Gong, Zhaohua; Liu, Chongyang; Teo, Kok Lay; Wu, Yonghong A gradient-based optimization algorithm to solve optimal control problems with conformable fractional-order derivatives. (English) Zbl 07901809 J. Comput. Appl. Math. 454, Article ID 116169, 11 p. (2025). MSC: 49Mxx 49Jxx 34Axx PDFBibTeX XMLCite \textit{Z. Gong} et al., J. Comput. Appl. Math. 454, Article ID 116169, 11 p. (2025; Zbl 07901809) Full Text: DOI
Özarslan, Mehmet Ali On the approximation to fractional calculus operators with multivariate Mittag-Leffler function in the Kernel. (English) Zbl 07901804 J. Comput. Appl. Math. 454, Article ID 116148, 13 p. (2025). MSC: 26A33 41A36 65R10 PDFBibTeX XMLCite \textit{M. A. Özarslan}, J. Comput. Appl. Math. 454, Article ID 116148, 13 p. (2025; Zbl 07901804) Full Text: DOI
Gharari, Fatemeh; Hematpour, Nafiseh; Bakouch, Hassan S.; Popović, Predrag M. Fractional duals of the Poisson process on time scales with applications in cryptography. (English) Zbl 07909834 Bull. Malays. Math. Sci. Soc. (2) 47, No. 5, Paper No. 145, 36 p. (2024). MSC: 60C05 05A30 PDFBibTeX XMLCite \textit{F. Gharari} et al., Bull. Malays. Math. Sci. Soc. (2) 47, No. 5, Paper No. 145, 36 p. (2024; Zbl 07909834) Full Text: DOI
Manapany, Andy; Fumeron, Sébastien; Henkel, Malte Fractional diffusion equations interpolate between damping and waves. (English) Zbl 07909764 J. Phys. A, Math. Theor. 57, No. 35, Article ID 355202, 23 p. (2024). MSC: 35-XX 76-XX PDFBibTeX XMLCite \textit{A. Manapany} et al., J. Phys. A, Math. Theor. 57, No. 35, Article ID 355202, 23 p. (2024; Zbl 07909764) Full Text: DOI arXiv
Aidara, Sadibou; Ndiaye, Bidji; Sow, Ahmadou Bamba Averaging principle for BSDEs driven by fractional Brownian motion with non Lipschitz coefficients. (English) Zbl 07906598 Electron. J. Math. Anal. Appl. 12, No. 1, Paper No. 7, 12 p. (2024). MSC: 60H05 60H07 60G22 PDFBibTeX XMLCite \textit{S. Aidara} et al., Electron. J. Math. Anal. Appl. 12, No. 1, Paper No. 7, 12 p. (2024; Zbl 07906598) Full Text: DOI
Ebrahimzadeh, Asiyeh; Jajarmi, Amin; Baleanu, Dumitru Enhancing water pollution management through a comprehensive fractional modeling framework and optimal control techniques. (English) Zbl 07906472 J. Nonlinear Math. Phys. 31, No. 1, Paper No. 48, 24 p. (2024). MSC: 92D40 49N90 PDFBibTeX XMLCite \textit{A. Ebrahimzadeh} et al., J. Nonlinear Math. Phys. 31, No. 1, Paper No. 48, 24 p. (2024; Zbl 07906472) Full Text: DOI OA License
Yamagishi, Hayate; Yoshida, Nakahiro Asymptotic expansion of the quadratic variation of fractional stochastic differential equation. (English) Zbl 07904801 Stochastic Processes Appl. 175, Article ID 104389, 37 p. (2024). MSC: 60F05 60G22 60H05 60H07 60H10 PDFBibTeX XMLCite \textit{H. Yamagishi} and \textit{N. Yoshida}, Stochastic Processes Appl. 175, Article ID 104389, 37 p. (2024; Zbl 07904801) Full Text: DOI arXiv
Mei, Jie; Li, Miao An interpolation inequality and its applications to stability of fractional resolvent families. (English) Zbl 07901407 J. Evol. Equ. 24, No. 3, Paper No. 57, 37 p. (2024). MSC: 26-XX 35-XX PDFBibTeX XMLCite \textit{J. Mei} and \textit{M. Li}, J. Evol. Equ. 24, No. 3, Paper No. 57, 37 p. (2024; Zbl 07901407) Full Text: DOI
Zhang, Lijuan; Wang, Yejuan; Hu, Yaozhong Feynman-Kac formula for general diffusion equations driven by TFBM with Hurst index \(H \in (0,1)\). (English) Zbl 07901388 J. Differ. Equations 405, 287-336 (2024). MSC: 60Gxx 60Hxx 62Mxx PDFBibTeX XMLCite \textit{L. Zhang} et al., J. Differ. Equations 405, 287--336 (2024; Zbl 07901388) Full Text: DOI
Sevilla, Francisco J.; Chacón-Acosta, Guillermo; Sandev, Trifce Anomalous diffusion of self-propelled particles. (English) Zbl 07900868 J. Phys. A, Math. Theor. 57, No. 33, Article ID 335004, 23 p. (2024). MSC: 82-XX 35-XX PDFBibTeX XMLCite \textit{F. J. Sevilla} et al., J. Phys. A, Math. Theor. 57, No. 33, Article ID 335004, 23 p. (2024; Zbl 07900868) Full Text: DOI arXiv OA License
Pariyar, Shankar; Kafle, Jeevan Generalizing the Mittag-Leffler function for fractional differentiation and numerical computation. (English) Zbl 07900189 Nepali Math. Sci. Rep. 41, No. 1, 1-14 (2024). MSC: 33E12 26A33 65R10 65D20 34A08 PDFBibTeX XMLCite \textit{S. Pariyar} and \textit{J. Kafle}, Nepali Math. Sci. Rep. 41, No. 1, 1--14 (2024; Zbl 07900189) Full Text: DOI
Rani, Noosheza; Fernandez, Arran Mikusiński’s operational calculus for multi-dimensional fractional operators with applications to fractional PDEs. (English) Zbl 07899956 Commun. Nonlinear Sci. Numer. Simul. 138, Article ID 108249, 11 p. (2024). MSC: 26Axx 44Axx 35Rxx PDFBibTeX XMLCite \textit{N. Rani} and \textit{A. Fernandez}, Commun. Nonlinear Sci. Numer. Simul. 138, Article ID 108249, 11 p. (2024; Zbl 07899956) Full Text: DOI
Thanh, Nguyen T.; Phat, Vu N. Stability and stabilization of fractional-order singular interconnected delay systems. (English) Zbl 07899938 Commun. Nonlinear Sci. Numer. Simul. 138, Article ID 108230, 14 p. (2024). MSC: 34Kxx 93Dxx 34Axx PDFBibTeX XMLCite \textit{N. T. Thanh} and \textit{V. N. Phat}, Commun. Nonlinear Sci. Numer. Simul. 138, Article ID 108230, 14 p. (2024; Zbl 07899938) Full Text: DOI
Yin, Baoli; Zhang, Guoyu; Liu, Yang; Li, Hong Convolution quadrature for Hadamard fractional calculus and correction methods for the subdiffusion with singular source terms. (English) Zbl 07899929 Commun. Nonlinear Sci. Numer. Simul. 138, Article ID 108221, 17 p. (2024). MSC: 26A33 65D25 65D30 PDFBibTeX XMLCite \textit{B. Yin} et al., Commun. Nonlinear Sci. Numer. Simul. 138, Article ID 108221, 17 p. (2024; Zbl 07899929) Full Text: DOI arXiv
Çetin, Mehmet Akif; Genç, Selahattin; Araz, Metin Numerical solution of a multi-wing chaotic system with piecewise differential operators. (English) Zbl 07898930 J. Prime Res. Math. 20, No. 1, 1-14 (2024). MSC: 34-XX 37-XX PDFBibTeX XMLCite \textit{M. A. Çetin} et al., J. Prime Res. Math. 20, No. 1, 1--14 (2024; Zbl 07898930) Full Text: Link
Kechar, C.; Hamoud, Ahmed A.; Ardjouni, A. Investigating a class of generalized Caputo-type fractional Volterra systems. (English) Zbl 07896949 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 31, No. 4, 247-262 (2024). MSC: 26A33 34A08 PDFBibTeX XMLCite \textit{C. Kechar} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 31, No. 4, 247--262 (2024; Zbl 07896949) Full Text: Link Link
Yisa, Babatunde Morufu; Tiamiyu, Abdul-wahab Tunde Shehu transform Adomian decomposition method for the solution of systems of integer and fractional order differential equations. (English) Zbl 07896727 J. Fract. Calc. Appl. 15, No. 2, Paper No. 13, 18 p. (2024). MSC: 34A08 34A25 34A34 35A22 35R11 PDFBibTeX XMLCite \textit{B. M. Yisa} and \textit{A.-w. T. Tiamiyu}, J. Fract. Calc. Appl. 15, No. 2, Paper No. 13, 18 p. (2024; Zbl 07896727) Full Text: DOI
Hezenci, Fatih; Budak, Hüseyin Note on Newton-type inequalities involving tempered fractional integrals. (English) Zbl 07895578 Korean J. Math. 32, No. 2, 349-364 (2024). MSC: 26A51 26D15 34A08 PDFBibTeX XMLCite \textit{F. Hezenci} and \textit{H. Budak}, Korean J. Math. 32, No. 2, 349--364 (2024; Zbl 07895578) Full Text: DOI
Lu, Weidong; Liu, Junfeng Some properties of fractional kinetic equation with Gaussian noise rough in space. (English) Zbl 07895238 Chin. J. Appl. Probab. Stat. 40, No. 1, 139-156 (2024). MSC: 60G22 60H15 60H07 PDFBibTeX XMLCite \textit{W. Lu} and \textit{J. Liu}, Chin. J. Appl. Probab. Stat. 40, No. 1, 139--156 (2024; Zbl 07895238) Full Text: DOI
Gurjar, Meena Kumari; Rathour, Laxmi; Mishra, Lakshmi Narayan; Chhattry, Preeti A study of \(N\)-fractional calculus for the generalized Hurwitz-Lerch zeta function and Mittag-Leffler function. (English) Zbl 07893480 J. Fract. Calc. Appl. 15, No. 1, Paper No. 6, 8 p. (2024). MSC: 11M35 26A33 33E12 PDFBibTeX XMLCite \textit{M. K. Gurjar} et al., J. Fract. Calc. Appl. 15, No. 1, Paper No. 6, 8 p. (2024; Zbl 07893480) Full Text: DOI
Ángeles-Ramírez, Oscar Alejandro; Fernández-Anaya, Guillermo; Hernández-Martínez, Eduardo Gamaliel; González-Sierra, Jaime; Ramírez-Neria, Mario Decentralized formation of multi-agent conformable fractional nonlinear robot systems. (English) Zbl 07892505 Asian J. Control 26, No. 2, 831-844 (2024). MSC: 93-XX PDFBibTeX XMLCite \textit{O. A. Ángeles-Ramírez} et al., Asian J. Control 26, No. 2, 831--844 (2024; Zbl 07892505) Full Text: DOI
Kasinathan, Dhanalakshmi; Chalishajar, Dimplekumar; Kasinathan, Ramkumar; Kasinathan, Ravikumar Exponential stability of non-instantaneous impulsive second-order fractional neutral stochastic differential equations with state-dependent delay. (English) Zbl 07890864 J. Comput. Appl. Math. 451, Article ID 116012, 20 p. (2024). MSC: 26A33 34A08 34K50 47H10 60H10 PDFBibTeX XMLCite \textit{D. Kasinathan} et al., J. Comput. Appl. Math. 451, Article ID 116012, 20 p. (2024; Zbl 07890864) Full Text: DOI
Boulaaras, Salah; Jan, Rashid; Khan, Amin; Allahem, Ali; Ahmad, Imtiaz; Bahramand, Salma Modeling the dynamical behavior of the interaction of T-cells and human immunodeficiency virus with saturated incidence. (English) Zbl 07887620 Commun. Theor. Phys. 76, No. 3, Article ID 035001, 14 p. (2024). MSC: 92C60 92D30 92C50 PDFBibTeX XMLCite \textit{S. Boulaaras} et al., Commun. Theor. Phys. 76, No. 3, Article ID 035001, 14 p. (2024; Zbl 07887620) Full Text: DOI
Butt, Saad Ihsan; Vivas-Cortez, Miguel; Inam, Hira Harmonic conformable refinements of Hermite-Hadamard Mercer inequalities by support line and related applications. (English) Zbl 07885995 Math. Comput. Model. Dyn. Syst. 30, No. 1, 385-416 (2024). MSC: 30-XX PDFBibTeX XMLCite \textit{S. I. Butt} et al., Math. Comput. Model. Dyn. Syst. 30, No. 1, 385--416 (2024; Zbl 07885995) Full Text: DOI OA License
Long, Xian Jun; Wang, Xiao Ting; Li, Gao Xi; Li, Geng Hua A Bregman proximal subgradient algorithm for nonconvex and nonsmooth fractional optimization problems. (English) Zbl 07885867 Appl. Numer. Math. 202, 209-221 (2024). MSC: 90Cxx 65Kxx 49Jxx PDFBibTeX XMLCite \textit{X. J. Long} et al., Appl. Numer. Math. 202, 209--221 (2024; Zbl 07885867) Full Text: DOI
Karami, Sh.; Fakharzadeh Jahromi, A.; Heydari, M. H. A cardinal-based numerical method for fractional optimal control problems with Caputo-Katugampola fractional derivative in a large domain. (English) Zbl 07885483 Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 55, No. 8, 1719-1736 (2024). MSC: 65-XX 49-XX PDFBibTeX XMLCite \textit{Sh. Karami} et al., Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 55, No. 8, 1719--1736 (2024; Zbl 07885483) Full Text: DOI
Shit, Abhijit; Bora, Swaroop Nandan Incorporation of concentration gradient of blood nutrients in erythrocyte sedimentation rate fractional model with non-zero uniform average blood velocity. (English) Zbl 07883086 Math. Methods Appl. Sci. 47, No. 12, 10334-10350 (2024). MSC: 26A06 26A33 33E12 35R11 PDFBibTeX XMLCite \textit{A. Shit} and \textit{S. N. Bora}, Math. Methods Appl. Sci. 47, No. 12, 10334--10350 (2024; Zbl 07883086) Full Text: DOI
Jornet, Marc; Nieto, Juan J. Power-series solution of the L-fractional logistic equation. (English) Zbl 07879142 Appl. Math. Lett. 154, Article ID 109085, 7 p. (2024). MSC: 34A08 34A12 92D25 34A25 PDFBibTeX XMLCite \textit{M. Jornet} and \textit{J. J. Nieto}, Appl. Math. Lett. 154, Article ID 109085, 7 p. (2024; Zbl 07879142) Full Text: DOI
Manjula, M.; Thilakraj, E.; Sawangtong, P.; Kaliraj, K. Analysis on nonlinear differential equation with a deviating argument via Faedo-Galerkin method. (English) Zbl 07878054 Results Appl. Math. 22, Article ID 100452, 12 p. (2024). MSC: 34K30 34K37 34K32 34K45 34K07 47H10 PDFBibTeX XMLCite \textit{M. Manjula} et al., Results Appl. Math. 22, Article ID 100452, 12 p. (2024; Zbl 07878054) Full Text: DOI
Guo, Yuhui; Song, Jian; Song, Xiaoming Stochastic fractional diffusion equations with Gaussian noise rough in space. (English) Zbl 07874400 Bernoulli 30, No. 3, 1774-1799 (2024). MSC: 60H15 60H07 60G15 35R60 60H40 PDFBibTeX XMLCite \textit{Y. Guo} et al., Bernoulli 30, No. 3, 1774--1799 (2024; Zbl 07874400) Full Text: DOI arXiv Link
Comi, Giovanni E.; Stefani, Giorgio Fractional divergence-measure fields, Leibniz rule and Gauss-Green formula. (English) Zbl 07873912 Boll. Unione Mat. Ital. 17, No. 2, 259-281 (2024). MSC: 26A33 26B20 26B30 PDFBibTeX XMLCite \textit{G. E. Comi} and \textit{G. Stefani}, Boll. Unione Mat. Ital. 17, No. 2, 259--281 (2024; Zbl 07873912) Full Text: DOI arXiv OA License
Sumalai, P.; Nikam, V.; Shukla, A. K.; Gopal, D.; Khaofong, Chatuphol Solution of system of delay differential equations via new Darbo type fixed point theorem in partially ordered Banach space. (English) Zbl 07872439 Comput. Appl. Math. 43, No. 5, Paper No. 273, 16 p. (2024). MSC: 47H08 47H09 47H10 PDFBibTeX XMLCite \textit{P. Sumalai} et al., Comput. Appl. Math. 43, No. 5, Paper No. 273, 16 p. (2024; Zbl 07872439) Full Text: DOI
Hezenci, Fatih; Budak, Hüseyin Fractional Euler-Maclaurin-type inequalities for various function classes. (English) Zbl 07872427 Comput. Appl. Math. 43, No. 4, Paper No. 261, 23 p. (2024). MSC: 26D07 26D10 26D15 65D32 PDFBibTeX XMLCite \textit{F. Hezenci} and \textit{H. Budak}, Comput. Appl. Math. 43, No. 4, Paper No. 261, 23 p. (2024; Zbl 07872427) Full Text: DOI OA License
Aydin, Mustafa; Mahmudov, N. I. A study on linear Prabhakar fractional systems with variable coefficients. (English) Zbl 07871721 Qual. Theory Dyn. Syst. 23, No. 5, Paper No. 210, 26 p. (2024). MSC: 34A08 34A30 34A12 34A25 PDFBibTeX XMLCite \textit{M. Aydin} and \textit{N. I. Mahmudov}, Qual. Theory Dyn. Syst. 23, No. 5, Paper No. 210, 26 p. (2024; Zbl 07871721) Full Text: DOI OA License
Wilson, Joshua P.; Ji, Cui-Cui; Dai, Weizhong A new variable-order fractional momentum operator for wave absorption when solving Schrödinger equations. (English) Zbl 07870122 J. Comput. Phys. 511, Article ID 113123, 17 p. (2024). MSC: 65Mxx 35Qxx 65Nxx PDFBibTeX XMLCite \textit{J. P. Wilson} et al., J. Comput. Phys. 511, Article ID 113123, 17 p. (2024; Zbl 07870122) Full Text: DOI
Wanassi, Om Kalthoum; Torres, Delfim F. M. Modeling blood alcohol concentration using fractional differential equations based on the \(\psi\)-Caputo derivative. (English) Zbl 07869438 Math. Methods Appl. Sci. 47, No. 9, 7793-7803 (2024). MSC: 26A33 34A08 65L10 PDFBibTeX XMLCite \textit{O. K. Wanassi} and \textit{D. F. M. Torres}, Math. Methods Appl. Sci. 47, No. 9, 7793--7803 (2024; Zbl 07869438) Full Text: DOI arXiv OA License
Ahmad, Anwar; Ali, Muhammad; Malik, Salman A. Unraveling forward and backward source problems for a nonlocal integrodifferential equation: a journey through operational calculus for Dzherbashian-Nersesian operator. (English) Zbl 07869432 Math. Methods Appl. Sci. 47, No. 9, 7669-7683 (2024). MSC: 26A33 33E12 35R30 44A40 PDFBibTeX XMLCite \textit{A. Ahmad} et al., Math. Methods Appl. Sci. 47, No. 9, 7669--7683 (2024; Zbl 07869432) Full Text: DOI arXiv
Yuan, Yihong; Luo, Danfeng Relatively exact controllability of fractional stochastic neutral system with two incommensurate constant delays. (English) Zbl 07869387 Math. Methods Appl. Sci. 47, No. 7, 6471-6488 (2024). MSC: 26A33 93B05 65C30 60J65 PDFBibTeX XMLCite \textit{Y. Yuan} and \textit{D. Luo}, Math. Methods Appl. Sci. 47, No. 7, 6471--6488 (2024; Zbl 07869387) Full Text: DOI
Goodrich, Christopher; Lizama, Carlos An unexpected property of fractional difference operators: finite and eventual monotonicity. (English) Zbl 07869338 Math. Methods Appl. Sci. 47, No. 7, 5484-5508 (2024). MSC: 26A48 33B15 44A35 26A33 39A12 39A70 39A99 39B62 PDFBibTeX XMLCite \textit{C. Goodrich} and \textit{C. Lizama}, Math. Methods Appl. Sci. 47, No. 7, 5484--5508 (2024; Zbl 07869338) Full Text: DOI
Geetanjali, Geetanjali; Sharma, Pawan Kumar Transient responses of two temperature, fractional thermo-diffusive-elastic half space with temperature dependent properties. (English) Zbl 07868823 Int. J. Comput. Methods Eng. Sci. Mech. 25, No. 2, 80-96 (2024). MSC: 74F05 74B05 74S40 74H15 PDFBibTeX XMLCite \textit{G. Geetanjali} and \textit{P. K. Sharma}, Int. J. Comput. Methods Eng. Sci. Mech. 25, No. 2, 80--96 (2024; Zbl 07868823) Full Text: DOI
Zhang, Jia; Ma, Yongbin Thermoelastic response of an elastic rod under the action of a moving heat source based on fractional order strain theory considering nonlocal effects. (English) Zbl 07868818 Int. J. Comput. Methods Eng. Sci. Mech. 25, No. 1, 1-9 (2024). MSC: 74F05 74K10 74S40 PDFBibTeX XMLCite \textit{J. Zhang} and \textit{Y. Ma}, Int. J. Comput. Methods Eng. Sci. Mech. 25, No. 1, 1--9 (2024; Zbl 07868818) Full Text: DOI
Dubovski, Pavel B.; Slepoi, Jeffrey A. Existence and linear independence theorem for linear fractional differential equations with constant coefficients. (English) Zbl 07867616 J. Appl. Anal. 30, No. 1, 117-128 (2024). MSC: 34A08 34A30 34A05 34A25 PDFBibTeX XMLCite \textit{P. B. Dubovski} and \textit{J. A. Slepoi}, J. Appl. Anal. 30, No. 1, 117--128 (2024; Zbl 07867616) Full Text: DOI
Dhoyer, Rémy; Tudor, Ciprian A. Limit behavior in high-dimensional regime for the Wishart tensors in Wiener chaos. (English) Zbl 07865976 J. Theor. Probab. 37, No. 2, 1445-1468 (2024). MSC: 60B20 60F05 60H07 60G22 PDFBibTeX XMLCite \textit{R. Dhoyer} and \textit{C. A. Tudor}, J. Theor. Probab. 37, No. 2, 1445--1468 (2024; Zbl 07865976) Full Text: DOI
Jornet, Marc On the Cauchy-Kovalevskaya theorem for Caputo fractional differential equations. (English) Zbl 07864736 Physica D 462, Article ID 134139, 17 p. (2024). MSC: 34A08 34A25 47J07 35R11 PDFBibTeX XMLCite \textit{M. Jornet}, Physica D 462, Article ID 134139, 17 p. (2024; Zbl 07864736) Full Text: DOI
Liu, Pan; Lu, Xin Yang; He, Kunlun Real order total variation with applications to the loss functions in learning schemes. (English) Zbl 07864530 Commun. Contemp. Math. 26, No. 7, Article ID 2350016, 33 p. (2024). MSC: 26B30 94A08 47J20 PDFBibTeX XMLCite \textit{P. Liu} et al., Commun. Contemp. Math. 26, No. 7, Article ID 2350016, 33 p. (2024; Zbl 07864530) Full Text: DOI arXiv
Cheng, Haiyang; Zhao, Dafang; Zhao, Guohui; Torres, Delfim F. M. New quantum integral inequalities for left and right log-\(\hbar\)-convex interval-valued functions. (English) Zbl 07864230 Georgian Math. J. 31, No. 3, 381-395 (2024). MSC: 26D15 05A30 26A33 26E50 PDFBibTeX XMLCite \textit{H. Cheng} et al., Georgian Math. J. 31, No. 3, 381--395 (2024; Zbl 07864230) Full Text: DOI
Torres, Delfim F. M. The duality theory of fractional calculus and a new fractional calculus of variations involving left operators only. (English) Zbl 07861946 Mediterr. J. Math. 21, No. 3, Paper No. 106, 16 p. (2024). MSC: 49K05 26A33 34A08 49N15 PDFBibTeX XMLCite \textit{D. F. M. Torres}, Mediterr. J. Math. 21, No. 3, Paper No. 106, 16 p. (2024; Zbl 07861946) Full Text: DOI arXiv OA License
Ghaderi, Mehran; Rezapour, Shahram On an \(m\)-dimensional system of quantum inclusions by a new computational approach and heatmap. (English) Zbl 07861736 J. Inequal. Appl. 2024, Paper No. 41, 21 p. (2024). MSC: 34A60 34A08 26A33 47N20 PDFBibTeX XMLCite \textit{M. Ghaderi} and \textit{S. Rezapour}, J. Inequal. Appl. 2024, Paper No. 41, 21 p. (2024; Zbl 07861736) Full Text: DOI OA License
Sowa, Marcin Mitigation of numerical issues appearing in transient analyses when applying fractional derivative approximations. (English) Zbl 07861475 Commun. Nonlinear Sci. Numer. Simul. 135, Article ID 108037, 28 p. (2024). MSC: 26Axx 93Cxx 65Lxx PDFBibTeX XMLCite \textit{M. Sowa}, Commun. Nonlinear Sci. Numer. Simul. 135, Article ID 108037, 28 p. (2024; Zbl 07861475) Full Text: DOI
Singh, Harendra; Pathak, Ramta Ram Jacobi spectral method for the fractional reaction-diffusion equation arising in ecology. (English) Zbl 07861283 Math. Methods Appl. Sci. 47, No. 6, 5031-5045 (2024). MSC: 65-XX 35-XX PDFBibTeX XMLCite \textit{H. Singh} and \textit{R. R. Pathak}, Math. Methods Appl. Sci. 47, No. 6, 5031--5045 (2024; Zbl 07861283) Full Text: DOI
Vivek, S.; Vijayakumar, V. New discussion on optimal feedback control for Caputo fractional neutral evolution systems governed by hemivariational inequalities. (English) Zbl 07861230 Math. Methods Appl. Sci. 47, No. 6, 3903-3920 (2024). MSC: 26A33 35K40 49J15 93B52 PDFBibTeX XMLCite \textit{S. Vivek} and \textit{V. Vijayakumar}, Math. Methods Appl. Sci. 47, No. 6, 3903--3920 (2024; Zbl 07861230) Full Text: DOI
Kadak, Ugur Fractional-type integral operators and their applications to trend estimation of COVID-19. (English) Zbl 07861224 Math. Methods Appl. Sci. 47, No. 5, 3786-3808 (2024). MSC: 45P05 26A33 92D30 37N25 PDFBibTeX XMLCite \textit{U. Kadak}, Math. Methods Appl. Sci. 47, No. 5, 3786--3808 (2024; Zbl 07861224) Full Text: DOI
Martínez Jiménez, Leonardo; Cruz-Duarte, Jorge Mario; Escalante-Martínez, Jesús Enrique; Rosales-García, J. Juan Analytical and experimental study for mechanical vibrations of a two-coupled spring masses system via Caputo-based derivatives. (English) Zbl 07861189 Math. Methods Appl. Sci. 47, No. 5, 3152-3170 (2024). MSC: 34C15 34A08 26A33 PDFBibTeX XMLCite \textit{L. Martínez Jiménez} et al., Math. Methods Appl. Sci. 47, No. 5, 3152--3170 (2024; Zbl 07861189) Full Text: DOI
Di Nunno, Giulia; Yurchenko-Tytarenko, Anton Power law in sandwiched Volterra volatility model. (English) Zbl 1537.91318 Mod. Stoch., Theory Appl. 11, No. 2, 169-194 (2024). MSC: 91G20 60H07 60G22 PDFBibTeX XMLCite \textit{G. Di Nunno} and \textit{A. Yurchenko-Tytarenko}, Mod. Stoch., Theory Appl. 11, No. 2, 169--194 (2024; Zbl 1537.91318) Full Text: DOI arXiv
Budak, Hüseyin; Ünal, Cihan; Hezenci, Fatih A study on error bounds for Newton-type inequalities in conformable fractional integrals. (English) Zbl 07859889 Math. Slovaca 74, No. 2, 313-330 (2024). MSC: 26A51 26D15 34A08 PDFBibTeX XMLCite \textit{H. Budak} et al., Math. Slovaca 74, No. 2, 313--330 (2024; Zbl 07859889) Full Text: DOI
Aghchi, Sima; Fazli, Hossein; Sun, HongGunag A numerical approach for solving optimal control problem of fractional order vibration equation of large membranes. (English) Zbl 07859639 Comput. Math. Appl. 165, 19-27 (2024). MSC: 65-XX 49-XX PDFBibTeX XMLCite \textit{S. Aghchi} et al., Comput. Math. Appl. 165, 19--27 (2024; Zbl 07859639) Full Text: DOI
Hu, Yaozhong; Wang, Xiong Matching upper and lower moment bounds for a large class of stochastic PDEs driven by general space-time Gaussian noises. (English) Zbl 07858449 Stoch. Partial Differ. Equ., Anal. Comput. 12, No. 1, 1-52 (2024). MSC: 60H15 26A33 30E05 35R60 37H15 60H07 PDFBibTeX XMLCite \textit{Y. Hu} and \textit{X. Wang}, Stoch. Partial Differ. Equ., Anal. Comput. 12, No. 1, 1--52 (2024; Zbl 07858449) Full Text: DOI
Tarasov, Vasily E. Parametric general fractional calculus: nonlocal operators acting on function with respect to another function. (English) Zbl 07855892 Comput. Appl. Math. 43, No. 4, Paper No. 183, 29 p. (2024). MSC: 26A33 PDFBibTeX XMLCite \textit{V. E. Tarasov}, Comput. Appl. Math. 43, No. 4, Paper No. 183, 29 p. (2024; Zbl 07855892) Full Text: DOI
Zeraick Monteiro, Noemi; Weber Dos Santos, Rodrigo; Rodrigues Mazorche, Sandro Constructive fractional models through Mittag-Leffler functions. (English) Zbl 07855886 Comput. Appl. Math. 43, No. 4, Paper No. 177, 26 p. (2024). MSC: 26A33 92B05 92D30 65R99 PDFBibTeX XMLCite \textit{N. Zeraick Monteiro} et al., Comput. Appl. Math. 43, No. 4, Paper No. 177, 26 p. (2024; Zbl 07855886) Full Text: DOI
Babaei, A.; Banihashemi, S.; Parsa Moghaddam, B.; Dabiri, A. An algorithmic exploration of variable order fractional partial integro-differential equations via hexic shifted Chebyshev polynomials. (English) Zbl 07855881 Comput. Appl. Math. 43, No. 4, Paper No. 172, 18 p. (2024). MSC: 65-XX 35R09 26A33 65D05 65L99 PDFBibTeX XMLCite \textit{A. Babaei} et al., Comput. Appl. Math. 43, No. 4, Paper No. 172, 18 p. (2024; Zbl 07855881) Full Text: DOI
Habibirad, A.; Baghani, O.; Hesameddini, E.; Heydari, M. H.; Azin, H. A meshless method based on the modified moving Kriging interpolation for numerical solution of space-fractional diffusion equation. (English) Zbl 07855359 Eng. Anal. Bound. Elem. 163, 1-11 (2024). MSC: 65M12 65M60 34A45 PDFBibTeX XMLCite \textit{A. Habibirad} et al., Eng. Anal. Bound. Elem. 163, 1--11 (2024; Zbl 07855359) Full Text: DOI
Chen, Le; Guo, Yuhui; Song, Jian Moments and asymptotics for a class of SPDEs with space-time white noise. (English) Zbl 07853755 Trans. Am. Math. Soc. 377, No. 6, 4255-4301 (2024). MSC: 60H15 60G60 26A33 37H15 60H07 PDFBibTeX XMLCite \textit{L. Chen} et al., Trans. Am. Math. Soc. 377, No. 6, 4255--4301 (2024; Zbl 07853755) Full Text: DOI arXiv
Wang, Shuo; Zheng, Xiangcheng; Du, Ning Finite element method for an optimal control problem governed by a time fractional wave equation. (English) Zbl 07853322 Comput. Math. Appl. 164, 45-66 (2024). MSC: 49-XX 65-XX PDFBibTeX XMLCite \textit{S. Wang} et al., Comput. Math. Appl. 164, 45--66 (2024; Zbl 07853322) Full Text: DOI
Hao, Yajuan; Zhang, Meihua; Sun, Hongxia; Chen, Yiming Modeling and dynamic analysis of axially moving variable fractional order viscoelastic plate. (English) Zbl 1539.74200 Math. Methods Appl. Sci. 47, No. 4, 3007-3020 (2024). MSC: 74K20 35Q84 74S40 PDFBibTeX XMLCite \textit{Y. Hao} et al., Math. Methods Appl. Sci. 47, No. 4, 3007--3020 (2024; Zbl 1539.74200) Full Text: DOI
Wang, Chao; Tan, Ying; Agarwal, Ravi P. Almost periodic fractional fuzzy dynamic equations on timescales: a survey. (English) Zbl 1539.34099 Math. Methods Appl. Sci. 47, No. 4, 2345-2401 (2024). MSC: 34N05 26E70 34K37 34A07 26A33 PDFBibTeX XMLCite \textit{C. Wang} et al., Math. Methods Appl. Sci. 47, No. 4, 2345--2401 (2024; Zbl 1539.34099) Full Text: DOI
Beghin, Luisa; Cristofaro, Lorenzo; Garrappa, Roberto Renewal processes linked to fractional relaxation equations with variable order. (English) Zbl 1539.60120 J. Math. Anal. Appl. 531, No. 1, Part 2, Article ID 127795, 17 p. (2024). MSC: 60K05 60G22 PDFBibTeX XMLCite \textit{L. Beghin} et al., J. Math. Anal. Appl. 531, No. 1, Part 2, Article ID 127795, 17 p. (2024; Zbl 1539.60120) Full Text: DOI arXiv
Vivek, S.; Vijayakumar, V. An analysis on the optimal feedback control for Caputo fractional neutral evolution systems in Banach spaces. (English) Zbl 07851906 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 118, No. 2, Paper No. 74, 15 p. (2024). Reviewer: Savin Treanţă (Bucureşti) MSC: 49N35 34A08 49J15 93B52 PDFBibTeX XMLCite \textit{S. Vivek} and \textit{V. Vijayakumar}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 118, No. 2, Paper No. 74, 15 p. (2024; Zbl 07851906) Full Text: DOI
Mehmood, Faraz; Soleev, Akhmadjon Generalization of Ostrowski’s type inequality via Riemann-Liouville fractional integral and applications in numerical integration, probability theory and special means. (English) Zbl 07851863 Jordan J. Math. Stat. 17, No. 1, 161-178 (2024). MSC: 26D10 26D15 26D20 26A15 26A42 26A99 PDFBibTeX XMLCite \textit{F. Mehmood} and \textit{A. Soleev}, Jordan J. Math. Stat. 17, No. 1, 161--178 (2024; Zbl 07851863) Full Text: DOI
Meftah, Badreddine; Boulares, Hamid; Khan, Aziz; Abdeljawad, Thabet Fractional multiplicative Ostrowski-type inequalities for multiplicative differentiable convex functions. (English) Zbl 07851860 Jordan J. Math. Stat. 17, No. 1, 113-128 (2024). MSC: 26A33 34C37 35A15 PDFBibTeX XMLCite \textit{B. Meftah} et al., Jordan J. Math. Stat. 17, No. 1, 113--128 (2024; Zbl 07851860) Full Text: DOI
An, Wangmin; Luo, Danfeng; Huang, Jizhao Relative controllability and Hyers-Ulam stability of Riemann-Liouville fractional delay differential system. (English) Zbl 07851488 Qual. Theory Dyn. Syst. 23, No. 4, Paper No. 180, 21 p. (2024). MSC: 34K37 34K35 34K27 47H10 93B05 PDFBibTeX XMLCite \textit{W. An} et al., Qual. Theory Dyn. Syst. 23, No. 4, Paper No. 180, 21 p. (2024; Zbl 07851488) Full Text: DOI
Jiang, Hui; Li, Shi Min; Wang, Wei Gang Moderate deviations for parameter estimation in the fractional Ornstein-Uhlenbeck processes with periodic mean. (English) Zbl 07850965 Acta Math. Sin., Engl. Ser. 40, No. 5, 1308-1324 (2024). Reviewer: Oleg K. Zakusilo (Kyïv) MSC: 60F10 60H07 60G22 PDFBibTeX XMLCite \textit{H. Jiang} et al., Acta Math. Sin., Engl. Ser. 40, No. 5, 1308--1324 (2024; Zbl 07850965) Full Text: DOI
Yan, Litan; Guo, Rui; Gao, Han Convergence and parameter estimation of the linear weighted-fractional self-repelling diffusion. (English) Zbl 07850689 Commun. Stat., Theory Methods 53, No. 7, 2390-2421 (2024). MSC: 60G22 60H07 60F05 62M09 PDFBibTeX XMLCite \textit{L. Yan} et al., Commun. Stat., Theory Methods 53, No. 7, 2390--2421 (2024; Zbl 07850689) Full Text: DOI
Wang, Jixia; Sun, Lu; Miao, Yu Asymptotic behavior of weighted quadratic variation of tempered fractional Brownian motion. (English) Zbl 1537.60047 Stat. Probab. Lett. 207, Article ID 110020, 7 p. (2024). MSC: 60G22 60F05 60H05 60H07 60G15 PDFBibTeX XMLCite \textit{J. Wang} et al., Stat. Probab. Lett. 207, Article ID 110020, 7 p. (2024; Zbl 1537.60047) Full Text: DOI
Liu, Wei; Pei, Bin; Yu, Qian Rate of convergence for the Smoluchowski-Kramers approximation for distribution-dependent SDEs driven by fractional Brownian motions. (English) Zbl 1537.60070 Stoch. Dyn. 24, No. 1, Article ID 2450002, 20 p. (2024). MSC: 60H10 60G22 PDFBibTeX XMLCite \textit{W. Liu} et al., Stoch. Dyn. 24, No. 1, Article ID 2450002, 20 p. (2024; Zbl 1537.60070) Full Text: DOI
Tarasov, Vasily E. Discrete maps with distributed memory fading parameter. (English) Zbl 07846880 Comput. Appl. Math. 43, No. 3, Paper No. 113, 32 p. (2024). MSC: 34A08 PDFBibTeX XMLCite \textit{V. E. Tarasov}, Comput. Appl. Math. 43, No. 3, Paper No. 113, 32 p. (2024; Zbl 07846880) Full Text: DOI
Shekarpaz, Simin; Zeng, Fanhai; Karniadakis, George Splitting physics-informed neural networks for inferring the dynamics of integer- and fractional-order neuron models. (English) Zbl 1539.92015 Commun. Comput. Phys. 35, No. 1, 1-37 (2024). MSC: 92B20 34C28 34A08 PDFBibTeX XMLCite \textit{S. Shekarpaz} et al., Commun. Comput. Phys. 35, No. 1, 1--37 (2024; Zbl 1539.92015) Full Text: DOI arXiv
Baghani, Hamid; Salem, Ahmed Solvability and stability of a class of fractional Langevin differential equations with the Mittag-Leffler function. (English) Zbl 07845691 Bol. Soc. Mat. Mex., III. Ser. 30, No. 2, Paper No. 46, 18 p. (2024). Reviewer: Sotiris K. Ntouyas (Ioannina) MSC: 26A33 34A12 34A25 33E12 47H10 PDFBibTeX XMLCite \textit{H. Baghani} and \textit{A. Salem}, Bol. Soc. Mat. Mex., III. Ser. 30, No. 2, Paper No. 46, 18 p. (2024; Zbl 07845691) Full Text: DOI
Alp, Necmettin; Budak, Hüseyin; Sarikaya, Mehmet Zeki; Ali, Muhammad Aamir On new refinements and generalizations of \(q\)-Hermite-Hadamard inequalities for convex functions. (English) Zbl 07845357 Rocky Mt. J. Math. 54, No. 2, 361-374 (2024). MSC: 26A09 26A33 26D10 26A15 33E20 PDFBibTeX XMLCite \textit{N. Alp} et al., Rocky Mt. J. Math. 54, No. 2, 361--374 (2024; Zbl 07845357) Full Text: DOI Link
Rajan, Akshay; Desai, Shubham; Sidhardh, Sai Element-free Galerkin method for a fractional-order boundary value problem. (English) Zbl 07845205 Int. J. Numer. Methods Eng. 125, No. 8, Article ID e7429, 19 p. (2024). MSC: 65Lxx 74Sxx 26Axx PDFBibTeX XMLCite \textit{A. Rajan} et al., Int. J. Numer. Methods Eng. 125, No. 8, Article ID e7429, 19 p. (2024; Zbl 07845205) Full Text: DOI
Qu, Jingguo; Zhang, Qi; Cui, Yuhuan; Yang, Aimin; Chen, Yiming Dynamic analysis of viscoelastic foundation plate with fractional Kelvin-Voigt model using shifted Bernstein polynomials. (English) Zbl 1537.74026 Math. Methods Appl. Sci. 47, No. 3, 1663-1679 (2024). MSC: 74D10 74S40 74J05 74H15 PDFBibTeX XMLCite \textit{J. Qu} et al., Math. Methods Appl. Sci. 47, No. 3, 1663--1679 (2024; Zbl 1537.74026) Full Text: DOI
Ali, Liaqat; Zou, Guang; Li, Na; Mehmood, Kashif; Fang, Pan; Khan, Adnan Analytical treatments of time-fractional seventh-order nonlinear equations via Elzaki transform. (English) Zbl 1537.35358 J. Eng. Math. 145, Paper No. 1, 30 p. (2024). MSC: 35R11 35A20 26A33 34A25 35Q53 PDFBibTeX XMLCite \textit{L. Ali} et al., J. Eng. Math. 145, Paper No. 1, 30 p. (2024; Zbl 1537.35358) Full Text: DOI
Bouzeffour, Fethi; Jedidi, Wissem On the fractional Dunkl-Laplacian. (English) Zbl 1539.42009 Fract. Calc. Appl. Anal. 27, No. 1, 433-457 (2024). MSC: 42B10 26A33 33C67 44A45 44A40 PDFBibTeX XMLCite \textit{F. Bouzeffour} and \textit{W. Jedidi}, Fract. Calc. Appl. Anal. 27, No. 1, 433--457 (2024; Zbl 1539.42009) Full Text: DOI arXiv
Uğurlu, Ekin On some even-sequential fractional boundary-value problems. (English) Zbl 1537.34040 Fract. Calc. Appl. Anal. 27, No. 1, 353-392 (2024). MSC: 34B15 34A08 34B24 26A33 34L15 PDFBibTeX XMLCite \textit{E. Uğurlu}, Fract. Calc. Appl. Anal. 27, No. 1, 353--392 (2024; Zbl 1537.34040) Full Text: DOI
Grau, Rogelio; Pereira, Aldo Representations of abstract resolvent families on time scales via Laplace transform. (English) Zbl 1537.34092 Fract. Calc. Appl. Anal. 27, No. 1, 218-246 (2024). MSC: 34N05 26A33 44A10 34A08 34G10 34K30 PDFBibTeX XMLCite \textit{R. Grau} and \textit{A. Pereira}, Fract. Calc. Appl. Anal. 27, No. 1, 218--246 (2024; Zbl 1537.34092) Full Text: DOI
Rogosin, Sergei; Dubatovskaya, Maryna Multi-parametric Le Roy function revisited. (English) Zbl 1537.33016 Fract. Calc. Appl. Anal. 27, No. 1, 64-81 (2024). MSC: 33C47 26A33 33E12 44A15 PDFBibTeX XMLCite \textit{S. Rogosin} and \textit{M. Dubatovskaya}, Fract. Calc. Appl. Anal. 27, No. 1, 64--81 (2024; Zbl 1537.33016) Full Text: DOI
Marie, Nicolas On a calculable Skorokhod’s integral based projection estimator of the drift function in fractional SDE. (English) Zbl 07839696 Stat. Inference Stoch. Process. 27, No. 2, 391-405 (2024). MSC: 62Mxx PDFBibTeX XMLCite \textit{N. Marie}, Stat. Inference Stoch. Process. 27, No. 2, 391--405 (2024; Zbl 07839696) Full Text: DOI arXiv
Rodríguez, Jesús A.; Torres Ledesma, César E. Mean value and Taylor-type results for tempered fractional derivatives. (English) Zbl 07836755 Bull. Malays. Math. Sci. Soc. (2) 47, No. 3, Paper No. 82, 20 p. (2024). MSC: 26A33 PDFBibTeX XMLCite \textit{J. A. Rodríguez} and \textit{C. E. Torres Ledesma}, Bull. Malays. Math. Sci. Soc. (2) 47, No. 3, Paper No. 82, 20 p. (2024; Zbl 07836755) Full Text: DOI
Bibi, Amna; ur Rehman, Mujeeb A numerical method for solutions of tempered fractional differential equations. (English) Zbl 07834884 J. Comput. Appl. Math. 443, Article ID 115772, 22 p. (2024). MSC: 65Lxx 34A08 26A33 PDFBibTeX XMLCite \textit{A. Bibi} and \textit{M. ur Rehman}, J. Comput. Appl. Math. 443, Article ID 115772, 22 p. (2024; Zbl 07834884) Full Text: DOI
Zhang, Lijuan; Wang, Yejuan; Hu, Yaozhong Stochastic calculus for tempered fractional Brownian motion and stability for SDEs driven by TFBM. (English) Zbl 1535.60110 Stochastic Anal. Appl. 42, No. 1, 64-97 (2024). MSC: 60H10 60G22 60H05 60H30 PDFBibTeX XMLCite \textit{L. Zhang} et al., Stochastic Anal. Appl. 42, No. 1, 64--97 (2024; Zbl 1535.60110) Full Text: DOI
Selvam, Anjapuli Panneer; Govindaraj, Venkatesan Investigation of controllability and stability of fractional dynamical systems with delay in control. (English) Zbl 07833531 Math. Comput. Simul. 220, 89-104 (2024). MSC: 34A08 34K37 PDFBibTeX XMLCite \textit{A. P. Selvam} and \textit{V. Govindaraj}, Math. Comput. Simul. 220, 89--104 (2024; Zbl 07833531) Full Text: DOI
Barhoumi, Najoua New results for fractional Hamiltonian systems. (English) Zbl 07830960 Mediterr. J. Math. 21, No. 1, Paper No. 38, 19 p. (2024). MSC: 37J46 34A08 26A33 58E50 PDFBibTeX XMLCite \textit{N. Barhoumi}, Mediterr. J. Math. 21, No. 1, Paper No. 38, 19 p. (2024; Zbl 07830960) Full Text: DOI
Liu, Kefan; Zhang, Jichao; Yang, Yueting Hedging lookback-barrier option by Malliavin calculus in a mixed fractional Brownian motion environment. (English) Zbl 1533.60082 Commun. Nonlinear Sci. Numer. Simul. 133, Article ID 107955, 13 p. (2024). MSC: 60H07 60G22 91G20 PDFBibTeX XMLCite \textit{K. Liu} et al., Commun. Nonlinear Sci. Numer. Simul. 133, Article ID 107955, 13 p. (2024; Zbl 1533.60082) Full Text: DOI
Coffie, Emmanuel; Mao, Xuerong; Proske, Frank On the analysis of Ait-Sahalia-type model for rough volatility modelling. (English) Zbl 1539.60068 J. Theor. Probab. 37, No. 1, 744-767 (2024). Reviewer: Javad Asadzade (Famagusta) MSC: 60H10 60H30 PDFBibTeX XMLCite \textit{E. Coffie} et al., J. Theor. Probab. 37, No. 1, 744--767 (2024; Zbl 1539.60068) Full Text: DOI OA License
Bourguin, Solesne; Dang, Thanh; Spiliopoulos, Konstantinos Moderate deviation principle for multiscale systems driven by fractional Brownian motion. (English) Zbl 1536.60029 J. Theor. Probab. 37, No. 1, 352-408 (2024). Reviewer: B. L. S. Prakasa Rao (Hyderabad) MSC: 60F10 60G22 60H10 60H07 PDFBibTeX XMLCite \textit{S. Bourguin} et al., J. Theor. Probab. 37, No. 1, 352--408 (2024; Zbl 1536.60029) Full Text: DOI
Harang, Fabian; Tindel, Samy; Wang, Xiaohua Volterra equations driven by rough signals. III: Probabilistic construction of the Volterra rough path for fractional Brownian motions. (English) Zbl 07826596 J. Theor. Probab. 37, No. 1, 307-351 (2024). MSC: 60L20 60L10 60H07 60H05 60G22 PDFBibTeX XMLCite \textit{F. Harang} et al., J. Theor. Probab. 37, No. 1, 307--351 (2024; Zbl 07826596) Full Text: DOI arXiv OA License
Usman, Muhammad; Hamid, Muhammad; Lu, Dianchen; Zhang, Zhengdi Non-smooth solutions of time-fractional Allen-Cahn problems via novel operational matrix based semi-spectral method with convergence analysis. (English) Zbl 07824625 Comput. Math. Appl. 159, 122-141 (2024). MSC: 65-XX 93-XX PDFBibTeX XMLCite \textit{M. Usman} et al., Comput. Math. Appl. 159, 122--141 (2024; Zbl 07824625) Full Text: DOI
Ayache, Antoine; Tudor, Ciprian A. Asymptotic normality for a modified quadratic variation of the Hermite process. (English) Zbl 07824098 Bernoulli 30, No. 2, 1154-1176 (2024). MSC: 62-XX 60-XX PDFBibTeX XMLCite \textit{A. Ayache} and \textit{C. A. Tudor}, Bernoulli 30, No. 2, 1154--1176 (2024; Zbl 07824098) Full Text: DOI arXiv Link
Duan, Yu-Ying; Xiao, Ti-Jun Global attractors for porous elastic system with memory and nonlinear frictional damping. (English) Zbl 1536.35321 Math. Methods Appl. Sci. 47, No. 2, 600-620 (2024). MSC: 35Q74 35B41 35B40 74S40 PDFBibTeX XMLCite \textit{Y.-Y. Duan} and \textit{T.-J. Xiao}, Math. Methods Appl. Sci. 47, No. 2, 600--620 (2024; Zbl 1536.35321) Full Text: DOI
Fernandez, Arran Abstract algebraic construction in fractional calculus: parametrised families with semigroup properties. (English) Zbl 07823176 Complex Anal. Oper. Theory 18, No. 3, Paper No. 50, 41 p. (2024). MSC: 26A33 44A40 PDFBibTeX XMLCite \textit{A. Fernandez}, Complex Anal. Oper. Theory 18, No. 3, Paper No. 50, 41 p. (2024; Zbl 07823176) Full Text: DOI
Hao, Jianghao; Yang, Jing New general decay results for a fully dynamic piezoelectric beam system with fractional delays under memory boundary controls. (English) Zbl 1536.74255 Math. Methods Appl. Sci. 47, No. 1, 229-267 (2024). MSC: 74S05 74S20 74S40 78M10 78M20 PDFBibTeX XMLCite \textit{J. Hao} and \textit{J. Yang}, Math. Methods Appl. Sci. 47, No. 1, 229--267 (2024; Zbl 1536.74255) Full Text: DOI