Fall, Mouhamed Moustapha; Ros-Oton, Xavier Global Schauder theory for minimizers of the \(H^s(\Omega)\) energy. (English) Zbl 07528104 J. Funct. Anal. 283, No. 3, Article ID 109523, 50 p. (2022). MSC: 35B65 35R11 PDF BibTeX XML Cite \textit{M. M. Fall} and \textit{X. Ros-Oton}, J. Funct. Anal. 283, No. 3, Article ID 109523, 50 p. (2022; Zbl 07528104) Full Text: DOI OpenURL
Guo, Shimin; Li, Can; Li, Xiaoli; Mei, Liquan Energy-conserving and time-stepping-varying ESAV-Hermite-Galerkin spectral scheme for nonlocal Klein-Gordon-Schrödinger system with fractional Laplacian in unbounded domains. (English) Zbl 07527722 J. Comput. Phys. 458, Article ID 111096, 21 p. (2022). MSC: 65Mxx 35Qxx 35Rxx PDF BibTeX XML Cite \textit{S. Guo} et al., J. Comput. Phys. 458, Article ID 111096, 21 p. (2022; Zbl 07527722) Full Text: DOI OpenURL
Aceto, Lidia; Novati, Paolo Fast and accurate approximations to fractional powers of operators. (English) Zbl 07524726 IMA J. Numer. Anal. 42, No. 2, 1598-1622 (2022). MSC: 65-XX PDF BibTeX XML Cite \textit{L. Aceto} and \textit{P. Novati}, IMA J. Numer. Anal. 42, No. 2, 1598--1622 (2022; Zbl 07524726) Full Text: DOI OpenURL
Roidos, Nikolaos; Shao, Yuanzhen Functional inequalities involving nonlocal operators on complete Riemannian manifolds and their applications to the fractional porous medium equation. (English) Zbl 07524389 Evol. Equ. Control Theory 11, No. 3, 793-825 (2022). MSC: 26A33 35R11 76S05 35K65 35K67 35R01 39B62 PDF BibTeX XML Cite \textit{N. Roidos} and \textit{Y. Shao}, Evol. Equ. Control Theory 11, No. 3, 793--825 (2022; Zbl 07524389) Full Text: DOI OpenURL
El Hammar, Hasnae; Allalou, Chakir; Abbassi, Adil; Kassidi, Abderrazak The topological degree methods for the fractional \(p(\cdot)\)-Laplacian problems with discontinuous nonlinearities. (English. French summary) Zbl 07523612 Cubo 24, No. 1, 63-82 (2022). MSC: 35R11 35A16 35J25 35J92 47H11 PDF BibTeX XML Cite \textit{H. El Hammar} et al., Cubo 24, No. 1, 63--82 (2022; Zbl 07523612) Full Text: Link OpenURL
Ait Hammou, Mustapha Weak solutions for fractional \(p(x,\cdot)\)-Laplacian Dirichlet problems with weight. (English) Zbl 07523600 Analysis, München 42, No. 2, 121-132 (2022). MSC: 35R11 35J25 35J92 35S15 47H11 PDF BibTeX XML Cite \textit{M. Ait Hammou}, Analysis, München 42, No. 2, 121--132 (2022; Zbl 07523600) Full Text: DOI OpenURL
Liu, Meiqi; Zou, Wenming Normalized solutions for a system of fractional Schrödinger equations with linear coupling. (English) Zbl 07523378 Minimax Theory Appl. 7, No. 2, 303-320 (2022). MSC: 35R11 35B09 35B33 35J47 35J61 PDF BibTeX XML Cite \textit{M. Liu} and \textit{W. Zou}, Minimax Theory Appl. 7, No. 2, 303--320 (2022; Zbl 07523378) Full Text: Link OpenURL
Motreanu, Dumitru Equations with \(s\)-fractional \((p,q)\)-Laplacian and convolution. (English) Zbl 07523124 Minimax Theory Appl. 7, No. 1, 159-172 (2022). MSC: 35S15 35J25 35J92 35R11 47G20 PDF BibTeX XML Cite \textit{D. Motreanu}, Minimax Theory Appl. 7, No. 1, 159--172 (2022; Zbl 07523124) Full Text: Link OpenURL
Natali, Fábio; Le, Uyen; Pelinovsky, Dmitry E. Periodic waves in the fractional modified Korteweg-de Vries equation. (English) Zbl 07522538 J. Dyn. Differ. Equations 34, No. 2, 1601-1640 (2022); correction ibid. 34, No. 2, 1641-1642 (2022). MSC: 76B15 76M30 35Q35 35Q53 26A33 PDF BibTeX XML Cite \textit{F. Natali} et al., J. Dyn. Differ. Equations 34, No. 2, 1601--1640 (2022; Zbl 07522538) Full Text: DOI OpenURL
Poulou, Maria Eleni; Filippakis, Michael E. Global attractor of a dissipative fractional Klein Gordon Schrödinger system. (English) Zbl 07522516 J. Dyn. Differ. Equations 34, No. 2, 945-960 (2022). MSC: 26-XX 35-XX PDF BibTeX XML Cite \textit{M. E. Poulou} and \textit{M. E. Filippakis}, J. Dyn. Differ. Equations 34, No. 2, 945--960 (2022; Zbl 07522516) Full Text: DOI OpenURL
Bu, Weichun; An, Tianqing; Zuo, Jiabin A class of \(p_1 (x, \cdot)\) & \(p_2 (x, \cdot)\)-fractional Kirchhoff-type problem with variable \(s(x, \cdot)\)-order and without the Ambrosetti-Rabinowitz condition in \(\mathbb{R}^N\). (English) Zbl 07517555 Open Math. 20, 267-290 (2022). MSC: 35J60 35J67 35A15 47F10 PDF BibTeX XML Cite \textit{W. Bu} et al., Open Math. 20, 267--290 (2022; Zbl 07517555) Full Text: DOI OpenURL
Chen, Yongpeng; Niu, Miaomiao Ground state solutions of nonlinear Schrödinger equations involving the fractional p-Laplacian and potential wells. (English) Zbl 07517539 Open Math. 20, 50-62 (2022). MSC: 35J60 35B33 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{M. Niu}, Open Math. 20, 50--62 (2022; Zbl 07517539) Full Text: DOI OpenURL
Biswas, Reshmi; Bahrouni, Sabri; Carvalho, Marcos L. Fractional double phase Robin problem involving variable order-exponents without Ambrosetti-Rabinowitz condition. (English) Zbl 07517423 Z. Angew. Math. Phys. 73, No. 3, Paper No. 99, 24 p. (2022). MSC: 35R11 35A15 35J25 35J92 35S15 47G20 47J30 PDF BibTeX XML Cite \textit{R. Biswas} et al., Z. Angew. Math. Phys. 73, No. 3, Paper No. 99, 24 p. (2022; Zbl 07517423) Full Text: DOI OpenURL
Bucur, Claudia; Squassina, Marco An asymptotic expansion for the fractional \(p\)-Laplacian and for gradient-dependent nonlocal operators. (English) Zbl 07517068 Commun. Contemp. Math. 24, No. 4, Article ID 2150021, 34 p. (2022). MSC: 47-XX 35-XX 46E35 28D20 82B10 PDF BibTeX XML Cite \textit{C. Bucur} and \textit{M. Squassina}, Commun. Contemp. Math. 24, No. 4, Article ID 2150021, 34 p. (2022; Zbl 07517068) Full Text: DOI OpenURL
Ma, Ling-wei; Zhang, Zhen-qiu Symmetry and monotonicity of positive solutions to Schrödinger systems with fractional \(p\)-Laplacians. (English) Zbl 07515501 Appl. Math., Ser. B (Engl. Ed.) 37, No. 1, 52-72 (2022). MSC: 35R11 35B06 35A01 PDF BibTeX XML Cite \textit{L.-w. Ma} and \textit{Z.-q. Zhang}, Appl. Math., Ser. B (Engl. Ed.) 37, No. 1, 52--72 (2022; Zbl 07515501) Full Text: DOI OpenURL
Wu, Yixuan; Zhang, Yanzhi Highly accurate operator factorization methods for the integral fractional Laplacian and its generalization. (English) Zbl 07512206 Discrete Contin. Dyn. Syst., Ser. S 15, No. 4, 851-876 (2022). MSC: 47N40 65N35 65R20 PDF BibTeX XML Cite \textit{Y. Wu} and \textit{Y. Zhang}, Discrete Contin. Dyn. Syst., Ser. S 15, No. 4, 851--876 (2022; Zbl 07512206) Full Text: DOI OpenURL
Fall, Mouhamed Moustapha; Mengesha, Tadele; Schikorra, Armin; Yeepo, Sasikarn Calderón-Zygmund theory for non-convolution type nonlocal equations with continuous coefficient. (English) Zbl 07512038 SN Partial Differ. Equ. Appl. 3, No. 2, Paper No. 24, 27 p. (2022). MSC: 35B45 35J92 35R11 46E35 47G30 PDF BibTeX XML Cite \textit{M. M. Fall} et al., SN Partial Differ. Equ. Appl. 3, No. 2, Paper No. 24, 27 p. (2022; Zbl 07512038) Full Text: DOI OpenURL
Miyagaki, Olímpio H.; Moreira, Sandra I.; Vieira, Rônei S. Schrödinger equations involving fractional \(p\)-Laplacian with supercritical exponent. (English) Zbl 07512021 Complex Var. Elliptic Equ. 67, No. 5, 1273-1286 (2022). MSC: 35J20 35R11 35J60 PDF BibTeX XML Cite \textit{O. H. Miyagaki} et al., Complex Var. Elliptic Equ. 67, No. 5, 1273--1286 (2022; Zbl 07512021) Full Text: DOI OpenURL
Wang, Xiaoshan; Yang, Zuodong Symmetry and monotonicity of positive solutions for a Choquard equation with the fractional Laplacian. (English) Zbl 07512017 Complex Var. Elliptic Equ. 67, No. 5, 1211-1228 (2022). MSC: 35R11 35B06 35J20 35J25 35J61 35J70 PDF BibTeX XML Cite \textit{X. Wang} and \textit{Z. Yang}, Complex Var. Elliptic Equ. 67, No. 5, 1211--1228 (2022; Zbl 07512017) Full Text: DOI OpenURL
Tao, Mengfei; Zhang, Binlin Solutions for nonhomogeneous fractional \((p, q)\)-Laplacian systems with critical nonlinearities. (English) Zbl 07511757 Adv. Nonlinear Anal. 11, 1332-1351 (2022). MSC: 35J47 35R11 47G20 PDF BibTeX XML Cite \textit{M. Tao} and \textit{B. Zhang}, Adv. Nonlinear Anal. 11, 1332--1351 (2022; Zbl 07511757) Full Text: DOI OpenURL
Chaker, Jamil; Kim, Minhyun Regularity estimates for fractional orthotropic \(p\)-Laplacians of mixed order. (English) Zbl 07511756 Adv. Nonlinear Anal. 11, 1307-1331 (2022). MSC: 35B65 35D30 35J92 35R11 47G20 31B05 42B25 PDF BibTeX XML Cite \textit{J. Chaker} and \textit{M. Kim}, Adv. Nonlinear Anal. 11, 1307--1331 (2022; Zbl 07511756) Full Text: DOI OpenURL
Slavchev, Dimitar; Margenov, Svetozar Performance study of hierarchical semi-separable compression solver for parabolic problems with space-fractional diffusion. (English) Zbl 07511622 Lirkov, Ivan (ed.) et al., Large-scale scientific computing. 13th international conference, LSSC 2021, Sozopol, Bulgaria, June 7–11, 2021. Revised selected papers. Cham: Springer. Lect. Notes Comput. Sci. 13127, 71-80 (2022). MSC: 65Y20 PDF BibTeX XML Cite \textit{D. Slavchev} and \textit{S. Margenov}, Lect. Notes Comput. Sci. 13127, 71--80 (2022; Zbl 07511622) Full Text: DOI OpenURL
Li, Na; He, Xiao-ming Positive solutions for a class of fractional \(p\)-Laplacian equation with critical Sobolev exponent and decaying potentials. (English) Zbl 07507383 Acta Math. Appl. Sin., Engl. Ser. 38, No. 2, 463-483 (2022). MSC: 35J92 35R11 35A01 35A15 PDF BibTeX XML Cite \textit{N. Li} and \textit{X.-m. He}, Acta Math. Appl. Sin., Engl. Ser. 38, No. 2, 463--483 (2022; Zbl 07507383) Full Text: DOI OpenURL
Nakajima, Shohei Existence of weak solutions to SPDEs with fractional Laplacian and non-Lipschitz coefficients. (English) Zbl 07507362 Stoch. Partial Differ. Equ., Anal. Comput. 10, No. 1, 255-277 (2022). MSC: 60H15 35R60 60G60 60-02 60J80 PDF BibTeX XML Cite \textit{S. Nakajima}, Stoch. Partial Differ. Equ., Anal. Comput. 10, No. 1, 255--277 (2022; Zbl 07507362) Full Text: DOI OpenURL
Assaad, Obayda; Nualart, David; Tudor, Ciprian A.; Viitasaari, Lauri Quantitative normal approximations for the stochastic fractional heat equation. (English) Zbl 07507361 Stoch. Partial Differ. Equ., Anal. Comput. 10, No. 1, 223-254 (2022). MSC: 60H15 60H07 60G15 60F05 PDF BibTeX XML Cite \textit{O. Assaad} et al., Stoch. Partial Differ. Equ., Anal. Comput. 10, No. 1, 223--254 (2022; Zbl 07507361) Full Text: DOI OpenURL
Liu, Yongjian; Liu, Zhenhai; Wen, Ching-Feng; Yao, Jen-Chih Existence of solutions for non-coercive variational-hemivariational inequalities involving the nonlocal fractional p-Laplacian. (English) Zbl 07507023 Optimization 71, No. 3, 485-503 (2022). MSC: 35R11 35J87 35J92 47J20 49J40 PDF BibTeX XML Cite \textit{Y. Liu} et al., Optimization 71, No. 3, 485--503 (2022; Zbl 07507023) Full Text: DOI OpenURL
Mokhtari, A.; Saoudi, K.; Chung, N. T. A fractional \(p(x,\cdot)\)-Laplacian problem involving a singular term. (English) Zbl 07506494 Indian J. Pure Appl. Math. 53, No. 1, 100-111 (2022). MSC: 35J91 35R11 35A01 PDF BibTeX XML Cite \textit{A. Mokhtari} et al., Indian J. Pure Appl. Math. 53, No. 1, 100--111 (2022; Zbl 07506494) Full Text: DOI OpenURL
Zhang, Rong; Wang, Xiaoshan; Yang, ZuoDong Symmetry and nonexistence of positive solutions for an elliptic system involving the fractional Laplacian. (English) Zbl 07506078 Quaest. Math. 45, No. 2, 247-265 (2022). MSC: 35R11 35A10 35B06 35B07 35B09 35J47 35J61 PDF BibTeX XML Cite \textit{R. Zhang} et al., Quaest. Math. 45, No. 2, 247--265 (2022; Zbl 07506078) Full Text: DOI OpenURL
Abdelwahed, Mohamed; BenSaleh, Mohamed; Chorfi, Nejmeddine; Hassine, Maatoug An inverse problem study related to a fractional diffusion equation. (English) Zbl 07503671 J. Math. Anal. Appl. 512, No. 2, Article ID 126145, 20 p. (2022). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{M. Abdelwahed} et al., J. Math. Anal. Appl. 512, No. 2, Article ID 126145, 20 p. (2022; Zbl 07503671) Full Text: DOI OpenURL
Yamazaki, Kazuo Remarks on the non-uniqueness in law of the Navier-Stokes equations up to the J.-L. Lions’ exponent. (English) Zbl 07502141 Stochastic Processes Appl. 147, 226-269 (2022). MSC: 35Q30 76D05 35B65 35A02 26A33 35R11 35R60 PDF BibTeX XML Cite \textit{K. Yamazaki}, Stochastic Processes Appl. 147, 226--269 (2022; Zbl 07502141) Full Text: DOI OpenURL
Lear, Daniel; Reynolds, David N.; Shvydkoy, Roman Global solutions to multi-dimensional topological Euler alignment systems. (English) Zbl 07500436 Ann. PDE 8, No. 1, Paper No. 1, 43 p. (2022). MSC: 92D50 35Q35 PDF BibTeX XML Cite \textit{D. Lear} et al., Ann. PDE 8, No. 1, Paper No. 1, 43 p. (2022; Zbl 07500436) Full Text: DOI OpenURL
Biccari, Umberto Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. (English) Zbl 07500380 Evol. Equ. Control Theory 11, No. 1, 301-324 (2022). MSC: 35R11 35Q41 35S05 93B05 93B07 PDF BibTeX XML Cite \textit{U. Biccari}, Evol. Equ. Control Theory 11, No. 1, 301--324 (2022; Zbl 07500380) Full Text: DOI OpenURL
Chang, Mao-Sheng; Liao, Jian-Tong Gamma-convergence of generalized gradient flows with conjugate type. (English) Zbl 07500303 Taiwanese J. Math. 26, No. 2, 341-361 (2022). MSC: 47J35 49J40 49Q20 PDF BibTeX XML Cite \textit{M.-S. Chang} and \textit{J.-T. Liao}, Taiwanese J. Math. 26, No. 2, 341--361 (2022; Zbl 07500303) Full Text: DOI OpenURL
Tran, Minh-Phuong; Nguyen, Thanh-Nhan A global fractional Caccioppoli-type estimate for solutions to nonlinear elliptic problems with measure data. (English) Zbl 07500272 Stud. Math. 263, No. 3, 323-338 (2022). MSC: 35J62 35J92 35B65 PDF BibTeX XML Cite \textit{M.-P. Tran} and \textit{T.-N. Nguyen}, Stud. Math. 263, No. 3, 323--338 (2022; Zbl 07500272) Full Text: DOI OpenURL
Qu, Siqi; He, Xiaoming On the number of concentrating solutions of a fractional Schrödinger-Poisson system with doubly critical growth. (English) Zbl 07500039 Anal. Math. Phys. 12, No. 2, Paper No. 59, 49 p. (2022). MSC: 35J60 35R11 35B33 35B09 PDF BibTeX XML Cite \textit{S. Qu} and \textit{X. He}, Anal. Math. Phys. 12, No. 2, Paper No. 59, 49 p. (2022; Zbl 07500039) Full Text: DOI OpenURL
Soni, Amita; Datta, Sanjoy; Saoudi, K.; Choudhuri, D. Existence of solution for a system involving a singular-nonlocal operator, a singularity and a Radon measure. (English) Zbl 07499551 Complex Var. Elliptic Equ. 67, No. 4, 872-886 (2022). MSC: 35J60 35R11 35A01 PDF BibTeX XML Cite \textit{A. Soni} et al., Complex Var. Elliptic Equ. 67, No. 4, 872--886 (2022; Zbl 07499551) Full Text: DOI OpenURL
Dinh, Huy; Antil, Harbir; Chen, Yanlai; Cherkaev, Elena; Narayan, Akil Model reduction for fractional elliptic problems using Kato’s formula. (English) Zbl 07499503 Math. Control Relat. Fields 12, No. 1, 115-146 (2022). MSC: 35R11 35J25 65M12 PDF BibTeX XML Cite \textit{H. Dinh} et al., Math. Control Relat. Fields 12, No. 1, 115--146 (2022; Zbl 07499503) Full Text: DOI OpenURL
Colombo, Fabrizio; De Martino, Antonino; Qian, Tao; Sabadini, Irene The Poisson kernel and the Fourier transform of the slice monogenic Cauchy kernels. (English) Zbl 07496951 J. Math. Anal. Appl. 512, No. 1, Article ID 126115, 23 p. (2022). MSC: 30G35 PDF BibTeX XML Cite \textit{F. Colombo} et al., J. Math. Anal. Appl. 512, No. 1, Article ID 126115, 23 p. (2022; Zbl 07496951) Full Text: DOI OpenURL
Fall, Mouhamed Moustapha Regional fractional Laplacians: boundary regularity. (English) Zbl 07496407 J. Differ. Equations 320, 598-658 (2022). MSC: 35R11 35B65 35J25 42B37 PDF BibTeX XML Cite \textit{M. M. Fall}, J. Differ. Equations 320, 598--658 (2022; Zbl 07496407) Full Text: DOI OpenURL
Ao, Weiwei; DelaTorre, Azahara; del Mar González, María Symmetry and symmetry breaking for the fractional Caffarelli-Kohn-Nirenberg inequality. (English) Zbl 07495778 J. Funct. Anal. 282, No. 11, Article ID 109438, 58 p. (2022). MSC: 35A23 35B06 35J20 35R11 PDF BibTeX XML Cite \textit{W. Ao} et al., J. Funct. Anal. 282, No. 11, Article ID 109438, 58 p. (2022; Zbl 07495778) Full Text: DOI OpenURL
Abreu, Emerson; Barbosa, Ezequiel; Ramirez, Joel Cruz Infinitely many sign-changing solutions of a critical fractional equation. (English) Zbl 07495360 Ann. Mat. Pura Appl. (4) 201, No. 2, 861-901 (2022). MSC: 35J60 35R11 35R01 35A01 PDF BibTeX XML Cite \textit{E. Abreu} et al., Ann. Mat. Pura Appl. (4) 201, No. 2, 861--901 (2022; Zbl 07495360) Full Text: DOI OpenURL
Tortone, Giorgio The nodal set of solutions to some nonlocal sublinear problems. (English) Zbl 07495312 Calc. Var. Partial Differ. Equ. 61, No. 3, Paper No. 82, 52 p. (2022). MSC: 35J91 35R11 PDF BibTeX XML Cite \textit{G. Tortone}, Calc. Var. Partial Differ. Equ. 61, No. 3, Paper No. 82, 52 p. (2022; Zbl 07495312) Full Text: DOI OpenURL
Ambrosio, Vincenzo A Kirchhoff type equation in \(\mathbb{R}^N\) Involving the fractional \((p, q)\)-Laplacian. (English) Zbl 07493866 J. Geom. Anal. 32, No. 4, Paper No. 135, 46 p. (2022). MSC: 35A15 35J62 35J92 35Q55 35R11 55M30 PDF BibTeX XML Cite \textit{V. Ambrosio}, J. Geom. Anal. 32, No. 4, Paper No. 135, 46 p. (2022; Zbl 07493866) Full Text: DOI OpenURL
Li, Pengtao; Zhai, Zhichun Application of capacities to space-time fractional dissipative equations. II: Carleson measure characterization for \(L^q (\mathbb{R}_+^{n+1}, \mu)\)-extension. (English) Zbl 07493791 Adv. Nonlinear Anal. 11, 850-887 (2022). MSC: 31B15 26A33 46E35 46E30 PDF BibTeX XML Cite \textit{P. Li} and \textit{Z. Zhai}, Adv. Nonlinear Anal. 11, 850--887 (2022; Zbl 07493791) Full Text: DOI OpenURL
Cao, Linfen; Fan, Linlin Symmetry and monotonicity of positive solutions for a system involving fractional p&q-Laplacian in \(\mathbb{R}^n\). (English) Zbl 07493056 Anal. Math. Phys. 12, No. 2, Paper No. 42, 15 p. (2022). MSC: 35R11 35B07 35J47 35J92 PDF BibTeX XML Cite \textit{L. Cao} and \textit{L. Fan}, Anal. Math. Phys. 12, No. 2, Paper No. 42, 15 p. (2022; Zbl 07493056) Full Text: DOI OpenURL
Frassu, Silvia; Rocha, Eugénio M.; Staicu, Vasile The obstacle problem at zero for the fractional \(p\)-Laplacian. (English) Zbl 07490854 Set-Valued Var. Anal. 30, No. 1, 207-231 (2022). MSC: 47G20 47H05 47H11 49J40 49J52 PDF BibTeX XML Cite \textit{S. Frassu} et al., Set-Valued Var. Anal. 30, No. 1, 207--231 (2022; Zbl 07490854) Full Text: DOI OpenURL
Aissaoui, Narimane; Li, Benniao; Long, Wei Two solutions for fractional elliptic systems. (English) Zbl 1481.35373 Acta Appl. Math. 178, Paper No. 3, 21 p. (2022). MSC: 35R11 35J60 35Q55 PDF BibTeX XML Cite \textit{N. Aissaoui} et al., Acta Appl. Math. 178, Paper No. 3, 21 p. (2022; Zbl 1481.35373) Full Text: DOI OpenURL
Bhowmik, Mithun; Pusti, Sanjoy An extension problem and Hardy’s inequality for the fractional Laplace-Beltrami operator on Riemannian symmetric spaces of noncompact type. (English) Zbl 07489491 J. Funct. Anal. 282, No. 9, Article ID 109413, 40 p. (2022). MSC: 43A85 26A33 22E30 PDF BibTeX XML Cite \textit{M. Bhowmik} and \textit{S. Pusti}, J. Funct. Anal. 282, No. 9, Article ID 109413, 40 p. (2022; Zbl 07489491) Full Text: DOI arXiv OpenURL
Feulefack, Pierre Aime; Jarohs, Sven; Weth, Tobias Small order asymptotics of the Dirichlet eigenvalue problem for the fractional Laplacian. (English) Zbl 07488201 J. Fourier Anal. Appl. 28, No. 2, Paper No. 18, 44 p. (2022). MSC: 35P15 35J25 35R11 45C05 26A33 PDF BibTeX XML Cite \textit{P. A. Feulefack} et al., J. Fourier Anal. Appl. 28, No. 2, Paper No. 18, 44 p. (2022; Zbl 07488201) Full Text: DOI arXiv OpenURL
Cho, Soobin; Kim, Panki; Song, Renming; Vondraček, Zoran Heat kernel estimates for subordinate Markov processes and their applications. (English) Zbl 07486710 J. Differ. Equations 316, 28-93 (2022). MSC: 60J35 60J50 60J76 PDF BibTeX XML Cite \textit{S. Cho} et al., J. Differ. Equations 316, 28--93 (2022; Zbl 07486710) Full Text: DOI arXiv OpenURL
Lizama, Carlos; Murillo-Arcila, Marina On a connection between the \(N\)-dimensional fractional Laplacian and 1-D operators on lattices. (English) Zbl 07485997 J. Math. Anal. Appl. 511, No. 1, Article ID 126051, 12 p. (2022). MSC: 39A70 39A12 26A33 PDF BibTeX XML Cite \textit{C. Lizama} and \textit{M. Murillo-Arcila}, J. Math. Anal. Appl. 511, No. 1, Article ID 126051, 12 p. (2022; Zbl 07485997) Full Text: DOI OpenURL
Bianchi, Davide; Donatelli, Marco; Durastante, Fabio; Mazza, Mariarosa Compatibility, embedding and regularization of non-local random walks on graphs. (English) Zbl 07485990 J. Math. Anal. Appl. 511, No. 1, Article ID 126020, 30 p. (2022). MSC: 05C81 05C22 60J10 05C80 05C50 PDF BibTeX XML Cite \textit{D. Bianchi} et al., J. Math. Anal. Appl. 511, No. 1, Article ID 126020, 30 p. (2022; Zbl 07485990) Full Text: DOI arXiv OpenURL
Zhang, Xuping Pullback random attractors for fractional stochastic \(p\)-Laplacian equation with delay and multiplicative noise. (English) Zbl 07485791 Discrete Contin. Dyn. Syst., Ser. B 27, No. 3, 1695-1724 (2022). MSC: 35B41 35K20 35K92 35R60 37L30 PDF BibTeX XML Cite \textit{X. Zhang}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 3, 1695--1724 (2022; Zbl 07485791) Full Text: DOI OpenURL
Cheng, Hongmei; Yuan, Rong The stability of traveling waves for Allen-Cahn equations with fractional Laplacian. (English) Zbl 07485302 Appl. Anal. 101, No. 1, 263-273 (2022). MSC: 35C07 35B35 35R11 47G10 47D06 PDF BibTeX XML Cite \textit{H. Cheng} and \textit{R. Yuan}, Appl. Anal. 101, No. 1, 263--273 (2022; Zbl 07485302) Full Text: DOI OpenURL
Zuo, Jiabin; Fiscella, Alessio; Bahrouni, Anouar Existence and multiplicity results for \(p (\cdot)\& q (\cdot)\) fractional Choquard problems with variable order. (English) Zbl 07484152 Complex Var. Elliptic Equ. 67, No. 2, 500-516 (2022). MSC: 35R11 35J20 35J25 35J92 35R09 47G20 35S15 PDF BibTeX XML Cite \textit{J. Zuo} et al., Complex Var. Elliptic Equ. 67, No. 2, 500--516 (2022; Zbl 07484152) Full Text: DOI OpenURL
Cabré, Xavier; Sanz-Perela, Tomás A universal Hölder estimate up to dimension 4 for stable solutions to half-Laplacian semilinear equations. (English) Zbl 07483921 J. Differ. Equations 317, 153-195 (2022). MSC: 35B45 35B65 35J25 35J61 35R11 PDF BibTeX XML Cite \textit{X. Cabré} and \textit{T. Sanz-Perela}, J. Differ. Equations 317, 153--195 (2022; Zbl 07483921) Full Text: DOI arXiv OpenURL
Chen, Huyuan; Bhakta, Mousomi; Hajaiej, Hichem On the bounds of the sum of eigenvalues for a Dirichlet problem involving mixed fractional Laplacians. (English) Zbl 07483916 J. Differ. Equations 317, 1-31 (2022). Reviewer: Raffaella Servadei (Arcavata di Rende) MSC: 35P15 35R09 PDF BibTeX XML Cite \textit{H. Chen} et al., J. Differ. Equations 317, 1--31 (2022; Zbl 07483916) Full Text: DOI arXiv OpenURL
Lewicka, Marta Non-local Tug-of-War with noise for the geometric fractional \(p\)-Laplacian. (English) Zbl 07483347 Adv. Differ. Equ. 27, No. 1-2, 31-76 (2022). MSC: 35R11 26A33 35J92 35Q91 91A23 PDF BibTeX XML Cite \textit{M. Lewicka}, Adv. Differ. Equ. 27, No. 1--2, 31--76 (2022; Zbl 07483347) Full Text: arXiv Link OpenURL
Shcheglova, A. P. Multiplicity of positive solutions for the generalized Hénon equation with fractional Laplacian. (English. Russian original) Zbl 07482917 J. Math. Sci., New York 260, No. 1, 142-154 (2022); translation from Zap. Nauchn. Semin. POMI 489, 207-224 (2020). MSC: 35J05 35R11 35A01 PDF BibTeX XML Cite \textit{A. P. Shcheglova}, J. Math. Sci., New York 260, No. 1, 142--154 (2022; Zbl 07482917); translation from Zap. Nauchn. Semin. POMI 489, 207--224 (2020) Full Text: DOI OpenURL
Nazarov, Alexander I. On comparison of fractional Laplacians. (English) Zbl 1483.35323 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 218, Article ID 112790, 7 p. (2022). MSC: 35R11 35J25 PDF BibTeX XML Cite \textit{A. I. Nazarov}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 218, Article ID 112790, 7 p. (2022; Zbl 1483.35323) Full Text: DOI arXiv OpenURL
Lai, Ru-Yu; Ohm, Laurel Inverse problems for the fractional Laplace equation with lower order nonlinear perturbations. (English) Zbl 07481237 Inverse Probl. Imaging 16, No. 2, 305-323 (2022). MSC: 35R30 35J25 35J61 35R11 PDF BibTeX XML Cite \textit{R.-Y. Lai} and \textit{L. Ohm}, Inverse Probl. Imaging 16, No. 2, 305--323 (2022; Zbl 07481237) Full Text: DOI arXiv OpenURL
Chhetri, Maya; Girg, Petr; Hollifield, Elliott Continuum of positive solutions of superlinear fractional Laplacian problems. (English) Zbl 07479049 SN Partial Differ. Equ. Appl. 3, No. 1, Paper No. 12, 11 p. (2022). MSC: 35J60 35J61 35R11 35A01 PDF BibTeX XML Cite \textit{M. Chhetri} et al., SN Partial Differ. Equ. Appl. 3, No. 1, Paper No. 12, 11 p. (2022; Zbl 07479049) Full Text: DOI OpenURL
Ambrosio, Vincenzo A strong maximum principle for the fractional \(( p , q )\)-Laplacian operator. (English) Zbl 07478996 Appl. Math. Lett. 126, Article ID 107813, 10 p. (2022). MSC: 35B50 35J92 35R11 PDF BibTeX XML Cite \textit{V. Ambrosio}, Appl. Math. Lett. 126, Article ID 107813, 10 p. (2022; Zbl 07478996) Full Text: DOI OpenURL
Bogdan, Krzysztof; Jakubowski, Tomasz; Lenczewska, Julia; Pietruska-Pałuba, Katarzyna Optimal Hardy inequality for the fractional Laplacian on \(L^p\). (English) Zbl 07474684 J. Funct. Anal. 282, No. 8, Article ID 109395, 31 p. (2022). MSC: 46E35 31C05 PDF BibTeX XML Cite \textit{K. Bogdan} et al., J. Funct. Anal. 282, No. 8, Article ID 109395, 31 p. (2022; Zbl 07474684) Full Text: DOI arXiv OpenURL
del Teso, Félix; Endal, Jørgen; Lewicka, Marta On asymptotic expansions for the fractional infinity Laplacian. (English) Zbl 07473149 Asymptotic Anal. 127, No. 3, 201-216 (2022). MSC: 35Qxx PDF BibTeX XML Cite \textit{F. del Teso} et al., Asymptotic Anal. 127, No. 3, 201--216 (2022; Zbl 07473149) Full Text: DOI arXiv OpenURL
Santra, Sanjiban Competing power problem involving the half Laplacian. (English) Zbl 07473136 Asymptotic Anal. 126, No. 3-4, 285-302 (2022). MSC: 35Qxx PDF BibTeX XML Cite \textit{S. Santra}, Asymptotic Anal. 126, No. 3--4, 285--302 (2022; Zbl 07473136) Full Text: DOI OpenURL
Li, Pengtao; Shi, Shaoguang; Hu, Rui; Zhai, Zhichun Embeddings of function spaces via the Caffarelli-Silvestre extension, capacities and Wolff potentials. (English) Zbl 1483.35077 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 217, Article ID 112758, 40 p. (2022). MSC: 35J05 35R11 46E35 PDF BibTeX XML Cite \textit{P. Li} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 217, Article ID 112758, 40 p. (2022; Zbl 1483.35077) Full Text: DOI arXiv OpenURL
Cao, Mingming; Yabuta, Kôzô VMO spaces associated with Neumann Laplacian. (English) Zbl 1483.42014 J. Geom. Anal. 32, No. 2, Paper No. 59, 47 p. (2022). Reviewer: Koichi Saka (Akita) MSC: 42B35 42B20 42B25 42B30 42B37 PDF BibTeX XML Cite \textit{M. Cao} and \textit{K. Yabuta}, J. Geom. Anal. 32, No. 2, Paper No. 59, 47 p. (2022; Zbl 1483.42014) Full Text: DOI arXiv OpenURL
Giacomoni, Jacques; Kumar, Deepak; Sreenadh, Konijeti Global regularity results for non-homogeneous growth fractional problems. (English) Zbl 07471783 J. Geom. Anal. 32, No. 1, Paper No. 36, 41 p. (2022). MSC: 35J60 35R11 35B65 PDF BibTeX XML Cite \textit{J. Giacomoni} et al., J. Geom. Anal. 32, No. 1, Paper No. 36, 41 p. (2022; Zbl 07471783) Full Text: DOI arXiv OpenURL
Panzo, Hugo Spectral upper bound for the torsion function of symmetric stable processes. (English) Zbl 1482.35145 Proc. Am. Math. Soc. 150, No. 3, 1241-1255 (2022). MSC: 35P15 35J25 35R11 60G52 60J45 60J65 PDF BibTeX XML Cite \textit{H. Panzo}, Proc. Am. Math. Soc. 150, No. 3, 1241--1255 (2022; Zbl 1482.35145) Full Text: DOI arXiv OpenURL
Bauer, Martin; Bruveris, Martins; Harms, Philipp; Michor, Peter W. Smooth perturbations of the functional calculus and applications to Riemannian geometry on spaces of metrics. (English) Zbl 1482.58005 Commun. Math. Phys. 389, No. 2, 899-931 (2022). Reviewer: Nicolai K. Smolentsev (Kemerovo) MSC: 58D17 58E30 35A01 47A60 35Q99 PDF BibTeX XML Cite \textit{M. Bauer} et al., Commun. Math. Phys. 389, No. 2, 899--931 (2022; Zbl 1482.58005) Full Text: DOI arXiv OpenURL
Zhen, Maoding; Zhang, Binlin Normalized ground states for the critical fractional NLS equation with a perturbation. (English) Zbl 1481.35140 Rev. Mat. Complut. 35, No. 1, 89-132 (2022). MSC: 35J05 35R11 35J61 35B33 35A01 PDF BibTeX XML Cite \textit{M. Zhen} and \textit{B. Zhang}, Rev. Mat. Complut. 35, No. 1, 89--132 (2022; Zbl 1481.35140) Full Text: DOI arXiv OpenURL
Otárola, Enrique Fractional semilinear optimal control: optimality conditions, convergence, and error analysis. (English) Zbl 07463749 SIAM J. Numer. Anal. 60, No. 1, 1-27 (2022). MSC: 65-XX 35R11 49J20 49M25 65K10 65N15 65N30 PDF BibTeX XML Cite \textit{E. Otárola}, SIAM J. Numer. Anal. 60, No. 1, 1--27 (2022; Zbl 07463749) Full Text: DOI arXiv OpenURL
Mugnai, Dimitri; Perera, Kanishka; Lippi, Edoardo Proietti A priori estimates for the fractional \(p\)-Laplacian with nonlocal Neumann boundary conditions and applications. (English) Zbl 1481.35384 Commun. Pure Appl. Anal. 21, No. 1, 275-292 (2022). MSC: 35R11 35J25 35J92 58E05 35A15 PDF BibTeX XML Cite \textit{D. Mugnai} et al., Commun. Pure Appl. Anal. 21, No. 1, 275--292 (2022; Zbl 1481.35384) Full Text: DOI OpenURL
Lai, Ru-Yu; Lin, Yi-Hsuan Inverse problems for fractional semilinear elliptic equations. (English) Zbl 1481.35212 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 216, Article ID 112699, 21 p. (2022). MSC: 35J62 35R11 35R30 PDF BibTeX XML Cite \textit{R.-Y. Lai} and \textit{Y.-H. Lin}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 216, Article ID 112699, 21 p. (2022; Zbl 1481.35212) Full Text: DOI arXiv OpenURL
Wang, Yanyan; Hao, Zhaopeng; Du, Rui A linear finite difference scheme for the two-dimensional nonlinear Schrödinger equation with fractional Laplacian. (English) Zbl 07454940 J. Sci. Comput. 90, No. 1, Paper No. 24, 27 p. (2022). MSC: 65Mxx 35Qxx 35Rxx PDF BibTeX XML Cite \textit{Y. Wang} et al., J. Sci. Comput. 90, No. 1, Paper No. 24, 27 p. (2022; Zbl 07454940) Full Text: DOI OpenURL
Deng, Shengbing; Xiong, Sihui Existence of ground state solutions for fractional Kirchhoff Choquard problems with critical Trudinger-Moser nonlinearity. (English) Zbl 07453283 Comput. Appl. Math. 41, No. 1, Paper No. 21, 18 p. (2022). MSC: 35J62 35J92 35R11 PDF BibTeX XML Cite \textit{S. Deng} and \textit{S. Xiong}, Comput. Appl. Math. 41, No. 1, Paper No. 21, 18 p. (2022; Zbl 07453283) Full Text: DOI OpenURL
Ustinov, N. S. Solvability of a critical semilinear problem with the spectral Neumann fractional Laplacian. (English. Russian original) Zbl 1480.35398 St. Petersbg. Math. J. 33, No. 1, 141-153 (2022); translation from Algebra Anal. 33, No. 1, 194-212 (2021). MSC: 35R11 35J25 35J61 PDF BibTeX XML Cite \textit{N. S. Ustinov}, St. Petersbg. Math. J. 33, No. 1, 141--153 (2022; Zbl 1480.35398); translation from Algebra Anal. 33, No. 1, 194--212 (2021) Full Text: DOI OpenURL
Chen, Hua; Chen, Hong-Ge Estimates the upper bounds of Dirichlet eigenvalues for fractional Laplacian. (English) Zbl 1480.35304 Discrete Contin. Dyn. Syst. 42, No. 1, 301-317 (2022). MSC: 35P15 35J25 35R11 58C40 PDF BibTeX XML Cite \textit{H. Chen} and \textit{H.-G. Chen}, Discrete Contin. Dyn. Syst. 42, No. 1, 301--317 (2022; Zbl 1480.35304) Full Text: DOI OpenURL
El-Houari, H.; Chadli, L. S.; Moussa, H. Existence of a solution to a nonlocal Schrödinger system problem in fractional modular spaces. (English) Zbl 1481.35206 Adv. Oper. Theory 7, No. 1, Paper No. 6, 30 p. (2022). MSC: 35J62 35R11 35A01 35J50 PDF BibTeX XML Cite \textit{H. El-Houari} et al., Adv. Oper. Theory 7, No. 1, Paper No. 6, 30 p. (2022; Zbl 1481.35206) Full Text: DOI OpenURL
Dai, Wei; Peng, Shaolong Liouville theorems for nonnegative solutions to Hardy-Hénon type system on a half space. (English) Zbl 1480.35078 Ann. Funct. Anal. 13, No. 1, Paper No. 12, 21 p. (2022). MSC: 35B53 35J57 35J61 35J91 PDF BibTeX XML Cite \textit{W. Dai} and \textit{S. Peng}, Ann. Funct. Anal. 13, No. 1, Paper No. 12, 21 p. (2022; Zbl 1480.35078) Full Text: DOI OpenURL
Fang, Yuzhou; Shang, Bin; Zhang, Chao Regularity theory for mixed local and nonlocal parabolic \(p\)-Laplace equations. (English) Zbl 1479.35160 J. Geom. Anal. 32, No. 1, Paper No. 22, 33 p. (2022). MSC: 35B45 35B65 35D30 35K20 35K92 35R09 35R11 PDF BibTeX XML Cite \textit{Y. Fang} et al., J. Geom. Anal. 32, No. 1, Paper No. 22, 33 p. (2022; Zbl 1479.35160) Full Text: DOI arXiv OpenURL
Belevtsov, Nikita S.; Lukashchuk, Stanislav Yu. A fast algorithm for fractional Helmholtz equation with application to electromagnetic waves propagation. (English) Zbl 07442822 Appl. Math. Comput. 416, Article ID 126728, 12 p. (2022). MSC: 35R11 35E05 42A85 78M16 PDF BibTeX XML Cite \textit{N. S. Belevtsov} and \textit{S. Yu. Lukashchuk}, Appl. Math. Comput. 416, Article ID 126728, 12 p. (2022; Zbl 07442822) Full Text: DOI OpenURL
Zheng, Minling; Jin, Zhengmeng; Liu, Fawang; Anh, Vo Matrix transfer technique for anomalous diffusion equation involving fractional Laplacian. (English) Zbl 07441553 Appl. Numer. Math. 172, 242-258 (2022). MSC: 65M60 35R11 65M12 PDF BibTeX XML Cite \textit{M. Zheng} et al., Appl. Numer. Math. 172, 242--258 (2022; Zbl 07441553) Full Text: DOI OpenURL
Sun, Bingzhi; Jiang, Weihua; Zhang, Shuqin Solvability of fractional differential equations with \(p\)-Laplacian and functional boundary value conditions at resonance. (English) Zbl 07435772 Mediterr. J. Math. 19, No. 1, Paper No. 1, 18 p. (2022). MSC: 34A08 34B15 PDF BibTeX XML Cite \textit{B. Sun} et al., Mediterr. J. Math. 19, No. 1, Paper No. 1, 18 p. (2022; Zbl 07435772) Full Text: DOI OpenURL
Eriksson-Bique, Sylvester; Giovannardi, Gianmarco; Korte, Riikka; Shanmugalingam, Nageswari; Speight, Gareth Regularity of solutions to the fractional Cheeger-Laplacian on domains in metric spaces of bounded geometry. (English) Zbl 1477.30056 J. Differ. Equations 306, 590-632 (2022). MSC: 30L99 31E05 35R11 35A15 PDF BibTeX XML Cite \textit{S. Eriksson-Bique} et al., J. Differ. Equations 306, 590--632 (2022; Zbl 1477.30056) Full Text: DOI arXiv OpenURL
de Pablo, Arturo; Quirós, Fernando; Ritorto, Antonella Extremals in Hardy-Littlewood-Sobolev inequalities for stable processes. (English) Zbl 1480.35199 J. Math. Anal. Appl. 507, No. 1, Article ID 125742, 18 p. (2022). MSC: 35J61 35R11 PDF BibTeX XML Cite \textit{A. de Pablo} et al., J. Math. Anal. Appl. 507, No. 1, Article ID 125742, 18 p. (2022; Zbl 1480.35199) Full Text: DOI arXiv OpenURL
Biswas, Anup; Modasiya, Mitesh A study of nonlocal spatially heterogeneous logistic equation with harvesting. (English) Zbl 1476.35298 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 214, Article ID 112599, 28 p. (2022). MSC: 35R11 35S15 35K57 35J60 92D25 PDF BibTeX XML Cite \textit{A. Biswas} and \textit{M. Modasiya}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 214, Article ID 112599, 28 p. (2022; Zbl 1476.35298) Full Text: DOI arXiv OpenURL
Vázquez, Juan Luis Growing solutions of the fractional \(p\)-Laplacian equation in the fast diffusion range. (English) Zbl 1476.35320 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 214, Article ID 112575, 35 p. (2022). MSC: 35R11 35B45 35C06 35K92 PDF BibTeX XML Cite \textit{J. L. Vázquez}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 214, Article ID 112575, 35 p. (2022; Zbl 1476.35320) Full Text: DOI arXiv OpenURL
Gluck, Mathew Infinitely many sign-changing solutions to a conformally invariant integral equation on \(\mathbb{R}^n\). (English) Zbl 1476.45007 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 214, Article ID 112567, 16 p. (2022). MSC: 45G15 35G50 PDF BibTeX XML Cite \textit{M. Gluck}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 214, Article ID 112567, 16 p. (2022; Zbl 1476.45007) Full Text: DOI OpenURL
Correia, Jeziel N.; Oliveira, Claudionei P. Existence of a positive solution for a class of fractional elliptic problems in exterior domains involving critical growth. (English) Zbl 1475.35385 J. Math. Anal. Appl. 506, No. 1, Article ID 125543, 34 p. (2022). MSC: 35R11 35B09 35B33 35J25 35J61 PDF BibTeX XML Cite \textit{J. N. Correia} and \textit{C. P. Oliveira}, J. Math. Anal. Appl. 506, No. 1, Article ID 125543, 34 p. (2022; Zbl 1475.35385) Full Text: DOI OpenURL
Chen, Haixia; Xu, Xiaolin; Yang, Xiaolong Asymptotic behaviour of ground state solutions for the fractional Hénon equation. (English) Zbl 1479.35461 J. Math. Anal. Appl. 505, No. 1, Article ID 125456, 20 p. (2022). MSC: 35J91 35R11 35B40 PDF BibTeX XML Cite \textit{H. Chen} et al., J. Math. Anal. Appl. 505, No. 1, Article ID 125456, 20 p. (2022; Zbl 1479.35461) Full Text: DOI OpenURL
Nguyen, Van Thin Multiplicity and concentration of solutions to a fractional \((p,p_1)\)-Laplace problem with exponential growth. (English) Zbl 1479.35276 J. Math. Anal. Appl. 506, No. 2, Article ID 125667, 46 p. (2022). MSC: 35J10 35J92 35R11 35A01 35A15 PDF BibTeX XML Cite \textit{V. T. Nguyen}, J. Math. Anal. Appl. 506, No. 2, Article ID 125667, 46 p. (2022; Zbl 1479.35276) Full Text: DOI OpenURL
Han, Qi Compact Sobolev-Slobodeckij embeddings and positive solutions to fractional Laplacian equations. (English) Zbl 07405805 Adv. Nonlinear Anal. 11, 432-453 (2022). MSC: 46E35 35R11 35J20 35P05 35B09 PDF BibTeX XML Cite \textit{Q. Han}, Adv. Nonlinear Anal. 11, 432--453 (2022; Zbl 07405805) Full Text: DOI OpenURL
Arioua, Yacine; Ma, Li On criteria of existence for nonlinear Katugampola fractional differential equations with \(p\)-Laplacian operator. (English) Zbl 07530046 Fract. Differ. Calc. 11, No. 1, 55-68 (2021). MSC: 26A03 34A12 37C25 PDF BibTeX XML Cite \textit{Y. Arioua} and \textit{L. Ma}, Fract. Differ. Calc. 11, No. 1, 55--68 (2021; Zbl 07530046) Full Text: DOI OpenURL
Alsadi, Wadhah Ahmed; Hussein, Mokhtar; Abdullah, Tariq Q. S. Existence and stability criterion for the results of fractional order \(\Phi_p\)-Laplacian operator boundary value problem. (English) Zbl 07527911 Comput. Methods Differ. Equ. 9, No. 4, 1042-1058 (2021). MSC: 34A07 34A12 35F10 PDF BibTeX XML Cite \textit{W. A. Alsadi} et al., Comput. Methods Differ. Equ. 9, No. 4, 1042--1058 (2021; Zbl 07527911) Full Text: DOI OpenURL
Ahmadkhanlu, Asghar On the existence and uniqueness of positive solutions for a \(p\)-Laplacian fractional boundary value problem with an integral boundary condition with a parameter. (English) Zbl 07527908 Comput. Methods Differ. Equ. 9, No. 4, 1001-1012 (2021). MSC: 34B18 35J05 34A08 PDF BibTeX XML Cite \textit{A. Ahmadkhanlu}, Comput. Methods Differ. Equ. 9, No. 4, 1001--1012 (2021; Zbl 07527908) Full Text: DOI OpenURL
Karapinar, Erdal; Binh, Ho Duy; Luc, Nguyen Hoang; Can, Nguyen Huu On continuity of the fractional derivative of the time-fractional semilinear pseudo-parabolic systems. (English) Zbl 07526169 Adv. Difference Equ. 2021, Paper No. 70, 24 p. (2021). MSC: 35K55 35K70 35K92 47A52 47J06 PDF BibTeX XML Cite \textit{E. Karapinar} et al., Adv. Difference Equ. 2021, Paper No. 70, 24 p. (2021; Zbl 07526169) Full Text: DOI OpenURL
Matar, M. M.; Abbas, M. I.; Alzabut, J.; Kaabar, M. K. A.; Etemad, S.; Rezapour, S. Investigation of the \(p\)-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. (English) Zbl 07526167 Adv. Difference Equ. 2021, Paper No. 68, 18 p. (2021). MSC: 34A08 34A12 PDF BibTeX XML Cite \textit{M. M. Matar} et al., Adv. Difference Equ. 2021, Paper No. 68, 18 p. (2021; Zbl 07526167) Full Text: DOI OpenURL
Anedda, Claudia; Cuccu, Fabrizio; Frassu, Silvia Steiner symmetry in the minimization of the first eigenvalue of a fractional eigenvalue problem with indefinite weight. (English) Zbl 07524998 Can. J. Math. 73, No. 4, 970-992 (2021). MSC: 35R11 35B06 35J25 35P05 47A75 49R05 PDF BibTeX XML Cite \textit{C. Anedda} et al., Can. J. Math. 73, No. 4, 970--992 (2021; Zbl 07524998) Full Text: DOI OpenURL