-preserving numerical method for fractional Fokker-Planck equations. (English) Zbl 07636061 Math. Comput. 92, No. 340, 635-693 (2023). MSC: 35Q84 35B40 26A33 35R11 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{N. Ayi} et al., Math. Comput. 92, No. 340, 635--693 (2023; Zbl 07636061) Full Text: DOI arXiv OpenURL
Frassu, Silvia; Iannizzotto, Antonio Multiple solutions for the fractional \(p\)-Laplacian with jumping reactions. (English) Zbl 07634927 J. Fixed Point Theory Appl. 25, No. 1, Paper No. 25, 30 p. (2023). MSC: 35P30 35J92 35R11 47H11 PDF BibTeX XML Cite \textit{S. Frassu} and \textit{A. Iannizzotto}, J. Fixed Point Theory Appl. 25, No. 1, Paper No. 25, 30 p. (2023; Zbl 07634927) Full Text: DOI arXiv OpenURL
Bhimani, Divyang G.; Hajaiej, Hichem; Haque, Saikatul; Luo, Tingjian A sharp Gagliardo-Nirenberg inequality and its application to fractional problems with inhomogeneous nonlinearity. (English) Zbl 07629954 Evol. Equ. Control Theory 12, No. 1, 362-390 (2023). MSC: 35J10 35Q55 35R11 35A15 PDF BibTeX XML Cite \textit{D. G. Bhimani} et al., Evol. Equ. Control Theory 12, No. 1, 362--390 (2023; Zbl 07629954) Full Text: DOI OpenURL
Bui, The Anh; D’Ancona, Piero Generalized Hardy operators. (English) Zbl 07629722 Nonlinearity 36, No. 1, 171-198 (2023). MSC: 35A23 35K08 35R11 42B20 PDF BibTeX XML Cite \textit{T. A. Bui} and \textit{P. D'Ancona}, Nonlinearity 36, No. 1, 171--198 (2023; Zbl 07629722) Full Text: DOI OpenURL
Dai, Mimi; Friedlander, Susan Uniqueness and non-uniqueness results for forced dyadic MHD models. (English) Zbl 07628871 J. Nonlinear Sci. 33, No. 1, Paper No. 10, 31 p. (2023). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q35 76D03 76W05 76D05 35A02 35A01 35D30 26A33 35R11 PDF BibTeX XML Cite \textit{M. Dai} and \textit{S. Friedlander}, J. Nonlinear Sci. 33, No. 1, Paper No. 10, 31 p. (2023; Zbl 07628871) Full Text: DOI arXiv OpenURL
Ceresa Dussel, Ignacio; Fernández Bonder, Julián A Bourgain-Brezis-Mironescu formula for anisotropic fractional Sobolev spaces and applications to anisotropic fractional differential equations. (English) Zbl 07624106 J. Math. Anal. Appl. 519, No. 2, Article ID 126805, 25 p. (2023). MSC: 35J92 35R11 PDF BibTeX XML Cite \textit{I. Ceresa Dussel} and \textit{J. Fernández Bonder}, J. Math. Anal. Appl. 519, No. 2, Article ID 126805, 25 p. (2023; Zbl 07624106) Full Text: DOI arXiv OpenURL
Wang, Guotao; Liu, Yuchuan; Nieto, Juan J.; Zhang, Lihong Asymptotic radial solution of parabolic tempered fractional Laplacian problem. (English) Zbl 1502.35197 Bull. Malays. Math. Sci. Soc. (2) 46, No. 1, Paper No. 1, 16 p. (2023). MSC: 35R11 35B51 35K92 PDF BibTeX XML Cite \textit{G. Wang} et al., Bull. Malays. Math. Sci. Soc. (2) 46, No. 1, Paper No. 1, 16 p. (2023; Zbl 1502.35197) Full Text: DOI OpenURL
Valverde, Luis Acuña On the asymptotic expansion of the heat content for isotropic \(\alpha \)-stable processes over convex bodies, \(0<\alpha <2\). (English) Zbl 07619028 J. Geom. Anal. 33, No. 1, Paper No. 25, 18 p. (2023). MSC: 60G51 PDF BibTeX XML Cite \textit{L. A. Valverde}, J. Geom. Anal. 33, No. 1, Paper No. 25, 18 p. (2023; Zbl 07619028) Full Text: DOI OpenURL
Di, Huafei; Rong, Weijie The regularized solution approximation of forward/backward problems for a fractional pseudo-parabolic equation with random noise. (English) Zbl 07605449 Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 1, 324-348 (2023). MSC: 35L30 35L82 35D40 35B44 PDF BibTeX XML Cite \textit{H. Di} and \textit{W. Rong}, Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 1, 324--348 (2023; Zbl 07605449) Full Text: DOI OpenURL
Wu, Zijian; Chen, Haibo An existence result for super-critical problems involving the fractional \(p\)-Laplacian in \(\mathbb{R}^N\). (English) Zbl 1498.35599 Appl. Math. Lett. 135, Article ID 108422, 8 p. (2023). MSC: 35R11 35A15 35J92 PDF BibTeX XML Cite \textit{Z. Wu} and \textit{H. Chen}, Appl. Math. Lett. 135, Article ID 108422, 8 p. (2023; Zbl 1498.35599) Full Text: DOI OpenURL
Zhang, Xiaohui; Zhang, Xuping Upper semi-continuity of non-autonomous fractional stochastic \(p\)-Laplacian equation driven by additive noise on \(\mathbb{R}^n\). (English) Zbl 1498.35644 Discrete Contin. Dyn. Syst., Ser. B 28, No. 1, 385-407 (2023). MSC: 35R60 35B41 35J92 35R11 37L30 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{X. Zhang}, Discrete Contin. Dyn. Syst., Ser. B 28, No. 1, 385--407 (2023; Zbl 1498.35644) Full Text: DOI OpenURL
Ahmed, A.; Vall, M. S. B. Elemine Perturbed nonlinear elliptic Neumann problem involving anisotropic Sobolev spaces with variable exponents. (English) Zbl 07661104 Matematiche 77, No. 2, 465-486 (2022). MSC: 35J92 35R11 35A15 35J60 35D05 35D30 35J62 PDF BibTeX XML Cite \textit{A. Ahmed} and \textit{M. S. B. E. Vall}, Matematiche 77, No. 2, 465--486 (2022; Zbl 07661104) Full Text: DOI OpenURL
Feng, Zhenping; Du, Zhuoran Periodic solutions of fractional Laplace equations: least period, axial symmetry and limit. (English) Zbl 07658846 Topol. Methods Nonlinear Anal. 60, No. 2, 633-651 (2022). MSC: 35Jxx 35Kxx PDF BibTeX XML Cite \textit{Z. Feng} and \textit{Z. Du}, Topol. Methods Nonlinear Anal. 60, No. 2, 633--651 (2022; Zbl 07658846) Full Text: DOI Link OpenURL
Zhang, Nan; Mao, Zhiping; Xiong, Tao High order conservative finite difference/Fourier spectral methods for inviscid surface quasi-geostrophic flows. (English) Zbl 07656722 Commun. Comput. Phys. 32, No. 5, 1474-1509 (2022). MSC: 65M06 65M70 35R11 76U60 76B07 76B47 PDF BibTeX XML Cite \textit{N. Zhang} et al., Commun. Comput. Phys. 32, No. 5, 1474--1509 (2022; Zbl 07656722) Full Text: DOI OpenURL
Horrigue, Samah Stability of positive solutions for a class of nonlinear Hadamard type fractional differential equations with \(p\)-Laplacian. (English) Zbl 07649222 Bull. Inst. Math., Acad. Sin. (N.S.) 17, No. 4, 401-415 (2022). MSC: 34A08 34B18 34D10 47N20 PDF BibTeX XML Cite \textit{S. Horrigue}, Bull. Inst. Math., Acad. Sin. (N.S.) 17, No. 4, 401--415 (2022; Zbl 07649222) Full Text: DOI OpenURL
Ait Hammou, Mustapha On a nonlocal problem involving fractional \(p(x,\cdot)\)-Laplacian with non-standard growth. (English) Zbl 07644043 Ann. Acad. Rom. Sci., Math. Appl. 14, No. 1-2, 77-89 (2022). MSC: 35R11 35S15 47H11 PDF BibTeX XML Cite \textit{M. Ait Hammou}, Ann. Acad. Rom. Sci., Math. Appl. 14, No. 1--2, 77--89 (2022; Zbl 07644043) Full Text: DOI OpenURL
Devi, Amita; Kumar, Anoop Hyers-Ulam stability and existence of solution for hybrid fractional differential equation with \(p\)-Laplacian operator. (English) Zbl 07641718 Chaos Solitons Fractals 156, Article ID 111859, 8 p. (2022). MSC: 34A08 47N20 26A33 PDF BibTeX XML Cite \textit{A. Devi} and \textit{A. Kumar}, Chaos Solitons Fractals 156, Article ID 111859, 8 p. (2022; Zbl 07641718) Full Text: DOI OpenURL
Molica Bisci, Giovanni; Servadei, Raffaella; Zhang, Binlin Monotonicity properties of the eigenvalues of nonlocal fractional operators and their applications. (English) Zbl 07640698 Electron. J. Differ. Equ. 2022, Paper No. 85, 21 p. (2022). MSC: 35P05 35A15 35R09 35R11 35S15 45G05 47G20 PDF BibTeX XML Cite \textit{G. Molica Bisci} et al., Electron. J. Differ. Equ. 2022, Paper No. 85, 21 p. (2022; Zbl 07640698) Full Text: Link OpenURL
Lin, Xiaolu; Zheng, Shenzhou Mixed local and nonlocal Schrödinger-Poisson type system involving variable exponents. (English) Zbl 07640694 Electron. J. Differ. Equ. 2022, Paper No. 81, 17 p. (2022). MSC: 35A15 35B33 35B40 35J92 35R11 PDF BibTeX XML Cite \textit{X. Lin} and \textit{S. Zheng}, Electron. J. Differ. Equ. 2022, Paper No. 81, 17 p. (2022; Zbl 07640694) Full Text: Link OpenURL
Correia, Jeziel N.; Oliveira, Claudionei P. Existence of positive solutions for fractional Laplacian systems with critical growth. (English) Zbl 07640692 Electron. J. Differ. Equ. 2022, Paper No. 79, 42 p. (2022). MSC: 35J61 35R11 35A15 PDF BibTeX XML Cite \textit{J. N. Correia} and \textit{C. P. Oliveira}, Electron. J. Differ. Equ. 2022, Paper No. 79, 42 p. (2022; Zbl 07640692) Full Text: Link OpenURL
Ghanmi, A.; Kenzizi, T.; Chung, N. T. Multiple solutions for a singular problem involving the fractional \(p\)-\(q\)-Laplacian operator. (English) Zbl 07638243 Math. Notes 112, No. 5, 664-673 (2022). MSC: 35J92 35J70 35A15 PDF BibTeX XML Cite \textit{A. Ghanmi} et al., Math. Notes 112, No. 5, 664--673 (2022; Zbl 07638243) Full Text: DOI OpenURL
Ghosh, Sekhar; Motreanu, Dumitru Infinitely many large solutions to a variable order nonlocal singular equation. (English) Zbl 1503.35259 Fract. Calc. Appl. Anal. 25, No. 2, 822-839 (2022). MSC: 35R11 35J75 35J60 26A33 PDF BibTeX XML Cite \textit{S. Ghosh} and \textit{D. Motreanu}, Fract. Calc. Appl. Anal. 25, No. 2, 822--839 (2022; Zbl 1503.35259) Full Text: DOI OpenURL
Zili, Mounir; Zougar, Eya Mixed stochastic heat equation with fractional Laplacian and gradient perturbation. (English) Zbl 1503.60086 Fract. Calc. Appl. Anal. 25, No. 2, 783-802 (2022). MSC: 60H15 60G15 35R11 35R60 35K05 26A33 PDF BibTeX XML Cite \textit{M. Zili} and \textit{E. Zougar}, Fract. Calc. Appl. Anal. 25, No. 2, 783--802 (2022; Zbl 1503.60086) Full Text: DOI OpenURL
Ding, Xiao-Li; Nieto, Juan J.; Wang, Xiaolong Analytical solutions for fractional partial delay differential-algebraic equations with Dirichlet boundary conditions defined on a finite domain. (English) Zbl 1503.35256 Fract. Calc. Appl. Anal. 25, No. 2, 408-438 (2022). MSC: 35R11 33E12 26A33 PDF BibTeX XML Cite \textit{X.-L. Ding} et al., Fract. Calc. Appl. Anal. 25, No. 2, 408--438 (2022; Zbl 1503.35256) Full Text: DOI OpenURL
Arab, Zineb; El-Borai, Mahmoud Mohamed Wellposedness and stability of fractional stochastic nonlinear heat equation in Hilbert space. (English) Zbl 1503.35246 Fract. Calc. Appl. Anal. 25, No. 5, 2020-2039 (2022). MSC: 35R11 35R60 26A33 35K05 47N20 PDF BibTeX XML Cite \textit{Z. Arab} and \textit{M. M. El-Borai}, Fract. Calc. Appl. Anal. 25, No. 5, 2020--2039 (2022; Zbl 1503.35246) Full Text: DOI OpenURL
Sun, Miao; Liu, Baiyu The sliding method for fractional Laplacian systems. (English) Zbl 1503.35276 Fract. Calc. Appl. Anal. 25, No. 5, 1954-1970 (2022). MSC: 35R11 35A16 35B50 26A33 PDF BibTeX XML Cite \textit{M. Sun} and \textit{B. Liu}, Fract. Calc. Appl. Anal. 25, No. 5, 1954--1970 (2022; Zbl 1503.35276) Full Text: DOI OpenURL
Echarghaoui, Rachid; Masmodi, Mohamed Two disjoint and infinite sets of solutions for a concave-convex critical fractional Laplacian equation. (English) Zbl 1503.35258 Fract. Calc. Appl. Anal. 25, No. 4, 1604-1629 (2022). MSC: 35R11 35J60 49J45 47G20 26A33 PDF BibTeX XML Cite \textit{R. Echarghaoui} and \textit{M. Masmodi}, Fract. Calc. Appl. Anal. 25, No. 4, 1604--1629 (2022; Zbl 1503.35258) Full Text: DOI OpenURL
Cai, Miaomiao; Li, Fengquan; Wang, Pengyan Radial symmetry and Hopf lemma for fully nonlinear parabolic equations involving the fractional Laplacian. (English) Zbl 1503.35250 Fract. Calc. Appl. Anal. 25, No. 3, 1037-1054 (2022). MSC: 35R11 35K55 35B50 26A33 PDF BibTeX XML Cite \textit{M. Cai} et al., Fract. Calc. Appl. Anal. 25, No. 3, 1037--1054 (2022; Zbl 1503.35250) Full Text: DOI OpenURL
Darve, Eric; D’Elia, Marta; Garrappa, Roberto; Giusti, Andrea; Rubio, Natalia L. On the fractional Laplacian of variable order. (English) Zbl 1503.35253 Fract. Calc. Appl. Anal. 25, No. 1, 15-28 (2022). MSC: 35R11 26A33 42A38 PDF BibTeX XML Cite \textit{E. Darve} et al., Fract. Calc. Appl. Anal. 25, No. 1, 15--28 (2022; Zbl 1503.35253) Full Text: DOI arXiv OpenURL
Abadias, Luciano; De León-Contreras, Marta Discrete Hölder spaces and their characterization via semigroups associated with the discrete Laplacian and kernel estimates. (English) Zbl 07634017 J. Evol. Equ. 22, No. 4, Paper No. 91, 42 p. (2022). MSC: 47D07 26A16 35R11 35B65 35K08 39A12 PDF BibTeX XML Cite \textit{L. Abadias} and \textit{M. De León-Contreras}, J. Evol. Equ. 22, No. 4, Paper No. 91, 42 p. (2022; Zbl 07634017) Full Text: DOI arXiv OpenURL
Zheng, Tiantian; Zhang, Chunyan; Zhang, Jihui Multiple solutions for a fractional \(p\)&\(q\)-Laplacian system involving Hardy-Sobolev exponent. (English) Zbl 1503.35279 Miskolc Math. Notes 23, No. 2, 1037-1052 (2022). MSC: 35R11 35A15 47J30 PDF BibTeX XML Cite \textit{T. Zheng} et al., Miskolc Math. Notes 23, No. 2, 1037--1052 (2022; Zbl 1503.35279) Full Text: DOI OpenURL
Guo, Shimin; Yan, Wenjing; Li, Can; Mei, Liquan Dissipation-preserving rational spectral-Galerkin method for strongly damped nonlinear wave system involving mixed fractional Laplacians in unbounded domains. (English) Zbl 1503.65262 J. Sci. Comput. 93, No. 2, Paper No. 53, 34 p. (2022). MSC: 65M70 65M60 65M06 65N35 65N30 65D32 35C08 33C10 35Q53 26A33 35R11 PDF BibTeX XML Cite \textit{S. Guo} et al., J. Sci. Comput. 93, No. 2, Paper No. 53, 34 p. (2022; Zbl 1503.65262) Full Text: DOI OpenURL
Faustmann, Markus; Marcati, Carlo; Melenk, Jens Markus; Schwab, Christoph Weighted analytic regularity for the integral fractional Laplacian in polygons. (English) Zbl 07632463 SIAM J. Math. Anal. 54, No. 6, 6323-6357 (2022). MSC: 35B65 26A33 35A20 35B45 35J25 35J70 35R11 PDF BibTeX XML Cite \textit{M. Faustmann} et al., SIAM J. Math. Anal. 54, No. 6, 6323--6357 (2022; Zbl 07632463) Full Text: DOI arXiv OpenURL
Cheng, Tingzhi; Xu, Xianghui Existence results for multi-point boundary value problem to singular fractional differential equations with a positive parameter. (English) Zbl 1499.34038 J. Appl. Math. Comput. 68, No. 6, 3721-3746 (2022). MSC: 34A08 34B16 PDF BibTeX XML Cite \textit{T. Cheng} and \textit{X. Xu}, J. Appl. Math. Comput. 68, No. 6, 3721--3746 (2022; Zbl 1499.34038) Full Text: DOI OpenURL
Costa, Augusto C. R.; Figueiredo, Giovany M.; Miyagaki, Olimpio H. Existence of positive solutions for a critical nonlocal elliptic system. (English) Zbl 07632128 J. Convex Anal. 29, No. 4, 1083-1117 (2022). MSC: 35J50 35J62 35R11 35A01 PDF BibTeX XML Cite \textit{A. C. R. Costa} et al., J. Convex Anal. 29, No. 4, 1083--1117 (2022; Zbl 07632128) Full Text: Link OpenURL
Najafov, A. M.; Alekberli, S. T. A solution of \(p\)-harmonic type equiations of fractional order. (English) Zbl 07626333 Lobachevskii J. Math. 43, No. 8, 2244-2249 (2022). MSC: 35R11 35A15 35J25 35J92 PDF BibTeX XML Cite \textit{A. M. Najafov} and \textit{S. T. Alekberli}, Lobachevskii J. Math. 43, No. 8, 2244--2249 (2022; Zbl 07626333) Full Text: DOI OpenURL
Le, Phuong Monotonicity results for quasilinear fractional systems in epigraphs. (English) Zbl 07626230 Z. Anal. Anwend. 41, No. 1-2, 49-64 (2022). Reviewer: Xiaoming He (Beijing) MSC: 35R11 35J92 PDF BibTeX XML Cite \textit{P. Le}, Z. Anal. Anwend. 41, No. 1--2, 49--64 (2022; Zbl 07626230) Full Text: DOI OpenURL
Ledesma, César T.; Miyagaki, Olimpio H. Positive solutions for a class of fractional Choquard equation in exterior domain. (English) Zbl 07626086 Milan J. Math. 90, No. 2, 519-554 (2022). MSC: 35J47 35J61 35R11 35B09 PDF BibTeX XML Cite \textit{C. T. Ledesma} and \textit{O. H. Miyagaki}, Milan J. Math. 90, No. 2, 519--554 (2022; Zbl 07626086) Full Text: DOI OpenURL
Garbaczewski, Piotr; Żaba, Mariusz Lévy processes in bounded domains: path-wise reflection scenarios and signatures of confinement. (English) Zbl 07625235 J. Phys. A, Math. Theor. 55, No. 30, Article ID 305005, 26 p. (2022). MSC: 81-XX 82-XX PDF BibTeX XML Cite \textit{P. Garbaczewski} and \textit{M. Żaba}, J. Phys. A, Math. Theor. 55, No. 30, Article ID 305005, 26 p. (2022; Zbl 07625235) Full Text: DOI arXiv OpenURL
Sabri, Abdelali Weak solution for nonlinear fractional \(p(.)\)-Laplacian problem with variable order via Rothe’s time-discretization method. (English) Zbl 1502.35196 Math. Model. Anal. 27, No. 4, 533-546 (2022). MSC: 35R11 35D30 35K20 35K92 34A08 PDF BibTeX XML Cite \textit{A. Sabri}, Math. Model. Anal. 27, No. 4, 533--546 (2022; Zbl 1502.35196) Full Text: DOI OpenURL
Sounia, Zediri; Kamel, Akrout; Abdeljabbar, Ghanmi Multiplicity results for a critical and subcritical system involving fractional \(p\)-Laplacian operator via Nehari manifold method. (English) Zbl 07622523 Bull. Inst. Math., Acad. Sin. (N.S.) 17, No. 3, 355-376 (2022). MSC: 35J47 35J92 35R11 35A15 PDF BibTeX XML Cite \textit{Z. Sounia} et al., Bull. Inst. Math., Acad. Sin. (N.S.) 17, No. 3, 355--376 (2022; Zbl 07622523) Full Text: DOI OpenURL
Fan, Zi-an On fractional \((p, q)\)-Laplacian equations involving subcritical or critical Hardy exponents. (English) Zbl 07622390 J. Pseudo-Differ. Oper. Appl. 13, No. 4, Paper No. 63, 17 p. (2022). MSC: 35J92 35R11 35A15 PDF BibTeX XML Cite \textit{Z.-a. Fan}, J. Pseudo-Differ. Oper. Appl. 13, No. 4, Paper No. 63, 17 p. (2022; Zbl 07622390) Full Text: DOI OpenURL
Meng, Fanmeng; Jiang, Weihua; Guo, Chunjing; Zhou, Lina Solvability of mixed Hilfer fractional functional boundary value problems with \(p\)-Laplacian at resonance. (English) Zbl 1498.34037 Bound. Value Probl. 2022, Paper No. 81, 23 p. (2022). MSC: 34A08 34B15 PDF BibTeX XML Cite \textit{F. Meng} et al., Bound. Value Probl. 2022, Paper No. 81, 23 p. (2022; Zbl 1498.34037) Full Text: DOI OpenURL
Chabane, Farid; Benbachir, Maamar; Hachama, Mohammed; Samei, Mohammad Esmael Existence of positive solutions for \(p\)-Laplacian boundary value problems of fractional differential equations. (English) Zbl 1498.34019 Bound. Value Probl. 2022, Paper No. 65, 38 p. (2022). MSC: 34A08 34B15 PDF BibTeX XML Cite \textit{F. Chabane} et al., Bound. Value Probl. 2022, Paper No. 65, 38 p. (2022; Zbl 1498.34019) Full Text: DOI OpenURL
Huaroto, Gerardo Nonlinear fractional Schrödinger equation on the half-line. (English) Zbl 1499.35555 SN Partial Differ. Equ. Appl. 3, No. 6, Paper No. 78, 27 p. (2022). MSC: 35Q55 35A01 PDF BibTeX XML Cite \textit{G. Huaroto}, SN Partial Differ. Equ. Appl. 3, No. 6, Paper No. 78, 27 p. (2022; Zbl 1499.35555) Full Text: DOI OpenURL
Panda, Akasmika; Choudhuri, Debajyoti Infinitely many solutions for a doubly nonlocal fractional problem involving two critical nonlinearities. (English) Zbl 1501.35444 Complex Var. Elliptic Equ. 67, No. 12, 2835-2865 (2022). MSC: 35R11 35B33 35D30 35J92 46E35 PDF BibTeX XML Cite \textit{A. Panda} and \textit{D. Choudhuri}, Complex Var. Elliptic Equ. 67, No. 12, 2835--2865 (2022; Zbl 1501.35444) Full Text: DOI OpenURL
Wang, Wenxia Unique positive solutions for boundary value problem of \(p\)-Laplacian fractional differential equation with a sign-changed nonlinearity. (English) Zbl 07613790 Nonlinear Anal., Model. Control 27, No. 6, 1110-1128 (2022). Reviewer: Sotiris K. Ntouyas (Ioannina) MSC: 34A08 34B18 33E12 47N20 PDF BibTeX XML Cite \textit{W. Wang}, Nonlinear Anal., Model. Control 27, No. 6, 1110--1128 (2022; Zbl 07613790) Full Text: DOI OpenURL
Iglesias, José A.; Mercier, Gwenael Convergence of level sets in fractional Laplacian regularization. (English) Zbl 1501.35438 Inverse Probl. 38, No. 12, Article ID 124003, 35 p. (2022). MSC: 35R11 35R30 35J05 PDF BibTeX XML Cite \textit{J. A. Iglesias} and \textit{G. Mercier}, Inverse Probl. 38, No. 12, Article ID 124003, 35 p. (2022; Zbl 1501.35438) Full Text: DOI arXiv OpenURL
El-Houari, Hamza; Moussa, Hicham; Chadli, Lalla Saâdia Ground state solutions for a nonlocal system in fractional Orlicz-Sobolev spaces. (English) Zbl 1501.35180 Int. J. Differ. Equ. 2022, Article ID 3849217, 16 p. (2022). MSC: 35J50 35R11 35A01 35A15 PDF BibTeX XML Cite \textit{H. El-Houari} et al., Int. J. Differ. Equ. 2022, Article ID 3849217, 16 p. (2022; Zbl 1501.35180) Full Text: DOI OpenURL
Echarghaoui, Rachid; Khouakhi, Moussa; Masmodi, Mohamed Existence and multiplicity of positive solutions for a class of critical fractional Laplacian systems. (English) Zbl 1501.35179 J. Elliptic Parabol. Equ. 8, No. 2, 813-835 (2022). MSC: 35J50 35R11 35A01 PDF BibTeX XML Cite \textit{R. Echarghaoui} et al., J. Elliptic Parabol. Equ. 8, No. 2, 813--835 (2022; Zbl 1501.35179) Full Text: DOI OpenURL
Vanterler da C. Sousa, José; Nyamoradi, Nemat; Lamine, M. Nehari manifold and fractional Dirichlet boundary value problem. (English) Zbl 07610419 Anal. Math. Phys. 12, No. 6, Paper No. 143, 12 p. (2022). MSC: 26A33 35R11 35B50 PDF BibTeX XML Cite \textit{J. Vanterler da C. Sousa} et al., Anal. Math. Phys. 12, No. 6, Paper No. 143, 12 p. (2022; Zbl 07610419) Full Text: DOI OpenURL
Lingzheng, Kong; Haibo, Chen Normalized solutions for nonlinear fractional Kirchhoff type systems. (English) Zbl 1501.35174 Topol. Methods Nonlinear Anal. 60, No. 1, 153-183 (2022). MSC: 35J47 35R11 35J62 35A01 35A15 PDF BibTeX XML Cite \textit{K. Lingzheng} and \textit{C. Haibo}, Topol. Methods Nonlinear Anal. 60, No. 1, 153--183 (2022; Zbl 1501.35174) Full Text: DOI OpenURL
Li, Chunyi; Song, Chaoqun; Quan, Liyan; Xiang, Jianhao; Xiang, Mingqi Global existence and asymptotic behavior of solutions to fractional \((p,q)\)-Laplacian equations. (English) Zbl 1500.35277 Asymptotic Anal. 129, No. 3-4, 321-338 (2022). MSC: 35Q79 35Q82 35Q92 80A32 35K92 35B40 35A01 26A33 35R11 PDF BibTeX XML Cite \textit{C. Li} et al., Asymptotic Anal. 129, No. 3--4, 321--338 (2022; Zbl 1500.35277) Full Text: DOI OpenURL
Yin, Rong; Zhang, Jihui; Shang, Xudong Liouville-type theorems for a system of fractional Laplacian equations. (English) Zbl 1501.35101 Complex Var. Elliptic Equ. 67, No. 11, 2646-2675 (2022). MSC: 35B53 35J47 35J61 35R11 45G15 PDF BibTeX XML Cite \textit{R. Yin} et al., Complex Var. Elliptic Equ. 67, No. 11, 2646--2675 (2022; Zbl 1501.35101) Full Text: DOI OpenURL
Bersetche, Francisco M.; Borthagaray, Juan Pablo Finite element approximation of fractional Neumann problems. (English) Zbl 07607696 IMA J. Numer. Anal. 42, No. 4, 3207-3240 (2022). MSC: 65Nxx PDF BibTeX XML Cite \textit{F. M. Bersetche} and \textit{J. P. Borthagaray}, IMA J. Numer. Anal. 42, No. 4, 3207--3240 (2022; Zbl 07607696) Full Text: DOI arXiv OpenURL
Zhou, Jieyu; Guo, Lifeng; Zhang, Binlin Kirchhoff-type problems involving the fractional \(p\)-Laplacian on the Heisenberg group. (English) Zbl 1501.35214 Rend. Circ. Mat. Palermo (2) 71, No. 3, 1133-1157 (2022). MSC: 35J62 35R11 35R03 35A01 35J20 PDF BibTeX XML Cite \textit{J. Zhou} et al., Rend. Circ. Mat. Palermo (2) 71, No. 3, 1133--1157 (2022; Zbl 1501.35214) Full Text: DOI OpenURL
Ambrosio, Vincenzo; Isernia, Teresa The critical fractional Ambrosetti-Prodi problem. (English) Zbl 07606145 Rend. Circ. Mat. Palermo (2) 71, No. 3, 1107-1132 (2022). MSC: 47G20 35R11 35A15 PDF BibTeX XML Cite \textit{V. Ambrosio} and \textit{T. Isernia}, Rend. Circ. Mat. Palermo (2) 71, No. 3, 1107--1132 (2022; Zbl 07606145) Full Text: DOI OpenURL
Anthal, G. C.; Giacomoni, J.; Sreenadh, K. Some existence and uniqueness results for logistic Choquard equations. (English) Zbl 1501.35230 Rend. Circ. Mat. Palermo (2) 71, No. 3, 997-1034 (2022). MSC: 35J92 35R11 35A01 35A02 35B65 PDF BibTeX XML Cite \textit{G. C. Anthal} et al., Rend. Circ. Mat. Palermo (2) 71, No. 3, 997--1034 (2022; Zbl 1501.35230) Full Text: DOI arXiv OpenURL
Ahrend, Maria; Lenzmann, Enno Uniqueness for the nonlocal Liouville equation in \(\mathbb{R}\). (English) Zbl 07605369 J. Funct. Anal. 283, No. 12, Article ID 109712, 29 p. (2022). Reviewer: Dian K. Palagachev (Bari) MSC: 35R11 35J60 PDF BibTeX XML Cite \textit{M. Ahrend} and \textit{E. Lenzmann}, J. Funct. Anal. 283, No. 12, Article ID 109712, 29 p. (2022; Zbl 07605369) Full Text: DOI arXiv OpenURL
Su, Yu; Feng, Zhaosheng Fractional Sobolev embedding with radial potential. (English) Zbl 1500.35304 J. Differ. Equations 340, 1-44 (2022). MSC: 35R11 35J20 46E35 PDF BibTeX XML Cite \textit{Y. Su} and \textit{Z. Feng}, J. Differ. Equations 340, 1--44 (2022; Zbl 1500.35304) Full Text: DOI OpenURL
Belluzi, Maykel; Bezerra, Flank D. M.; Nascimento, Marcelo J. D. On spectral and fractional powers of damped wave equations. (English) Zbl 1500.35293 Commun. Pure Appl. Anal. 21, No. 8, 2739-2773 (2022). MSC: 35R11 35L20 35J25 35P05 26A33 34A08 PDF BibTeX XML Cite \textit{M. Belluzi} et al., Commun. Pure Appl. Anal. 21, No. 8, 2739--2773 (2022; Zbl 1500.35293) Full Text: DOI OpenURL
Salari, Amjad; Biranvand, Nader; Hashemi Sababe, Saeed On variational approaches for fractional differential equations. (English) Zbl 1500.35189 Math. Slovaca 72, No. 5, 1215-1226 (2022). MSC: 35J92 35R11 PDF BibTeX XML Cite \textit{A. Salari} et al., Math. Slovaca 72, No. 5, 1215--1226 (2022; Zbl 1500.35189) Full Text: DOI OpenURL
Antoine, Xavier; Lorin, Emmanuel A Schwarz waveform relaxation method for time-dependent space fractional Schrödinger/heat equations. (English) Zbl 07603718 Appl. Numer. Math. 182, 248-264 (2022). Reviewer: Michael Jung (Dresden) MSC: 65M55 65M06 65N06 65M12 65M15 35Q55 35Q41 35Q79 26A33 35R11 PDF BibTeX XML Cite \textit{X. Antoine} and \textit{E. Lorin}, Appl. Numer. Math. 182, 248--264 (2022; Zbl 07603718) Full Text: DOI OpenURL
Chen, Yiru; Gu, Haibo Multiplicity solutions for a class of \(p\)-Laplacian fractional differential equations via variational methods. (English) Zbl 1496.34012 Open Math. 20, 959-973 (2022). MSC: 34A08 34B37 47J30 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{H. Gu}, Open Math. 20, 959--973 (2022; Zbl 1496.34012) Full Text: DOI OpenURL
Wang, Pengyan Monotonicity of solutions for fractional \(p\)-equations with a gradient term. (English) Zbl 1500.35305 Open Math. 20, 465-477 (2022). MSC: 35R11 35A09 35B06 35B09 35J92 PDF BibTeX XML Cite \textit{P. Wang}, Open Math. 20, 465--477 (2022; Zbl 1500.35305) Full Text: DOI OpenURL
Karki, Ramesh On approximating initial data in some linear evolutionary equations involving fraction Laplacian. (English) Zbl 1500.35297 Math. Appl. Sci. Eng. 3, No. 1, 1-11 (2022). MSC: 35R11 35C20 35K20 PDF BibTeX XML Cite \textit{R. Karki}, Math. Appl. Sci. Eng. 3, No. 1, 1--11 (2022; Zbl 1500.35297) Full Text: DOI OpenURL
Zhang, Weiqiang; Zuo, Jiabin; Zhao, Peihao Three solutions for a fractional \(p\)-Laplacian problem. (English) Zbl 1498.35603 J. Pseudo-Differ. Oper. Appl. 13, No. 4, Paper No. 57, 17 p. (2022). MSC: 35R11 35A15 35A23 35J25 35J92 PDF BibTeX XML Cite \textit{W. Zhang} et al., J. Pseudo-Differ. Oper. Appl. 13, No. 4, Paper No. 57, 17 p. (2022; Zbl 1498.35603) Full Text: DOI OpenURL
He, Zhizhen; Ma, Feiyao; Wo, Weifeng Monotonicity and symmetry of solutions to fractional \(p\)-Laplacian systems. (English) Zbl 1498.35576 J. Pseudo-Differ. Oper. Appl. 13, No. 4, Paper No. 51, 17 p. (2022). MSC: 35R11 35A16 35B06 35B09 35J47 35J92 PDF BibTeX XML Cite \textit{Z. He} et al., J. Pseudo-Differ. Oper. Appl. 13, No. 4, Paper No. 51, 17 p. (2022; Zbl 1498.35576) Full Text: DOI OpenURL
Abdellaoui, Boumediene; Ould Mohamed Mahmoud, Ghoulam; Youssfi, Ahmed Fractional heat equation with singular nonlinearity. (English) Zbl 1498.35562 J. Pseudo-Differ. Oper. Appl. 13, No. 4, Paper No. 50, 48 p. (2022). MSC: 35R11 35K20 35K58 35K67 35B09 35B65 35R06 PDF BibTeX XML Cite \textit{B. Abdellaoui} et al., J. Pseudo-Differ. Oper. Appl. 13, No. 4, Paper No. 50, 48 p. (2022; Zbl 1498.35562) Full Text: DOI OpenURL
Guo, Ling; Wu, Hao; Yu, Xiaochen; Zhou, Tao Monte Carlo fPINNs: deep learning method for forward and inverse problems involving high dimensional fractional partial differential equations. (English) Zbl 07598921 Comput. Methods Appl. Mech. Eng. 400, Article ID 115523, 17 p. (2022). MSC: 65C05 68T07 PDF BibTeX XML Cite \textit{L. Guo} et al., Comput. Methods Appl. Mech. Eng. 400, Article ID 115523, 17 p. (2022; Zbl 07598921) Full Text: DOI arXiv OpenURL