Bellido, José Carlos; Cueto, Javier; Mora-Corral, Carlos Non-local gradients in bounded domains motivated by continuum mechanics: fundamental theorem of calculus and embeddings. (English) Zbl 07740634 Adv. Nonlinear Anal. 12, Article ID 20220316, 48 p. (2023). MSC: 26A33 35R11 46E35 49J45 74A70 35Q74 42B20 49K21 74B20 74G65 PDF BibTeX XML Cite \textit{J. C. Bellido} et al., Adv. Nonlinear Anal. 12, Article ID 20220316, 48 p. (2023; Zbl 07740634) Full Text: DOI arXiv
Jain, Pankaj; Basu, Chandrani; Panwar, Vivek Fractional \((p,q)\)-Mellin transform and its applications. (English) Zbl 07740212 Bull. Iran. Math. Soc. 49, No. 4, Paper No. 47, 25 p. (2023). MSC: 33D05 33D50 33D60 33D90 PDF BibTeX XML Cite \textit{P. Jain} et al., Bull. Iran. Math. Soc. 49, No. 4, Paper No. 47, 25 p. (2023; Zbl 07740212) Full Text: DOI
Balde, Maoudo Faramba; Belfadli, Rachid; Es-Sebaiy, Khalifa Kolmogorov bounds in the CLT of the LSE for Gaussian Ornstein Uhlenbeck processes. (English) Zbl 07740132 Stoch. Dyn. 23, No. 4, Article ID 2350029, 17 p. (2023). MSC: 60G15 60G22 62F12 62M09 60H07 PDF BibTeX XML Cite \textit{M. F. Balde} et al., Stoch. Dyn. 23, No. 4, Article ID 2350029, 17 p. (2023; Zbl 07740132) Full Text: DOI
Tajani, Asmae; El Alaoui, Fatima-Zahrae Boundary controllability of Riemann-Liouville fractional semilinear evolution systems. (English) Zbl 07740106 J. Optim. Theory Appl. 198, No. 2, 767-780 (2023). MSC: 90Cxx 49-XX PDF BibTeX XML Cite \textit{A. Tajani} and \textit{F.-Z. El Alaoui}, J. Optim. Theory Appl. 198, No. 2, 767--780 (2023; Zbl 07740106) Full Text: DOI
Hezenci, Fatih; Budak, Hüseyin Certain Simpson-type inequalities for twice-differentiable functions by conformable fractional integrals. (English) Zbl 07739517 Korean J. Math. 31, No. 2, 217-228 (2023). MSC: 26D10 26D15 26A51 PDF BibTeX XML Cite \textit{F. Hezenci} and \textit{H. Budak}, Korean J. Math. 31, No. 2, 217--228 (2023; Zbl 07739517) Full Text: DOI
Butt, Saad Ihsan; Ain, Qurat Ul; Budak, Hüseyin New quantum variants of Simpson-Newton type inequalities via \((\alpha,m)\)-convexity. (English) Zbl 07739513 Korean J. Math. 31, No. 2, 161-180 (2023). MSC: 34A08 26A51 26D15 PDF BibTeX XML Cite \textit{S. I. Butt} et al., Korean J. Math. 31, No. 2, 161--180 (2023; Zbl 07739513) Full Text: DOI
Dai, Xinjie; Hong, Jialin; Sheng, Derui; Zhou, Tau Strong error analysis of Euler methods for overdamped generalized Langevin equations with fractional noise: nonlinear case. (English) Zbl 07739203 ESAIM, Math. Model. Numer. Anal. 57, No. 4, 1981-2006 (2023). MSC: 65C20 65C30 65C05 60H07 PDF BibTeX XML Cite \textit{X. Dai} et al., ESAIM, Math. Model. Numer. Anal. 57, No. 4, 1981--2006 (2023; Zbl 07739203) Full Text: DOI arXiv
Aidara, Sadibou; Sane, Ibrahima Delay BSDEs driven by fractional Brownian motion. (English) Zbl 07739190 Random Oper. Stoch. Equ. 31, No. 3, 273-284 (2023). MSC: 60H05 60H07 60G22 60G44 PDF BibTeX XML Cite \textit{S. Aidara} and \textit{I. Sane}, Random Oper. Stoch. Equ. 31, No. 3, 273--284 (2023; Zbl 07739190) Full Text: DOI
Vivek, S.; Vijayakumar, V. A note concerning to optimal feedback control for Caputo fractional neutral stochastic evolution systems. (English) Zbl 07736308 Qual. Theory Dyn. Syst. 22, No. 4, Paper No. 155, 20 p. (2023). MSC: 26A33 49J15 60H10 93B52 PDF BibTeX XML Cite \textit{S. Vivek} and \textit{V. Vijayakumar}, Qual. Theory Dyn. Syst. 22, No. 4, Paper No. 155, 20 p. (2023; Zbl 07736308) Full Text: DOI
Jornet, Marc On the random fractional Bateman equations. (English) Zbl 07736221 Appl. Math. Comput. 457, Article ID 128197, 14 p. (2023). MSC: 34A08 34F05 60H10 60H35 PDF BibTeX XML Cite \textit{M. Jornet}, Appl. Math. Comput. 457, Article ID 128197, 14 p. (2023; Zbl 07736221) Full Text: DOI
Mendes, R. Vilela The fractional volatility model and rough volatility. (English) Zbl 07735468 Int. J. Theor. Appl. Finance 26, No. 2-3, Article ID 2350010, 12 p. (2023). MSC: 91G20 60H07 60G22 PDF BibTeX XML Cite \textit{R. V. Mendes}, Int. J. Theor. Appl. Finance 26, No. 2--3, Article ID 2350010, 12 p. (2023; Zbl 07735468) Full Text: DOI arXiv
Has, Aykut; Yılmaz, Beyhan Measurement and calculation on conformable surfaces. (English) Zbl 07735358 Mediterr. J. Math. 20, No. 5, Paper No. 274, 18 p. (2023). MSC: 53A05 26A33 PDF BibTeX XML Cite \textit{A. Has} and \textit{B. Yılmaz}, Mediterr. J. Math. 20, No. 5, Paper No. 274, 18 p. (2023; Zbl 07735358) Full Text: DOI
Dehda, Bachir; Azeb Ahmed, Abdelaziz; Yazid, Fares; Djeradi, Fatima Siham Numerical solution of a class of Caputo-Fabrizio derivative problem using Haar wavelet collocation method. (English) Zbl 07734352 J. Appl. Math. Comput. 69, No. 3, 2761-2774 (2023). MSC: 65T60 34A08 PDF BibTeX XML Cite \textit{B. Dehda} et al., J. Appl. Math. Comput. 69, No. 3, 2761--2774 (2023; Zbl 07734352) Full Text: DOI
Kota, Wafaa Y.; El-Ashwah, Rabha Mohamed Some applications of subordination theorems associated with fractional \(q\)-calculus operator. (English) Zbl 07729569 Math. Bohem. 148, No. 2, 131-148 (2023). MSC: 30C45 30C50 PDF BibTeX XML Cite \textit{W. Y. Kota} and \textit{R. M. El-Ashwah}, Math. Bohem. 148, No. 2, 131--148 (2023; Zbl 07729569) Full Text: DOI
Hamadou, Bamogo; Moussa, Yaya; Bassono, Francis; Paré, Youssouf Exact solution of some fractional systems of partial differential equations via the SBA method. (English) Zbl 07727271 Int. J. Numer. Methods Appl. 23, No. 1, 131-156 (2023). MSC: 44Axx 40C10 35D40 35E05 PDF BibTeX XML Cite \textit{B. Hamadou} et al., Int. J. Numer. Methods Appl. 23, No. 1, 131--156 (2023; Zbl 07727271) Full Text: DOI
Chandra, Subhash; Abbas, Syed; Liang, Yongshun On the Box dimension of Weyl-Marchaud fractional derivative and linearity effect. (English) Zbl 07726800 Fractals 31, No. 5, Article ID 2350058, 8 p. (2023). MSC: 26Axx 28Axx 44Axx PDF BibTeX XML Cite \textit{S. Chandra} et al., Fractals 31, No. 5, Article ID 2350058, 8 p. (2023; Zbl 07726800) Full Text: DOI
Nieto, Juan J.; Alghanmi, Madeaha; Ahmad, Bashir; Alsaedi, Ahmed; Alharbi, Boshra On fractional integrals and derivatives of a function with respect to another function. (English) Zbl 07726768 Fractals 31, No. 4, Article ID 2340066, 15 p. (2023). MSC: 26Axx 34A08 PDF BibTeX XML Cite \textit{J. J. Nieto} et al., Fractals 31, No. 4, Article ID 2340066, 15 p. (2023; Zbl 07726768) Full Text: DOI
Zhao, Dafang; Ali, Muhammad Aamir; Budak, Hüseyin; He, Zai-Yin Some Bullen-type inequalities for generalized fractional integrals. (English) Zbl 07726762 Fractals 31, No. 4, Article ID 2340060, 11 p. (2023). MSC: 26Dxx 26Axx 41Axx PDF BibTeX XML Cite \textit{D. Zhao} et al., Fractals 31, No. 4, Article ID 2340060, 11 p. (2023; Zbl 07726762) Full Text: DOI
Sawangtong, Panumart; Logeswari, K.; Ravichandran, C.; Nisar, Kottakkaran Sooppy; Vijayaraj, V. Fractional order geminivirus impression in Capsicum Annuum model with Mittag-Leffler kernal. (English) Zbl 07726752 Fractals 31, No. 4, Article ID 2340049, 12 p. (2023). MSC: 26Axx 34Axx 34Kxx PDF BibTeX XML Cite \textit{P. Sawangtong} et al., Fractals 31, No. 4, Article ID 2340049, 12 p. (2023; Zbl 07726752) Full Text: DOI
Park, Woongbae; Schikorra, Armin Quantitative estimates for fractional Sobolev mappings in rational homotopy groups. (English) Zbl 07726159 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 235, Article ID 113349, 16 p. (2023). MSC: 55P62 55Qxx 46Exx 58Cxx PDF BibTeX XML Cite \textit{W. Park} and \textit{A. Schikorra}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 235, Article ID 113349, 16 p. (2023; Zbl 07726159) Full Text: DOI arXiv
Huaroto, Gerardo; Neves, Wladimir Solvability of the fractional hyperbolic Keller-Segel system. (English) Zbl 07725795 Nonlinear Anal., Real World Appl. 74, Article ID 103957, 28 p. (2023). MSC: 35R11 35L65 92C17 PDF BibTeX XML Cite \textit{G. Huaroto} and \textit{W. Neves}, Nonlinear Anal., Real World Appl. 74, Article ID 103957, 28 p. (2023; Zbl 07725795) Full Text: DOI arXiv
Aidara, Sadibou; Sagna, Yaya; Faye, Ibrahima Averaging principle for BSDEs driven by two mutually independent fractional Brownian motions. (English) Zbl 07725537 Appl. Anal. 102, No. 8, 2189-2199 (2023). MSC: 60H10 60H05 60G22 PDF BibTeX XML Cite \textit{S. Aidara} et al., Appl. Anal. 102, No. 8, 2189--2199 (2023; Zbl 07725537) Full Text: DOI
Xie, Jianqiang; Ali, Muhammad Aamir; Budak, Hüseyin; Fečkan, Michal; Sitthiwirattham, Thanin Fractional Hermite-Hadamard inequality, Simpson’s and Ostrowski’s type inequalities for convex functions with respect to a pair of functions. (English) Zbl 07725158 Rocky Mt. J. Math. 53, No. 2, 611-628 (2023). MSC: 26A51 26D10 26D15 PDF BibTeX XML Cite \textit{J. Xie} et al., Rocky Mt. J. Math. 53, No. 2, 611--628 (2023; Zbl 07725158) Full Text: DOI Link
Kosunalp, Hatice Yalman; Gulsu, Mustafa Towards solving linear fractional differential equations with Hermite operational matrix. (English) Zbl 07724370 Adv. Stud.: Euro-Tbil. Math. J. 16, No. 2, 47-61 (2023). MSC: 26A33 44A45 PDF BibTeX XML Cite \textit{H. Y. Kosunalp} and \textit{M. Gulsu}, Adv. Stud.: Euro-Tbil. Math. J. 16, No. 2, 47--61 (2023; Zbl 07724370) Full Text: DOI Link
Geng, Xi; Ouyang, Cheng; Tindel, Samy Precise local estimates for differential equations driven by fractional Brownian motion: elliptic case. (English) Zbl 07722772 J. Theor. Probab. 36, No. 3, 1341-1367 (2023). MSC: 60H10 60H07 60G15 PDF BibTeX XML Cite \textit{X. Geng} et al., J. Theor. Probab. 36, No. 3, 1341--1367 (2023; Zbl 07722772) Full Text: DOI arXiv
Bağcı, A.; Hoggan, P. E. Complete and orthonormal sets of exponential-type orbitals with non-integer quantum numbers. (English) Zbl 07722238 J. Phys. A, Math. Theor. 56, No. 33, Article ID 335205, 29 p. (2023). MSC: 81-XX 82-XX PDF BibTeX XML Cite \textit{A. Bağcı} and \textit{P. E. Hoggan}, J. Phys. A, Math. Theor. 56, No. 33, Article ID 335205, 29 p. (2023; Zbl 07722238) Full Text: DOI
Abdullah, Saleh Conformable fractional calculus of vector valued functions of several variables. (English) Zbl 07720616 Missouri J. Math. Sci. 35, No. 1, 46-59 (2023). MSC: 26A33 26B12 PDF BibTeX XML Cite \textit{S. Abdullah}, Missouri J. Math. Sci. 35, No. 1, 46--59 (2023; Zbl 07720616) Full Text: DOI Link
Wang, Sen; Zhou, Xian-Feng The Cauchy problem for time-fractional linear nonlocal diffusion equations. (English) Zbl 07719439 Z. Angew. Math. Phys. 74, No. 4, Paper No. 156, 19 p. (2023). MSC: 35Qxx 74-XX 76-XX PDF BibTeX XML Cite \textit{S. Wang} and \textit{X.-F. Zhou}, Z. Angew. Math. Phys. 74, No. 4, Paper No. 156, 19 p. (2023; Zbl 07719439) Full Text: DOI
Dung, Nguyen Tien; Son, Ta Cong Lipschitz continuity in the Hurst index of the solutions of fractional stochastic Volterra integro-differential equations. (English) Zbl 1515.60243 Stochastic Anal. Appl. 41, No. 4, 693-712 (2023). MSC: 60H20 60G22 60H07 PDF BibTeX XML Cite \textit{N. T. Dung} and \textit{T. C. Son}, Stochastic Anal. Appl. 41, No. 4, 693--712 (2023; Zbl 1515.60243) Full Text: DOI
Kayal, Suchandan; Balakrishnan, N. Weighted fractional generalized cumulative past entropy and its properties. (English) Zbl 07716609 Methodol. Comput. Appl. Probab. 25, No. 2, Paper No. 61, 23 p. (2023). Reviewer: Jaak Henno (Tallinn) MSC: 94A17 60E15 26A33 PDF BibTeX XML Cite \textit{S. Kayal} and \textit{N. Balakrishnan}, Methodol. Comput. Appl. Probab. 25, No. 2, Paper No. 61, 23 p. (2023; Zbl 07716609) Full Text: DOI arXiv
Dung, Nguyen Tien; Son, Ta Cong The total variation distance between the solutions to stochastic Volterra equations and SDEs with its applications. (English) Zbl 1515.60174 Acta Appl. Math. 186, Paper No. 3, 27 p. (2023). MSC: 60H07 60G22 91G30 PDF BibTeX XML Cite \textit{N. T. Dung} and \textit{T. C. Son}, Acta Appl. Math. 186, Paper No. 3, 27 p. (2023; Zbl 1515.60174) Full Text: DOI
Kong, Hua; Wu, Guo-Cheng; Fu, Hui; Wu, Kai-Teng Non-equidistant partition predictor-corrector method for fractional differential equations with exponential memory. (English) Zbl 07715020 Int. J. Nonlinear Sci. Numer. Simul. 24, No. 3, 1109-1121 (2023). MSC: 65-XX 34-XX PDF BibTeX XML Cite \textit{H. Kong} et al., Int. J. Nonlinear Sci. Numer. Simul. 24, No. 3, 1109--1121 (2023; Zbl 07715020) Full Text: DOI
Isah, Sunday Simon; Fernandez, Arran; Özarslan, Mehmet Ali On univariate fractional calculus with general bivariate analytic kernels. (English) Zbl 07714786 Comput. Appl. Math. 42, No. 5, Paper No. 228, 27 p. (2023). MSC: 26A33 34A08 PDF BibTeX XML Cite \textit{S. S. Isah} et al., Comput. Appl. Math. 42, No. 5, Paper No. 228, 27 p. (2023; Zbl 07714786) Full Text: DOI
Bekbolat, Bayan; Serikbaev, Daurenbek; Tokmagambetov, Niyaz Direct and inverse problems for time-fractional heat equation generated by Dunkl operator. (English) Zbl 07708889 J. Inverse Ill-Posed Probl. 31, No. 3, 393-408 (2023). MSC: 35R11 35R30 35S05 47G30 42B37 47A60 42C40 PDF BibTeX XML Cite \textit{B. Bekbolat} et al., J. Inverse Ill-Posed Probl. 31, No. 3, 393--408 (2023; Zbl 07708889) Full Text: DOI
Hezenci, Fatih; Budak, Huseyin Simpson-type inequalities for conformable fractional operators with respect to twice-differentiable functions. (English) Zbl 07708091 J. Math. Ext. 17, No. 3, Paper No. 4, 22 p. (2023). MSC: 26D10 26D15 26A51 PDF BibTeX XML Cite \textit{F. Hezenci} and \textit{H. Budak}, J. Math. Ext. 17, No. 3, Paper No. 4, 22 p. (2023; Zbl 07708091) Full Text: DOI
Xu, Jie; Lian, Qiqi; Wu, Jiang-Lun A strong averaging principle rate for two-time-scale coupled forward-backward stochastic differential equations driven by fractional Brownian motion. (English) Zbl 1515.60222 Appl. Math. Optim. 88, No. 2, Paper No. 32, 35 p. (2023). MSC: 60H10 60H20 60H07 PDF BibTeX XML Cite \textit{J. Xu} et al., Appl. Math. Optim. 88, No. 2, Paper No. 32, 35 p. (2023; Zbl 1515.60222) Full Text: DOI
Anastassiou, George A. Sequential fractional calculus between Banach spaces and alternative Ostrowski and Grüss type inequalities. (English) Zbl 07707839 Acta Math. Univ. Comen., New Ser. 92, No. 2, 179-195 (2023). MSC: 26A33 26D10 26D15 PDF BibTeX XML Cite \textit{G. A. Anastassiou}, Acta Math. Univ. Comen., New Ser. 92, No. 2, 179--195 (2023; Zbl 07707839) Full Text: Link
Diez, Charles-Philippe; Tudor, Ciprian A. Berry-Essén theorem for random determinants. (English) Zbl 07707283 Stat. Probab. Lett. 197, Article ID 109804, 11 p. (2023). Reviewer: Roksana Słowik (Gliwice) MSC: 60B20 60F05 60H07 60G22 15B52 PDF BibTeX XML Cite \textit{C.-P. Diez} and \textit{C. A. Tudor}, Stat. Probab. Lett. 197, Article ID 109804, 11 p. (2023; Zbl 07707283) Full Text: DOI
Assaad, Obayda; Diez, Charles-Phillipe; Tudor, Ciprian A. Generalized Wiener-Hermite integrals and rough non-Gaussian Ornstein-Uhlenbeck process. (English) Zbl 07706364 Stochastics 95, No. 2, 191-210 (2023). Reviewer: Yuliya S. Mishura (Kyjiw) MSC: 60G18 60H07 60G22 PDF BibTeX XML Cite \textit{O. Assaad} et al., Stochastics 95, No. 2, 191--210 (2023; Zbl 07706364) Full Text: DOI
Yu, Qian; Chang, Qiangqiang; Shen, Guangjun Smoothness of higher order derivative of self-intersection local time for fractional Brownian motion. (English) Zbl 07706254 Commun. Stat., Theory Methods 52, No. 10, 3541-3556 (2023). MSC: 60G22 60H07 PDF BibTeX XML Cite \textit{Q. Yu} et al., Commun. Stat., Theory Methods 52, No. 10, 3541--3556 (2023; Zbl 07706254) Full Text: DOI
Juárez, Gerardo; Ramírez-Trocherie, Marcel-André; Báez, Ángel; Lobato, Alan; Iglesias-Rodríguez, Ernesto; Padilla, Pablo; Rodríguez-Ramos, Reinaldo Hopf bifurcation for a fractional Van der Pol oscillator and applications to aerodynamics: implications in flutter. (English) Zbl 07706179 J. Eng. Math. 139, Paper No. 1, 15 p. (2023). MSC: 74S40 26A33 34A08 PDF BibTeX XML Cite \textit{G. Juárez} et al., J. Eng. Math. 139, Paper No. 1, 15 p. (2023; Zbl 07706179) Full Text: DOI
Odibat, Zaid; Baleanu, Dumitru A new fractional derivative operator with generalized cardinal sine kernel: numerical simulation. (English) Zbl 07704432 Math. Comput. Simul. 212, 224-233 (2023). MSC: 26-XX 65-XX PDF BibTeX XML Cite \textit{Z. Odibat} and \textit{D. Baleanu}, Math. Comput. Simul. 212, 224--233 (2023; Zbl 07704432) Full Text: DOI
Vignesh, D.; He, Shaobo; Banerjee, Santo Modelling discrete time fractional Rucklidge system with complex state variables and its synchronization. (English) Zbl 07704196 Appl. Math. Comput. 455, Article ID 128111, 19 p. (2023). MSC: 26A33 39A28 39A30 PDF BibTeX XML Cite \textit{D. Vignesh} et al., Appl. Math. Comput. 455, Article ID 128111, 19 p. (2023; Zbl 07704196) Full Text: DOI
Dutta, Hemen (ed.) Mathematical modelling. Principle and theory. (English) Zbl 07704122 Contemporary Mathematics 786. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-6964-1/pbk; 978-1-4704-7388-4/ebook). viii, 244 p. (2023). MSC: 78-06 74-06 76-06 80-06 78A40 78A97 74-10 74G60 74K25 58K35 80A19 26A33 35R11 35J35 35B38 35J87 76D05 76A05 35B32 65N99 35Q55 PDF BibTeX XML Cite \textit{H. Dutta} (ed.), Mathematical modelling. Principle and theory. Providence, RI: American Mathematical Society (AMS) (2023; Zbl 07704122) Full Text: DOI
Villafuerte, L. Solution processes for second-order linear fractional differential equations with random inhomogeneous parts. (English) Zbl 07703852 Math. Comput. Simul. 210, 17-48 (2023). MSC: 60-XX 34-XX PDF BibTeX XML Cite \textit{L. Villafuerte}, Math. Comput. Simul. 210, 17--48 (2023; Zbl 07703852) Full Text: DOI
Abdeljawad, Thabet; Thabet, Sabri T. M.; Kedim, Imed; Ayari, M. Iadh; Khan, Aziz A higher-order extension of Atangana-Baleanu fractional operators with respect to another function and a Gronwall-type inequality. (English) Zbl 07703192 Bound. Value Probl. 2023, Paper No. 49, 16 p. (2023). MSC: 26A33 34A08 26D15 PDF BibTeX XML Cite \textit{T. Abdeljawad} et al., Bound. Value Probl. 2023, Paper No. 49, 16 p. (2023; Zbl 07703192) Full Text: DOI
Wang, Yupin Fractional quantum Julia set. (English) Zbl 07702362 Appl. Math. Comput. 453, Article ID 128077, 11 p. (2023). MSC: 26A33 28A80 39A13 39A33 PDF BibTeX XML Cite \textit{Y. Wang}, Appl. Math. Comput. 453, Article ID 128077, 11 p. (2023; Zbl 07702362) Full Text: DOI
Shi, Fangfang; Ye, Guoju; Zhao, Dafang; Liu, Wei Interval-valued \(Iq^b\)-calculus and applications. (English) Zbl 07701563 Miskolc Math. Notes 24, No. 1, 429-445 (2023). MSC: 26A33 39A13 58C06 PDF BibTeX XML Cite \textit{F. Shi} et al., Miskolc Math. Notes 24, No. 1, 429--445 (2023; Zbl 07701563) Full Text: DOI
Zhang, Bin; Yao, Zhigang; Liu, Junfeng On a class of mixed stochastic heat equations driven by spatially homogeneous Gaussian noise. (English) Zbl 1515.60242 Stat. Probab. Lett. 196, Article ID 109807, 12 p. (2023). MSC: 60H15 60H07 60H30 60G22 PDF BibTeX XML Cite \textit{B. Zhang} et al., Stat. Probab. Lett. 196, Article ID 109807, 12 p. (2023; Zbl 1515.60242) Full Text: DOI
Hu, Yaozhong; Li, Juan; Mi, Chao BSDEs generated by fractional space-time noise and related SPDEs. (English) Zbl 07701066 Appl. Math. Comput. 450, Article ID 127979, 30 p. (2023). MSC: 60Hxx 60Gxx 35Rxx PDF BibTeX XML Cite \textit{Y. Hu} et al., Appl. Math. Comput. 450, Article ID 127979, 30 p. (2023; Zbl 07701066) Full Text: DOI arXiv
Djebara, Lamia; Abdelmalek, Salem; Bendoukha, Samir Asymptotic stability of an epidemiological fractional reaction-diffusion model. (English) Zbl 07700916 Demonstr. Math. 56, Article ID 20220224, 27 p. (2023). MSC: 35B40 35K51 35K57 35R11 PDF BibTeX XML Cite \textit{L. Djebara} et al., Demonstr. Math. 56, Article ID 20220224, 27 p. (2023; Zbl 07700916) Full Text: DOI
Amin, Rohul; Hafsa; Hadi, Fazli; Altanji, Mohamed; Nisar, Kottakkaran Sooppy; Sumelka, Wojciech Solution of variable-order nonlinear fractional differential equations using Haar wavelet collocation technique. (English) Zbl 07700470 Fractals 31, No. 2, Article ID 2340022, 9 p. (2023). MSC: 65Lxx 34Axx 35Rxx PDF BibTeX XML Cite \textit{R. Amin} et al., Fractals 31, No. 2, Article ID 2340022, 9 p. (2023; Zbl 07700470) Full Text: DOI
Ma, Li; Li, Jing A bridge on Lomnitz type creep laws via generalized fractional calculus. (English) Zbl 1515.26012 Appl. Math. Modelling 116, 786-798 (2023). MSC: 26A33 34A08 PDF BibTeX XML Cite \textit{L. Ma} and \textit{J. Li}, Appl. Math. Modelling 116, 786--798 (2023; Zbl 1515.26012) Full Text: DOI
Lachouri, Adel; Samei, Mohammad Esmael; Ardjouni, Abdelouaheb Existence and stability analysis for a class of fractional pantograph \(q\)-difference equations with nonlocal boundary conditions. (English) Zbl 1516.39005 Bound. Value Probl. 2023, Paper No. 2, 20 p. (2023). MSC: 39A30 26A33 39A13 05A30 PDF BibTeX XML Cite \textit{A. Lachouri} et al., Bound. Value Probl. 2023, Paper No. 2, 20 p. (2023; Zbl 1516.39005) Full Text: DOI
Pal, Ankit; Jana, R. K.; Nieto, Juan J.; Shukla, A. K. Some results on the \({}_p R_q (\lambda,\mu; z)\) function involving pathway fractional integral operator and statistical distribution. (English) Zbl 07699168 S\(\vec{\text{e}}\)MA J. 80, No. 1, 159-173 (2023). MSC: 33C60 26A33 33E12 44A99 PDF BibTeX XML Cite \textit{A. Pal} et al., S\(\vec{\text{e}}\)MA J. 80, No. 1, 159--173 (2023; Zbl 07699168) Full Text: DOI
Li, Shengyue; Cao, Wanrong On spectral Petrov-Galerkin method for solving optimal control problem governed by fractional diffusion equations with fractional noise. (English) Zbl 07698826 J. Sci. Comput. 94, No. 3, Paper No. 62, 31 p. (2023). MSC: 65Nxx 44Axx 26Axx PDF BibTeX XML Cite \textit{S. Li} and \textit{W. Cao}, J. Sci. Comput. 94, No. 3, Paper No. 62, 31 p. (2023; Zbl 07698826) Full Text: DOI
Chang, Yong-Kui; Ponce, Rodrigo Properties of vector-valued \(\tau \)-discrete fractional calculus and its connection with Caputo fractional derivatives. (English) Zbl 07698580 Constr. Approx. 57, No. 3, 1133-1144 (2023). MSC: 26Axx 39A12 65J10 65M22 PDF BibTeX XML Cite \textit{Y.-K. Chang} and \textit{R. Ponce}, Constr. Approx. 57, No. 3, 1133--1144 (2023; Zbl 07698580) Full Text: DOI
Al-Refai, Mohammed; Fernandez, Arran Generalising the fractional calculus with Sonine kernels via conjugations. (English) Zbl 07698189 J. Comput. Appl. Math. 427, Article ID 115159, 18 p. (2023). MSC: 26A33 47B33 47A05 34A08 PDF BibTeX XML Cite \textit{M. Al-Refai} and \textit{A. Fernandez}, J. Comput. Appl. Math. 427, Article ID 115159, 18 p. (2023; Zbl 07698189) Full Text: DOI
Yamagishi, Hayate; Yoshida, Nakahiro Order estimate of functionals related to fractional Brownian motion. (English) Zbl 07697551 Stochastic Processes Appl. 161, 490-543 (2023). MSC: 60-XX PDF BibTeX XML Cite \textit{H. Yamagishi} and \textit{N. Yoshida}, Stochastic Processes Appl. 161, 490--543 (2023; Zbl 07697551) Full Text: DOI
Doostdar, M. R.; Vahidi, A. R.; Damercheli, T.; Babolian, E. A numerical method based on hybrid functions for solving a fractional model of HIV infection of CD\(4^+\) T cells. (English) Zbl 07695268 Math. Sci., Springer 17, No. 2, 157-167 (2023). MSC: 65-XX 26A33 34A08 34A34 33C45 PDF BibTeX XML Cite \textit{M. R. Doostdar} et al., Math. Sci., Springer 17, No. 2, 157--167 (2023; Zbl 07695268) Full Text: DOI
Miranda, Pablo; Parra, Daniel Continuum limit for a discrete Hodge-Dirac operator on square lattices. (English) Zbl 07693489 Lett. Math. Phys. 113, No. 2, Paper No. 45, 25 p. (2023). MSC: 47A58 81Q35 34L40 26A33 PDF BibTeX XML Cite \textit{P. Miranda} and \textit{D. Parra}, Lett. Math. Phys. 113, No. 2, Paper No. 45, 25 p. (2023; Zbl 07693489) Full Text: DOI arXiv
Hezenci, Fatih; Budak, Hüseyin; Kara, Hasan A study on conformable fractional version of Bullen-type inequalities. (English) Zbl 1511.26021 Turk. J. Math. 47, No. 4, 1306-1317 (2023). MSC: 26D10 26D15 26A51 PDF BibTeX XML Cite \textit{F. Hezenci} et al., Turk. J. Math. 47, No. 4, 1306--1317 (2023; Zbl 1511.26021) Full Text: DOI
Jiang, Tao; Wang, Xing-Chi; Ren, Jin-Lian; Huang, Jin-Jing; Yuan, Jin-Yun A high-efficient accurate coupled mesh-free scheme for 2D/3D space-fractional convection-diffusion/Burgers’ problems. (English) Zbl 07692049 Comput. Math. Appl. 140, 260-281 (2023). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{T. Jiang} et al., Comput. Math. Appl. 140, 260--281 (2023; Zbl 07692049) Full Text: DOI
Garzón, Johanna; León, Jorge A.; Torres, Soledad Forward integration of bounded variation coefficients with respect to Hölder continuous processes. (English) Zbl 07691565 Bernoulli 29, No. 3, 1877-1904 (2023). MSC: 60H05 60H10 60G22 PDF BibTeX XML Cite \textit{J. Garzón} et al., Bernoulli 29, No. 3, 1877--1904 (2023; Zbl 07691565) Full Text: DOI Link
Fernandez, Arran; Rani, Noosheza; Tomovski, Živorad An operational calculus approach to Hilfer-Prabhakar fractional derivatives. (English) Zbl 07690511 Banach J. Math. Anal. 17, No. 2, Paper No. 33, 29 p. (2023). Reviewer: Peter Massopust (München) MSC: 44A40 26A33 34A08 PDF BibTeX XML Cite \textit{A. Fernandez} et al., Banach J. Math. Anal. 17, No. 2, Paper No. 33, 29 p. (2023; Zbl 07690511) Full Text: DOI
Hezenci, Fatih; Budak, Hüseyin; Kösem, Pinar A new version of Newton’s inequalities for Riemann-Liouville fractional integrals. (English) Zbl 07690298 Rocky Mt. J. Math. 53, No. 1, 49-64 (2023). Reviewer: László Losonczi (Debrecen) MSC: 26D15 65D32 PDF BibTeX XML Cite \textit{F. Hezenci} et al., Rocky Mt. J. Math. 53, No. 1, 49--64 (2023; Zbl 07690298) Full Text: DOI Link
Chu, Yu-Ming; Awan, Muhammad Uzair; Talib, Sadia; Noor, Muhammad Aslam; Noor, Khalida Inayat Fractional quantum analogues of trapezoid like inequalities. (English) Zbl 1516.26018 J. Math. Inequal. 17, No. 1, 31-47 (2023). MSC: 26D15 05A30 26A33 26A51 PDF BibTeX XML Cite \textit{Y.-M. Chu} et al., J. Math. Inequal. 17, No. 1, 31--47 (2023; Zbl 1516.26018) Full Text: DOI
Jaramillo, Arturo; Nourdin, Ivan; Nualart, David; Peccati, Giovanni Limit theorems for additive functionals of the fractional Brownian motion. (English) Zbl 07690056 Ann. Probab. 51, No. 3, 1066-1111 (2023). MSC: 62E17 60F05 60G22 60J55 60H07 PDF BibTeX XML Cite \textit{A. Jaramillo} et al., Ann. Probab. 51, No. 3, 1066--1111 (2023; Zbl 07690056) Full Text: DOI arXiv
Habibirad, Ali; Hesameddini, Esmail; Azin, Hadis; Heydari, Mohammad Hossein The direct meshless local Petrov-Galerkin technique with its error estimate for distributed-order time fractional cable equation. (English) Zbl 07688921 Eng. Anal. Bound. Elem. 150, 342-352 (2023). MSC: 65M12 65M60 34A45 PDF BibTeX XML Cite \textit{A. Habibirad} et al., Eng. Anal. Bound. Elem. 150, 342--352 (2023; Zbl 07688921) Full Text: DOI
Pskhu, A. V. D’Alembert formula for diffusion-wave equation. (English) Zbl 07688847 Lobachevskii J. Math. 44, No. 2, 644-652 (2023). MSC: 26Axx 44Axx 35Rxx PDF BibTeX XML Cite \textit{A. V. Pskhu}, Lobachevskii J. Math. 44, No. 2, 644--652 (2023; Zbl 07688847) Full Text: DOI
Plekhanova, M. V.; Izhberdeeva, E. M. Degenerate equations with the Dzhrbashyan-Nersesyan derivative in the sectorial case. (English) Zbl 07688846 Lobachevskii J. Math. 44, No. 2, 634-643 (2023). MSC: 26Axx 35Qxx 44Axx PDF BibTeX XML Cite \textit{M. V. Plekhanova} and \textit{E. M. Izhberdeeva}, Lobachevskii J. Math. 44, No. 2, 634--643 (2023; Zbl 07688846) Full Text: DOI
Casulli, Angelo; Robol, Leonardo Low-rank tensor structure preservation in fractional operators by means of exponential sums. (English) Zbl 1514.65053 BIT 63, No. 2, Paper No. 30, 26 p. (2023). MSC: 65F60 15A16 15A69 PDF BibTeX XML Cite \textit{A. Casulli} and \textit{L. Robol}, BIT 63, No. 2, Paper No. 30, 26 p. (2023; Zbl 1514.65053) Full Text: DOI arXiv
Burgos, Clara; Caraballo, Tomás; Cortés, Juan Carlos; Villafuerte, Laura; Villanueva, Rafael Jacinto Constructing reliable approximations of the random fractional Hermite equation: solution, moments and density. (English) Zbl 07687539 Comput. Appl. Math. 42, No. 3, Paper No. 140, 28 p. (2023). MSC: 26A33 37H10 60H25 30B20 34F05 49J55 PDF BibTeX XML Cite \textit{C. Burgos} et al., Comput. Appl. Math. 42, No. 3, Paper No. 140, 28 p. (2023; Zbl 07687539) Full Text: DOI
Shevchenko, Radomyra On quadratic variations for the fractional-white wave equation. (English) Zbl 1510.60056 Theory Probab. Math. Stat. 108, 185-207 (2023). MSC: 60H15 60F05 60G15 60G18 PDF BibTeX XML Cite \textit{R. Shevchenko}, Theory Probab. Math. Stat. 108, 185--207 (2023; Zbl 1510.60056) Full Text: DOI arXiv
Liu, Junfeng Moment bounds for a generalized Anderson model with Gaussian noise rough in space. (English) Zbl 07686370 J. Theor. Probab. 36, No. 1, 167-200 (2023). MSC: 60G22 60H15 60H07 PDF BibTeX XML Cite \textit{J. Liu}, J. Theor. Probab. 36, No. 1, 167--200 (2023; Zbl 07686370) Full Text: DOI
Ge, Fudong; Chen, YangQuan Optimal regional control for a class of semilinear time-fractional diffusion systems with distributed feedback. (English) Zbl 1511.35354 Fract. Calc. Appl. Anal. 26, No. 2, 651-671 (2023). MSC: 35Q93 35R11 26A33 49J20 93C20 93B52 PDF BibTeX XML Cite \textit{F. Ge} and \textit{Y. Chen}, Fract. Calc. Appl. Anal. 26, No. 2, 651--671 (2023; Zbl 1511.35354) Full Text: DOI
Terpák, Ján General one-dimensional model of the time-fractional diffusion-wave equation in various geometries. (English) Zbl 1511.35375 Fract. Calc. Appl. Anal. 26, No. 2, 599-618 (2023). MSC: 35R11 26A33 PDF BibTeX XML Cite \textit{J. Terpák}, Fract. Calc. Appl. Anal. 26, No. 2, 599--618 (2023; Zbl 1511.35375) Full Text: DOI
Cristofaro, Lorenzo; Garra, Roberto; Scalas, Enrico; Spassiani, Ilaria A fractional approach to study the pure-temporal Epidemic Type Aftershock Sequence (ETAS) process for earthquakes modeling. (English) Zbl 1511.86003 Fract. Calc. Appl. Anal. 26, No. 2, 461-479 (2023). MSC: 86A15 26A33 60G55 34A08 74S40 60G18 PDF BibTeX XML Cite \textit{L. Cristofaro} et al., Fract. Calc. Appl. Anal. 26, No. 2, 461--479 (2023; Zbl 1511.86003) Full Text: DOI arXiv
Hedrih, Katica R. (Stevanović); Hedrih, Andjelka N. The Kelvin-Voigt visco-elastic model involving a fractional-order time derivative for modelling torsional oscillations of a complex discrete biodynamical system. (English) Zbl 07684987 Acta Mech. 234, No. 5, 1923-1942 (2023). MSC: 74D05 74A20 74S40 74K10 74L15 74H45 PDF BibTeX XML Cite \textit{K. R. Hedrih} and \textit{A. N. Hedrih}, Acta Mech. 234, No. 5, 1923--1942 (2023; Zbl 07684987) Full Text: DOI
Johnson, M.; Vijayakumar, V. Optimal control results for Sobolev-type fractional stochastic Volterra-Fredholm integrodifferential systems of order \(\vartheta \in (1, 2)\) via sectorial operators. (English) Zbl 07683275 Numer. Funct. Anal. Optim. 44, No. 6, 439-460 (2023). Reviewer: Ahmed M. A. El-Sayed (Alexandria) MSC: 49J21 45D05 58C30 60H10 PDF BibTeX XML Cite \textit{M. Johnson} and \textit{V. Vijayakumar}, Numer. Funct. Anal. Optim. 44, No. 6, 439--460 (2023; Zbl 07683275) Full Text: DOI
Behme, Anita; Strietzel, Philipp Lukas On moments of downward passage times for spectrally negative Lévy processes. (English) Zbl 1516.60028 J. Appl. Probab. 60, No. 2, 452-464 (2023). MSC: 60G51 60G40 91G05 PDF BibTeX XML Cite \textit{A. Behme} and \textit{P. L. Strietzel}, J. Appl. Probab. 60, No. 2, 452--464 (2023; Zbl 1516.60028) Full Text: DOI arXiv
Pei, Wenyi; Yan, Litan; Chen, Zhenlong Harnack type inequalities for SDEs driven by fractional Brownian motion with Markovian switching. (English) Zbl 07682827 Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 3, 1403-1414 (2023). MSC: 60H10 60G22 60H07 PDF BibTeX XML Cite \textit{W. Pei} et al., Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 3, 1403--1414 (2023; Zbl 07682827) Full Text: DOI
Qu, Peng-Fei; Zhu, Qi-Zhi; Zhang, Li-Mao; Li, Wei-Jian; Ni, Tao; You, Tao Numerical investigation of plastic strain localization for rock-like materials in the framework of fractional plasticity. (English) Zbl 1510.74086 Appl. Math. Modelling 118, 437-452 (2023). MSC: 74L10 65M60 PDF BibTeX XML Cite \textit{P.-F. Qu} et al., Appl. Math. Modelling 118, 437--452 (2023; Zbl 1510.74086) Full Text: DOI
Mei, Jie; Li, Miao Abstract fractional inverse source problem of order \(0<\alpha <1\) in a Banach space. (English) Zbl 1509.35381 Fract. Calc. Appl. Anal. 26, No. 1, 276-304 (2023). MSC: 35R30 35R11 33E12 47A60 PDF BibTeX XML Cite \textit{J. Mei} and \textit{M. Li}, Fract. Calc. Appl. Anal. 26, No. 1, 276--304 (2023; Zbl 1509.35381) Full Text: DOI
Zeraick Monteiro, Noemi; Rodrigues Mazorche, Sandro Limitations and applications in a fractional Barbalat’s lemma. (English) Zbl 1509.26007 Fract. Calc. Appl. Anal. 26, No. 1, 253-275 (2023). MSC: 26A33 34A08 92D30 PDF BibTeX XML Cite \textit{N. Zeraick Monteiro} and \textit{S. Rodrigues Mazorche}, Fract. Calc. Appl. Anal. 26, No. 1, 253--275 (2023; Zbl 1509.26007) Full Text: DOI
Lenka, Bichitra Kumar; Bora, Swaroop Nandan Lyapunov stability theorems for \(\psi \)-Caputo derivative systems. (English) Zbl 1509.34009 Fract. Calc. Appl. Anal. 26, No. 1, 220-236 (2023). MSC: 34A08 26A33 34D20 34D23 34K20 34K37 PDF BibTeX XML Cite \textit{B. K. Lenka} and \textit{S. N. Bora}, Fract. Calc. Appl. Anal. 26, No. 1, 220--236 (2023; Zbl 1509.34009) Full Text: DOI
Borikhanov, Meiirkhan B.; Ruzhansky, Michael; Torebek, Berikbol T. Qualitative properties of solutions to a nonlinear time-space fractional diffusion equation. (English) Zbl 1509.35338 Fract. Calc. Appl. Anal. 26, No. 1, 111-146 (2023). MSC: 35R11 26A33 35B51 35B44 35K57 PDF BibTeX XML Cite \textit{M. B. Borikhanov} et al., Fract. Calc. Appl. Anal. 26, No. 1, 111--146 (2023; Zbl 1509.35338) Full Text: DOI arXiv
Paneva-Konovska, Jordanka Prabhakar function of Le Roy type: a set of results in the complex plane. (English) Zbl 1509.33024 Fract. Calc. Appl. Anal. 26, No. 1, 32-53 (2023). MSC: 33E20 26A33 30D20 41A58 33E12 PDF BibTeX XML Cite \textit{J. Paneva-Konovska}, Fract. Calc. Appl. Anal. 26, No. 1, 32--53 (2023; Zbl 1509.33024) Full Text: DOI
Ünal, Cihan; Hezenci, Fatih; Budak, Hüseyin Some remarks on parameterized inequalities involving conformable fractional operators. (English) Zbl 1509.26015 Turk. J. Math. 47, No. 2, 590-607 (2023). MSC: 26D10 26D15 26A51 PDF BibTeX XML Cite \textit{C. Ünal} et al., Turk. J. Math. 47, No. 2, 590--607 (2023; Zbl 1509.26015) Full Text: DOI
Hezenci, Fatih; Budak, Hüseyin Novel results on trapezoid-type inequalities for conformable fractional integrals. (English) Zbl 1509.26013 Turk. J. Math. 47, No. 2, 425-438 (2023). MSC: 26D10 26D15 26A51 PDF BibTeX XML Cite \textit{F. Hezenci} and \textit{H. Budak}, Turk. J. Math. 47, No. 2, 425--438 (2023; Zbl 1509.26013) Full Text: DOI
Luo, Danfeng; Wang, Xue; Caraballo, Tomás; Zhu, Quanxin Ulam-Hyers stability of Caputo-type fractional fuzzy stochastic differential equations with delay. (English) Zbl 07677522 Commun. Nonlinear Sci. Numer. Simul. 121, Article ID 107229, 17 p. (2023). MSC: 34K37 34K36 34K50 34K27 34K07 PDF BibTeX XML Cite \textit{D. Luo} et al., Commun. Nonlinear Sci. Numer. Simul. 121, Article ID 107229, 17 p. (2023; Zbl 07677522) Full Text: DOI
Vu, Ho; Phu, Nguyen Dinh; Hoa, Ngo Van A survey on random fractional differential equations involving the generalized Caputo fractional-order derivative. (English) Zbl 1509.34014 Commun. Nonlinear Sci. Numer. Simul. 121, Article ID 107202, 35 p. (2023). MSC: 34A08 34A12 34A30 34F05 PDF BibTeX XML Cite \textit{H. Vu} et al., Commun. Nonlinear Sci. Numer. Simul. 121, Article ID 107202, 35 p. (2023; Zbl 1509.34014) Full Text: DOI
Nosrati, Komeil; Belikov, Juri; Tepljakov, Aleksei; Petlenkov, Eduard Extended fractional singular Kalman filter. (English) Zbl 1511.93125 Appl. Math. Comput. 448, Article ID 127950, 15 p. (2023). MSC: 93E11 62M20 26A33 PDF BibTeX XML Cite \textit{K. Nosrati} et al., Appl. Math. Comput. 448, Article ID 127950, 15 p. (2023; Zbl 1511.93125) Full Text: DOI
Han, Xiaohui; Dong, Jianping Applications of fractional gradient descent method with adaptive momentum in BP neural networks. (English) Zbl 1511.65053 Appl. Math. Comput. 448, Article ID 127944, 17 p. (2023). MSC: 65K10 68T07 PDF BibTeX XML Cite \textit{X. Han} and \textit{J. Dong}, Appl. Math. Comput. 448, Article ID 127944, 17 p. (2023; Zbl 1511.65053) Full Text: DOI
Wu, Guo-Cheng; Shiri, Babak; Fan, Qin; Feng, Hua-Rong Terminal value problems of non-homogeneous fractional linear systems with general memory kernels. (English) Zbl 1509.34017 J. Nonlinear Math. Phys. 30, No. 1, 303-314 (2023). MSC: 34A08 34A45 26A33 45D05 45B05 45L05 PDF BibTeX XML Cite \textit{G.-C. Wu} et al., J. Nonlinear Math. Phys. 30, No. 1, 303--314 (2023; Zbl 1509.34017) Full Text: DOI
Alzabut, Jehad; Houas, Mohamed; Abbas, Mohamed I. Application of fractional quantum calculus on coupled hybrid differential systems within the sequential Caputo fractional \(q\)-derivatives. (English) Zbl 07675766 Demonstr. Math. 56, Article ID 20220205, 16 p. (2023). MSC: 26A33 34A08 34A12 PDF BibTeX XML Cite \textit{J. Alzabut} et al., Demonstr. Math. 56, Article ID 20220205, 16 p. (2023; Zbl 07675766) Full Text: DOI
Bendouma, Bouharket Monotone iterative technique for a coupled system of nonlinear conformable fractional dynamic equations on time ccales. (English) Zbl 07674937 Jordan J. Math. Stat. 16, No. 1, 41-55 (2023). MSC: 34A08 34A12 34B15 34N05 26A33 26E70 PDF BibTeX XML Cite \textit{B. Bendouma}, Jordan J. Math. Stat. 16, No. 1, 41--55 (2023; Zbl 07674937) Full Text: DOI
Chauhan, Rajendrakumar B.; Chudasama, Meera H. On a \(q\)-analogue of the right local general truncated \(M\)-fractional derivative. (English) Zbl 07674935 Jordan J. Math. Stat. 16, No. 1, 1-22 (2023). MSC: 05A30 26A33 33D05 39A13 PDF BibTeX XML Cite \textit{R. B. Chauhan} and \textit{M. H. Chudasama}, Jordan J. Math. Stat. 16, No. 1, 1--22 (2023; Zbl 07674935) Full Text: DOI
Liu, Junfeng; Wang, Zhi; Wang, Zengwu Space-time fractional Anderson model driven by Gaussian noise rough in space. (English) Zbl 07674257 Stoch. Dyn. 23, No. 1, Article ID 2350003, 31 p. (2023). MSC: 60G22 60H07 60H15 PDF BibTeX XML Cite \textit{J. Liu} et al., Stoch. Dyn. 23, No. 1, Article ID 2350003, 31 p. (2023; Zbl 07674257) Full Text: DOI
Tian, Mengquan; Luo, Danfeng Existence and finite-time stability results for impulsive Caputo-type fractional stochastic differential equations with time delays. (English) Zbl 07673959 Math. Slovaca 73, No. 2, 387-406 (2023). MSC: 26A33 65C30 34K20 PDF BibTeX XML Cite \textit{M. Tian} and \textit{D. Luo}, Math. Slovaca 73, No. 2, 387--406 (2023; Zbl 07673959) Full Text: DOI