Fernandez, Arran; Restrepo, Joel E.; Suragan, Durvudkhan On linear fractional differential equations with variable coefficients. (English) Zbl 07568407 Appl. Math. Comput. 432, Article ID 127370, 19 p. (2022). MSC: 34Axx 26Axx 34Bxx PDF BibTeX XML Cite \textit{A. Fernandez} et al., Appl. Math. Comput. 432, Article ID 127370, 19 p. (2022; Zbl 07568407) Full Text: DOI OpenURL
Wang, Yupin; Li, Xiaodi; Wang, Da; Liu, Shutang A brief note on fractal dynamics of fractional Mandelbrot sets. (English) Zbl 07568396 Appl. Math. Comput. 432, Article ID 127353, 8 p. (2022). MSC: 26A33 28A80 37F10 37F46 PDF BibTeX XML Cite \textit{Y. Wang} et al., Appl. Math. Comput. 432, Article ID 127353, 8 p. (2022; Zbl 07568396) Full Text: DOI OpenURL
Coutin, Laure; Duboscq, Romain; Réveillac, Anthony The Itô-Tanaka trick: a non-semimartingale approach. (English) Zbl 07565951 ALEA, Lat. Am. J. Probab. Math. Stat. 19, No. 1, 881-924 (2022). MSC: 60H07 60H10 60G22 35A02 PDF BibTeX XML Cite \textit{L. Coutin} et al., ALEA, Lat. Am. J. Probab. Math. Stat. 19, No. 1, 881--924 (2022; Zbl 07565951) Full Text: Link OpenURL
Adama, Kamate; Mbaiguesse, Djibet; Yiyureboula, Bationo Jeremie; Abbo, Bakari; Pare, Youssouf Analytical solution of some nonlinear fractional integro-differential equations of the Fredholm second kind by a new approximation technique of the numerical sba method. (English) Zbl 07564765 Int. J. Numer. Methods Appl. 21, No. 1, 37-58 (2022). MSC: 65Rxx 97N40 97I50 44Axx 40C10 PDF BibTeX XML Cite \textit{K. Adama} et al., Int. J. Numer. Methods Appl. 21, No. 1, 37--58 (2022; Zbl 07564765) Full Text: DOI OpenURL
Feng, Xiaobing; Sutton, Mitchell New families of fractional Sobolev spaces. (English) Zbl 07564692 Banach J. Math. Anal. 16, No. 3, Paper No. 46, 40 p. (2022). MSC: 46E35 34K37 35R11 PDF BibTeX XML Cite \textit{X. Feng} and \textit{M. Sutton}, Banach J. Math. Anal. 16, No. 3, Paper No. 46, 40 p. (2022; Zbl 07564692) Full Text: DOI OpenURL
Binh, Tran Thanh; Long, Le Dinh Two methods for unknown source problem for time fractional diffusion equation in the hyper Bessel operator. (English) Zbl 07563692 J. Nonlinear Convex Anal. 23, No. 8, 1617-1640 (2022). MSC: 26A33 35B65 35B05 35R11 PDF BibTeX XML Cite \textit{T. T. Binh} and \textit{L. D. Long}, J. Nonlinear Convex Anal. 23, No. 8, 1617--1640 (2022; Zbl 07563692) Full Text: Link OpenURL
Phuong, Nguyen Duc; Thi, Kim Van Ho; Luc, Nguyen Hoang; Long, Le Dinh Determine the unknown source term for a fractional order parabolic equation containing the Mittag-Leffler kernel. (English) Zbl 07563690 J. Nonlinear Convex Anal. 23, No. 8, 1577-1600 (2022). MSC: 26A33 35B65 35B05 35R11 PDF BibTeX XML Cite \textit{N. D. Phuong} et al., J. Nonlinear Convex Anal. 23, No. 8, 1577--1600 (2022; Zbl 07563690) Full Text: Link OpenURL
Baker, Katherine; Banjai, Lehel Numerical analysis of a wave equation for lossy media obeying a frequency power law. (English) Zbl 07563189 IMA J. Numer. Anal. 42, No. 3, 2083-2117 (2022). MSC: 65-XX PDF BibTeX XML Cite \textit{K. Baker} and \textit{L. Banjai}, IMA J. Numer. Anal. 42, No. 3, 2083--2117 (2022; Zbl 07563189) Full Text: DOI OpenURL
Khitri-Kazi-Tani, Leila; Dib, Hacen A new \(h\)-discrete fractional operator, fractional power and finite summation of hypergeometric polynomials. (English) Zbl 07563179 Mem. Differ. Equ. Math. Phys. 86, 85-96 (2022). MSC: 26A33 39A12 33C05 33C45 47B12 15A16 PDF BibTeX XML Cite \textit{L. Khitri-Kazi-Tani} and \textit{H. Dib}, Mem. Differ. Equ. Math. Phys. 86, 85--96 (2022; Zbl 07563179) Full Text: Link OpenURL
Penent, Guillaume; Privault, Nicolas Existence and probabilistic representation of the solutions of semilinear parabolic PDEs with fractional Laplacians. (English) Zbl 07563048 Stoch. Partial Differ. Equ., Anal. Comput. 10, No. 2, 446-474 (2022). MSC: 35K58 35K55 35R11 47G30 35S05 35B65 35S10 60J85 65R20 60G51 60G52 65C05 45D05 33C05 60H07 PDF BibTeX XML Cite \textit{G. Penent} and \textit{N. Privault}, Stoch. Partial Differ. Equ., Anal. Comput. 10, No. 2, 446--474 (2022; Zbl 07563048) Full Text: DOI OpenURL
Vu, Ho; Hoa, Ngo Van Hyers-Ulam stability of random functional differential equation involving fractional-order derivative. (English) Zbl 07562947 Comput. Appl. Math. 41, No. 5, Paper No. 204, 16 p. (2022). MSC: 34A12 34A30 34D20 PDF BibTeX XML Cite \textit{H. Vu} and \textit{N. Van Hoa}, Comput. Appl. Math. 41, No. 5, Paper No. 204, 16 p. (2022; Zbl 07562947) Full Text: DOI OpenURL
Hyder, Abd-Allah; Barakat, M. A.; Fathallah, Ashraf Enlarged integral inequalities through recent fractional generalized operators. (English) Zbl 07562919 J. Inequal. Appl. 2022, Paper No. 95, 12 p. (2022). MSC: 26Dxx 26Axx 44Axx PDF BibTeX XML Cite \textit{A.-A. Hyder} et al., J. Inequal. Appl. 2022, Paper No. 95, 12 p. (2022; Zbl 07562919) Full Text: DOI OpenURL
Khan, Sundas; Budak, Hüseyin On fractional Simpson type integral inequalities for co-ordinated convex functions. (English) Zbl 07562918 J. Inequal. Appl. 2022, Paper No. 94, 20 p. (2022). MSC: 26D07 26D10 26D15 26B15 26B25 PDF BibTeX XML Cite \textit{S. Khan} and \textit{H. Budak}, J. Inequal. Appl. 2022, Paper No. 94, 20 p. (2022; Zbl 07562918) Full Text: DOI OpenURL
Alzabut, Jehad; Selvam, A. George Maria; Dhineshbabu, Raghupathi; Tyagi, Swati; Ghaderi, Mehran; Rezapour, Shahram A Caputo discrete fractional-order thermostat model with one and two sensors fractional boundary conditions depending on positive parameters by using the Lipschitz-type inequality. (English) Zbl 07562134 J. Inequal. Appl. 2022, Paper No. 56, 24 p. (2022). MSC: 34A08 34A40 34D20 33E30 PDF BibTeX XML Cite \textit{J. Alzabut} et al., J. Inequal. Appl. 2022, Paper No. 56, 24 p. (2022; Zbl 07562134) Full Text: DOI OpenURL
Budak, Hüseyin; Kılınç Yıldırım, Seda; Sarıkaya, Mehmet Zeki; Yıldırım, Hüseyin Some parameterized Simpson-, midpoint- and trapezoid-type inequalities for generalized fractional integrals. (English) Zbl 07562118 J. Inequal. Appl. 2022, Paper No. 40, 23 p. (2022). MSC: 26B25 26D10 26D15 PDF BibTeX XML Cite \textit{H. Budak} et al., J. Inequal. Appl. 2022, Paper No. 40, 23 p. (2022; Zbl 07562118) Full Text: DOI OpenURL
Anastassiou, George A. Abstract bivriate right fractional pseudo-polynomial monotone constrained approximation and applications. (English) Zbl 07559302 J. Fract. Calc. Appl. 13, No. 2, 14-31 (2022). MSC: 26A33 41A17 41A25 41A28 41A29 41A63 41A99 PDF BibTeX XML Cite \textit{G. A. Anastassiou}, J. Fract. Calc. Appl. 13, No. 2, 14--31 (2022; Zbl 07559302) Full Text: Link OpenURL
Tiwari, Rakhi; Abouelregal, Ahmed E. Thermo-viscoelastic transversely isotropic rotating hollow cylinder based on three-phase lag thermoelastic model and fractional Kelvin-Voigt type. (English) Zbl 07558300 Acta Mech. 233, No. 6, 2453-2470 (2022). MSC: 74D05 74F05 74S40 74F15 PDF BibTeX XML Cite \textit{R. Tiwari} and \textit{A. E. Abouelregal}, Acta Mech. 233, No. 6, 2453--2470 (2022; Zbl 07558300) Full Text: DOI OpenURL
Capistrano-Filho, Roberto de A.; Pampu, Ademir B. The fractional Schrödinger equation on compact manifolds: global controllability results. (English) Zbl 07555186 Math. Z. 301, No. 4, 3817-3848 (2022). MSC: 35Q55 93B05 93D15 35A21 35R11 35S05 PDF BibTeX XML Cite \textit{R. de A. Capistrano-Filho} and \textit{A. B. Pampu}, Math. Z. 301, No. 4, 3817--3848 (2022; Zbl 07555186) Full Text: DOI OpenURL
Yan, Litan; Sun, Xichao Derivative for the intersection local time of two independent fractional Brownian motions. (English) Zbl 07554293 Stochastics 94, No. 3, 459-492 (2022). MSC: 60G22 60G18 60F25 PDF BibTeX XML Cite \textit{L. Yan} and \textit{X. Sun}, Stochastics 94, No. 3, 459--492 (2022; Zbl 07554293) Full Text: DOI OpenURL
Xiao, Wei On box dimension of Hadamard fractional integral (partly answer fractal calculus conjecture). (English) Zbl 07553235 Fractals 30, No. 4, Article ID 2250094, 10 p. (2022). MSC: 28Axx 26Axx 37Cxx PDF BibTeX XML Cite \textit{W. Xiao}, Fractals 30, No. 4, Article ID 2250094, 10 p. (2022; Zbl 07553235) Full Text: DOI OpenURL
Jena, Rajarama Mohan; Chakraverty, Snehashish A numerical scheme based on two- and three-step Newton interpolation polynomials for fractal-fractional variable orders chaotic attractors. (English) Zbl 07553234 Fractals 30, No. 4, Article ID 2250093, 27 p. (2022). MSC: 65Lxx 34Axx 26Axx PDF BibTeX XML Cite \textit{R. M. Jena} and \textit{S. Chakraverty}, Fractals 30, No. 4, Article ID 2250093, 27 p. (2022; Zbl 07553234) Full Text: DOI OpenURL
Levy, Edmond On the density for sums of independent exponential, Erlang and gamma variates. (English) Zbl 07553163 Stat. Pap. 63, No. 3, 693-721 (2022). MSC: 60E05 62E10 26A33 PDF BibTeX XML Cite \textit{E. Levy}, Stat. Pap. 63, No. 3, 693--721 (2022; Zbl 07553163) Full Text: DOI OpenURL
Kadak, Uğur Multivariate neural network interpolation operators. (English) Zbl 07553114 J. Comput. Appl. Math. 414, Article ID 114426, 13 p. (2022). MSC: 41Axx 65Dxx 68Txx PDF BibTeX XML Cite \textit{U. Kadak}, J. Comput. Appl. Math. 414, Article ID 114426, 13 p. (2022; Zbl 07553114) Full Text: DOI OpenURL
Alghanemi, Azeb; Abdelhedi, Wael; Chtioui, Hichem A complete study of the lack of compactness and existence results of a fractional Nirenberg equation via a flatness hypothesis. II. (English) Zbl 07552163 J. Math. Phys. Anal. Geom. 18, No. 1, 3-32 (2022). MSC: 35R11 35A15 35J60 58E30 PDF BibTeX XML Cite \textit{A. Alghanemi} et al., J. Math. Phys. Anal. Geom. 18, No. 1, 3--32 (2022; Zbl 07552163) Full Text: DOI OpenURL
Ibrahim, Rabha W. Classes of analytic functions associated by a new fractional conformable differential operator structuring by Euler-Cauchy equations. (English) Zbl 07551021 Palest. J. Math. 11, Spec. Iss. II, 74-81 (2022). MSC: 30C45 30C55 PDF BibTeX XML Cite \textit{R. W. Ibrahim}, Palest. J. Math. 11, 74--81 (2022; Zbl 07551021) Full Text: Link OpenURL
Nezhadhosein, Saeed; Ghanbari, Reza; Ghorbani-Moghadam, Khatere A numerical solution for fractional linear quadratic optimal control problems via shifted Legendre polynomials. (English) Zbl 07549898 Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 158, 28 p. (2022). MSC: 65-XX 49-XX PDF BibTeX XML Cite \textit{S. Nezhadhosein} et al., Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 158, 28 p. (2022; Zbl 07549898) Full Text: DOI OpenURL
Awonusika, Richard Olu Analytical solutions of a class of fractional Lane-Emden equation: a power series method. (English) Zbl 07549895 Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 155, 36 p. (2022). MSC: 34A08 34A25 33C45 34A12 PDF BibTeX XML Cite \textit{R. O. Awonusika}, Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 155, 36 p. (2022; Zbl 07549895) Full Text: DOI OpenURL
Ahmed, Rana Talha; Sohail, Ayesha Approximating the solution of the differential equations with fractional operators. (English) Zbl 07545188 Appl. Anal. Optim. 6, No. 1, 1-19 (2022). MSC: 65L05 34A08 35R11 PDF BibTeX XML Cite \textit{R. T. Ahmed} and \textit{A. Sohail}, Appl. Anal. Optim. 6, No. 1, 1--19 (2022; Zbl 07545188) Full Text: Link OpenURL
Čoupek, Petr; Duncan, Tyrone E.; Pasik-Duncan, Bozenna A stochastic calculus for Rosenblatt processes. (English) Zbl 07544404 Stochastic Processes Appl. 150, 853-885 (2022). MSC: 60H05 60H07 60G22 PDF BibTeX XML Cite \textit{P. Čoupek} et al., Stochastic Processes Appl. 150, 853--885 (2022; Zbl 07544404) Full Text: DOI OpenURL
Domek, Stefan On the possibilities of using fractional-order differential calculus in linear and nonlinear model predictive control. (English) Zbl 07543835 Domański, Paweł D. (ed.) et al., Outliers in control engineering. Fractional calculus perspective. Based on the 20th world congress of the International Federation of Automatic Control (IFAC), Toulouse, France, July 9–14, 2017. Berlin: De Gruyter. Fract. Calc. Appl. Sci. Eng. 10, 27-46 (2022). MSC: 93B45 93C15 26A33 93C05 93C10 PDF BibTeX XML Cite \textit{S. Domek}, Fract. Calc. Appl. Sci. Eng. 10, 27--46 (2022; Zbl 07543835) Full Text: DOI OpenURL
Domański, Paweł D.; Chen, Yangquan; Ławryńczuk, Maciej Outliers in control engineering – they exist, like it or not. (English) Zbl 07543834 Domański, Paweł D. (ed.) et al., Outliers in control engineering. Fractional calculus perspective. Based on the 20th world congress of the International Federation of Automatic Control (IFAC), Toulouse, France, July 9–14, 2017. Berlin: De Gruyter. Fract. Calc. Appl. Sci. Eng. 10, 1-24 (2022). MSC: 62P30 26A33 PDF BibTeX XML Cite \textit{P. D. Domański} et al., Fract. Calc. Appl. Sci. Eng. 10, 1--24 (2022; Zbl 07543834) Full Text: DOI OpenURL
Kien, B. T.; Fedorov, V. E.; Phuong, T. D. Optimal control problems governed by fractional differential equations with control constraints. (English) Zbl 07543538 SIAM J. Control Optim. 60, No. 3, 1732-1762 (2022). Reviewer: Hector O. Fattorini (Los Angeles) MSC: 49-02 49K15 90C29 34A08 PDF BibTeX XML Cite \textit{B. T. Kien} et al., SIAM J. Control Optim. 60, No. 3, 1732--1762 (2022; Zbl 07543538) Full Text: DOI OpenURL
Anastassiou, George A. \(p\)-Schatten norm sequential generalized fractional Ostrowski and Grüss type inequalities for several functions. (English) Zbl 07541294 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 3, Paper No. 134, 39 p. (2022). MSC: 26A33 26D10 26D15 47A60 47A63 PDF BibTeX XML Cite \textit{G. A. Anastassiou}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 3, Paper No. 134, 39 p. (2022; Zbl 07541294) Full Text: DOI OpenURL
Liu, Shuhui; Hu, Yaozhong; Wang, Xiong Nonlinear stochastic wave equation driven by rough noise. (English) Zbl 07540186 J. Differ. Equations 331, 99-161 (2022). MSC: 60H15 60H07 60G15 60G22 PDF BibTeX XML Cite \textit{S. Liu} et al., J. Differ. Equations 331, 99--161 (2022; Zbl 07540186) Full Text: DOI OpenURL
Zguaid, Khalid; El Alaoui, Fatima-Zahrae Regional boundary observability for Riemann-Liouville linear fractional evolution systems. (English) Zbl 07538461 Math. Comput. Simul. 199, 272-286 (2022). MSC: 35-XX 93-XX PDF BibTeX XML Cite \textit{K. Zguaid} and \textit{F.-Z. El Alaoui}, Math. Comput. Simul. 199, 272--286 (2022; Zbl 07538461) Full Text: DOI OpenURL
Said, Samia M. Fractional derivative heat transfer for rotating modified couple stress magneto-thermoelastic medium with two temperatures. (English) Zbl 07538137 Waves Random Complex Media 32, No. 3, 1517-1534 (2022). MSC: 74F05 74F15 74S40 PDF BibTeX XML Cite \textit{S. M. Said}, Waves Random Complex Media 32, No. 3, 1517--1534 (2022; Zbl 07538137) Full Text: DOI OpenURL
Sur, Abhik; Othman, Mohamed I. A. Elasto-thermodiffusive interaction subjected to rectangular thermal pulse and time-dependent chemical shock due to Caputo-Fabrizio heat transfer. (English) Zbl 07538124 Waves Random Complex Media 32, No. 3, 1228-1250 (2022). MSC: 74F05 74E40 74S40 PDF BibTeX XML Cite \textit{A. Sur} and \textit{M. I. A. Othman}, Waves Random Complex Media 32, No. 3, 1228--1250 (2022; Zbl 07538124) Full Text: DOI OpenURL
Torres-Hernandez, A.; Brambila-Paz, F.; Montufar-Chaveznava, R. Acceleration of the order of convergence of a family of fractional fixed-point methods and its implementation in the solution of a nonlinear algebraic system related to hybrid solar receivers. (English) Zbl 07537591 Appl. Math. Comput. 429, Article ID 127231, 16 p. (2022). MSC: 26Axx 65Hxx 26-XX PDF BibTeX XML Cite \textit{A. Torres-Hernandez} et al., Appl. Math. Comput. 429, Article ID 127231, 16 p. (2022; Zbl 07537591) Full Text: DOI OpenURL
Yang, Xiao-Jun An insight on the fractal power law flow: from a Hausdorff vector calculus perspective. (English) Zbl 07537370 Fractals 30, No. 3, Article ID 2250054, 13 p. (2022). MSC: 28A78 26A33 26B20 PDF BibTeX XML Cite \textit{X.-J. Yang}, Fractals 30, No. 3, Article ID 2250054, 13 p. (2022; Zbl 07537370) Full Text: DOI OpenURL
He, Chun-Hui; Liu, Chao A modified frequency-amplitude formulation for fractal vibration systems. (English) Zbl 07537362 Fractals 30, No. 3, Article ID 2250046, 8 p. (2022). MSC: 28Axx 35Axx 74Hxx PDF BibTeX XML Cite \textit{C.-H. He} and \textit{C. Liu}, Fractals 30, No. 3, Article ID 2250046, 8 p. (2022; Zbl 07537362) Full Text: DOI OpenURL
Pal, Ankit; Jana, R. K.; Shukla, A. K. Generalized integral transform and fractional calculus involving extended \(_p R_q(\alpha, \beta; z)\) function. (English) Zbl 07537304 J. Indian Math. Soc., New Ser. 89, No. 1-2, 100-116 (2022). MSC: 33C60 26A33 33E12 44A20 44A99 PDF BibTeX XML Cite \textit{A. Pal} et al., J. Indian Math. Soc., New Ser. 89, No. 1--2, 100--116 (2022; Zbl 07537304) Full Text: DOI OpenURL
Alshbool, M. H. T.; Mohammad, Mutaz; Isik, Osman; Hashim, Ishak Fractional Bernstein operational matrices for solving integro-differential equations involved by Caputo fractional derivative. (English) Zbl 07534459 Results Appl. Math. 14, Article ID 100258, 16 p. (2022). MSC: 65L03 65L60 34K37 PDF BibTeX XML Cite \textit{M. H. T. Alshbool} et al., Results Appl. Math. 14, Article ID 100258, 16 p. (2022; Zbl 07534459) Full Text: DOI OpenURL
Wu, Guo-Cheng; Wei, Jia-Li; Luo, Cheng; Huang, Lan-Lan Parameter estimation of fractional uncertain differential equations via Adams method. (English) Zbl 07534404 Nonlinear Anal., Model. Control 27, No. 3, 413-427 (2022). MSC: 34A08 26A33 93B30 90C90 65K05 PDF BibTeX XML Cite \textit{G.-C. Wu} et al., Nonlinear Anal., Model. Control 27, No. 3, 413--427 (2022; Zbl 07534404) Full Text: DOI OpenURL
Zhou, Xueyong; Wang, Mengya Dynamic analysis of a fractional-order SIRS model with time delay. (English) Zbl 07534402 Nonlinear Anal., Model. Control 27, No. 2, 368-384 (2022). MSC: 34K60 92D30 34K37 34K25 34K21 34K20 34K18 34K13 PDF BibTeX XML Cite \textit{X. Zhou} and \textit{M. Wang}, Nonlinear Anal., Model. Control 27, No. 2, 368--384 (2022; Zbl 07534402) Full Text: DOI OpenURL
Kleiner, T.; Hilfer, R. On extremal domains and codomains for convolution of distributions and fractional calculus. (English) Zbl 07534064 Monatsh. Math. 198, No. 1, 121-152 (2022). MSC: 46F10 44A35 46A03 06F07 46F12 26A33 PDF BibTeX XML Cite \textit{T. Kleiner} and \textit{R. Hilfer}, Monatsh. Math. 198, No. 1, 121--152 (2022; Zbl 07534064) Full Text: DOI OpenURL
Fan, Xiliang; Yu, Rong Bismut type derivative formulae and gradient estimate for multiplicative SDEs with fractional noises. (English) Zbl 07533897 Stochastics 94, No. 4, 493-518 (2022). MSC: 60H10 PDF BibTeX XML Cite \textit{X. Fan} and \textit{R. Yu}, Stochastics 94, No. 4, 493--518 (2022; Zbl 07533897) Full Text: DOI OpenURL
Bendoukha, Samir On the dynamics and control of a new fractional difference chaotic map. (English) Zbl 07533171 Int. J. Nonlinear Sci. Numer. Simul. 23, No. 2, 299-310 (2022). MSC: 34A08 34H10 34D06 PDF BibTeX XML Cite \textit{S. Bendoukha}, Int. J. Nonlinear Sci. Numer. Simul. 23, No. 2, 299--310 (2022; Zbl 07533171) Full Text: DOI OpenURL
Elhag, S. H.; Bayones, Fatimah S.; Kilany, A. A.; Abo-Dahab, S. M.; Abdel-Salam, Emad A.-B.; Elsagheer, M.; Abd-Alla, A. M. Noninteger derivative order analysis on plane wave reflection from electro-magneto-thermo-microstretch medium with a gravity field within the three-phase lag model. (English) Zbl 07532768 Adv. Math. Phys. 2022, Article ID 6559779, 13 p. (2022). MSC: 74J20 74F15 74F05 74S40 PDF BibTeX XML Cite \textit{S. H. Elhag} et al., Adv. Math. Phys. 2022, Article ID 6559779, 13 p. (2022; Zbl 07532768) Full Text: DOI OpenURL
Molina, Mario I. A fractional Anderson model. (English) Zbl 07532673 Phys. Lett., A 442, Article ID 128190, 5 p. (2022). MSC: 81-XX 82-XX PDF BibTeX XML Cite \textit{M. I. Molina}, Phys. Lett., A 442, Article ID 128190, 5 p. (2022; Zbl 07532673) Full Text: DOI OpenURL
Haar, Andrew; Radu, Petronela A new nonlocal calculus framework. Helmholtz decompositions, properties, and convergence for nonlocal operators in the limit of the vanishing horizon. (English) Zbl 07532101 SN Partial Differ. Equ. Appl. 3, No. 3, Paper No. 43, 20 p. (2022). MSC: 47Gxx 26A33 35S30 41A35 45A05 45P05 46F12 46N20 PDF BibTeX XML Cite \textit{A. Haar} and \textit{P. Radu}, SN Partial Differ. Equ. Appl. 3, No. 3, Paper No. 43, 20 p. (2022; Zbl 07532101) Full Text: DOI OpenURL
Sintunavarat, Wutiphol; Turab, Ali Mathematical analysis of an extended SEIR model of COVID-19 using the ABC-fractional operator. (English) Zbl 07529653 Math. Comput. Simul. 198, 65-84 (2022). MSC: 92-XX 34-XX PDF BibTeX XML Cite \textit{W. Sintunavarat} and \textit{A. Turab}, Math. Comput. Simul. 198, 65--84 (2022; Zbl 07529653) Full Text: DOI OpenURL
Gong, Zhaohua; Liu, Chongyang; Teo, Kok Lay; Yi, Xiaopeng Optimal control of nonlinear fractional systems with multiple pantograph-delays. (English) Zbl 07529382 Appl. Math. Comput. 425, Article ID 127094, 12 p. (2022). MSC: 93Cxx 49Mxx 49Jxx PDF BibTeX XML Cite \textit{Z. Gong} et al., Appl. Math. Comput. 425, Article ID 127094, 12 p. (2022; Zbl 07529382) Full Text: DOI OpenURL
Ran, Jie; Li, Yu-Qin; Xiong, Yi-Bin On the dynamics of fractional q-deformation chaotic map. (English) Zbl 07529350 Appl. Math. Comput. 424, Article ID 127053, 12 p. (2022). MSC: 34A08 34D06 34H10 PDF BibTeX XML Cite \textit{J. Ran} et al., Appl. Math. Comput. 424, Article ID 127053, 12 p. (2022; Zbl 07529350) Full Text: DOI OpenURL
Mahmoudi, Fatemeh; Tahmasebi, Mahdieh The convergence of exponential Euler method for weighted fractional stochastic equations. (English) Zbl 07527962 Comput. Methods Differ. Equ. 10, No. 2, 538-548 (2022). MSC: 65C30 60H07 PDF BibTeX XML Cite \textit{F. Mahmoudi} and \textit{M. Tahmasebi}, Comput. Methods Differ. Equ. 10, No. 2, 538--548 (2022; Zbl 07527962) Full Text: DOI OpenURL
Seny, Ouedraogo; Loufouilou, Justin Mouyedo; Joseph, Bonazebi Yindoula; Pare, Youssouf Solving nonlinear fractional Volterra integral equations of second kind by the Adomian method. (English) Zbl 07527455 Adv. Appl. Discrete Math. 29, No. 1, 97-110 (2022). MSC: 97I50 44Axx 40C10 45D05 PDF BibTeX XML Cite \textit{O. Seny} et al., Adv. Appl. Discrete Math. 29, No. 1, 97--110 (2022; Zbl 07527455) Full Text: DOI OpenURL
Faisal, Shah; Khan, Muhammad Adil; Khan, Tahir Ullah; Saeed, Tareq; Mohammad Mahdi Sayed, Zaid Mohammmad Unifications of continuous and discrete fractional inequalities of the Hermite-Hadamard-Jensen-Mercer type via majorization. (English) Zbl 07525278 J. Funct. Spaces 2022, Article ID 6964087, 24 p. (2022). Reviewer: James Adedayo Oguntuase (Abeokuta) MSC: 26D10 26A33 26D15 PDF BibTeX XML Cite \textit{S. Faisal} et al., J. Funct. Spaces 2022, Article ID 6964087, 24 p. (2022; Zbl 07525278) Full Text: DOI OpenURL
Has, Aykut; Yilmaz, Beyhan Special fractional curve pairs with fractional calculus. (English) Zbl 07524497 Int. Electron. J. Geom. 15, No. 1, 132-144 (2022). MSC: 53A04 26A33 PDF BibTeX XML Cite \textit{A. Has} and \textit{B. Yilmaz}, Int. Electron. J. Geom. 15, No. 1, 132--144 (2022; Zbl 07524497) Full Text: DOI OpenURL
Ogawa, Shigeyoshi Mean value theorems for the noncausal stochastic integral. (English) Zbl 07523448 Japan J. Ind. Appl. Math. 39, No. 2, 801-814 (2022). MSC: 60H05 60H99 60J65 26A33 PDF BibTeX XML Cite \textit{S. Ogawa}, Japan J. Ind. Appl. Math. 39, No. 2, 801--814 (2022; Zbl 07523448) Full Text: DOI OpenURL
Chauhan, Rajendrakumar B.; Chudasama, Meera H. A study of the right local general truncated \(M\)-fractional derivative. (English) Zbl 07523397 Commun. Korean Math. Soc. 37, No. 2, 503-520 (2022). MSC: 26A06 26A24 26A33 26A42 33E12 PDF BibTeX XML Cite \textit{R. B. Chauhan} and \textit{M. H. Chudasama}, Commun. Korean Math. Soc. 37, No. 2, 503--520 (2022; Zbl 07523397) Full Text: DOI OpenURL
Thach, Tran Ngoc; Tuan, Nguyen Huy Stochastic pseudo-parabolic equations with fractional derivative and fractional Brownian motion. (English) Zbl 07523358 Stochastic Anal. Appl. 40, No. 2, 328-351 (2022). Reviewer: Yuliya S. Mishura (Kyïv) MSC: 60G15 60G22 60G52 60G57 PDF BibTeX XML Cite \textit{T. N. Thach} and \textit{N. H. Tuan}, Stochastic Anal. Appl. 40, No. 2, 328--351 (2022; Zbl 07523358) Full Text: DOI OpenURL
Singh, Vikram; Chaudhary, Renu; Som, Lalit Kumar Approximate controllability of stochastic differential system with non-Lipschitz conditions. (English) Zbl 07517489 Stochastic Anal. Appl. 40, No. 3, 505-519 (2022). MSC: 34H05 34A08 34G20 93B05 47D06 47H10 PDF BibTeX XML Cite \textit{V. Singh} et al., Stochastic Anal. Appl. 40, No. 3, 505--519 (2022; Zbl 07517489) Full Text: DOI OpenURL
Moufid, Ilyes; Matignon, Denis; Roncen, Rémi; Piot, Estelle Energy analysis and discretization of the time-domain equivalent fluid model for wave propagation in rigid porous media. (English) Zbl 07517171 J. Comput. Phys. 451, Article ID 110888, 31 p. (2022). MSC: 65Mxx 76Sxx 35Lxx PDF BibTeX XML Cite \textit{I. Moufid} et al., J. Comput. Phys. 451, Article ID 110888, 31 p. (2022; Zbl 07517171) Full Text: DOI OpenURL
Stempin, Paulina; Sumelka, Wojciech Space-fractional small-strain plasticity model for microbeams including grain size effect. (English) Zbl 07517084 Int. J. Eng. Sci. 175, Article ID 103672, 12 p. (2022). MSC: 74-XX 92-XX PDF BibTeX XML Cite \textit{P. Stempin} and \textit{W. Sumelka}, Int. J. Eng. Sci. 175, Article ID 103672, 12 p. (2022; Zbl 07517084) Full Text: DOI OpenURL
Mohammed, Pshtiwan Othman; Goodrich, Christopher S.; Brzo, Aram Bahroz; Baleanu, Dumitru; Hamed, Yasser S. New classifications of monotonicity investigation for discrete operators with Mittag-Leffler kernel. (English) Zbl 07513340 Math. Biosci. Eng. 19, No. 4, 4062-4074 (2022). MSC: 26A33 PDF BibTeX XML Cite \textit{P. O. Mohammed} et al., Math. Biosci. Eng. 19, No. 4, 4062--4074 (2022; Zbl 07513340) Full Text: DOI OpenURL
Ma, Li Comparative analysis on the blow-up occurrence of solutions to Hadamard type fractional differential systems. (English) Zbl 07513116 Int. J. Comput. Math. 99, No. 5, 895-908 (2022). MSC: 26A33 74H35 PDF BibTeX XML Cite \textit{L. Ma}, Int. J. Comput. Math. 99, No. 5, 895--908 (2022; Zbl 07513116) Full Text: DOI OpenURL
Wattanakejorn, Varaporn; Ntouyas, Sotiris K.; Sitthiwirattham, Thanin On a boundary value problem for fractional Hahn integro-difference equations with four-point fractional integral boundary conditions. (English) Zbl 1487.39014 AIMS Math. 7, No. 1, 632-650 (2022). MSC: 39A13 39A27 39A70 47N20 05A30 26A33 PDF BibTeX XML Cite \textit{V. Wattanakejorn} et al., AIMS Math. 7, No. 1, 632--650 (2022; Zbl 1487.39014) Full Text: DOI OpenURL
Geng, Xi; Ouyang, Cheng; Tindel, Samy Precise local estimates for differential equations driven by fractional Brownian motion: hypoelliptic case. (English) Zbl 07512873 Ann. Probab. 50, No. 2, 649-687 (2022). MSC: 60H10 60G15 60H07 PDF BibTeX XML Cite \textit{X. Geng} et al., Ann. Probab. 50, No. 2, 649--687 (2022; Zbl 07512873) Full Text: DOI Link OpenURL
Malik, Sumaiya; Khan, Khuram Ali; Nosheen, Ammara; Awan, Khalid Mahmood Generalization of Montgomery identity via Taylor formula on time scales. (English) Zbl 07512179 J. Inequal. Appl. 2022, Paper No. 24, 17 p. (2022). MSC: 26D15 26A33 26A51 26E70 39B62 PDF BibTeX XML Cite \textit{S. Malik} et al., J. Inequal. Appl. 2022, Paper No. 24, 17 p. (2022; Zbl 07512179) Full Text: DOI OpenURL
Ali, Wajahat; Turab, Ali; Nieto, Juan J. On the novel existence results of solutions for a class of fractional boundary value problems on the cyclohexane graph. (English) Zbl 07512160 J. Inequal. Appl. 2022, Paper No. 5, 19 p. (2022). MSC: 34Axx 34Bxx 26Axx PDF BibTeX XML Cite \textit{W. Ali} et al., J. Inequal. Appl. 2022, Paper No. 5, 19 p. (2022; Zbl 07512160) Full Text: DOI OpenURL
Cresson, Jacky; Jiménez, Fernando; Ober-Blöbaum, Sina Continuous and discrete Noether’s fractional conserved quantities for restricted calculus of variations. (English) Zbl 1487.49027 J. Geom. Mech. 14, No. 1, 57-89 (2022). MSC: 49K21 26A33 70G65 37M15 PDF BibTeX XML Cite \textit{J. Cresson} et al., J. Geom. Mech. 14, No. 1, 57--89 (2022; Zbl 1487.49027) Full Text: DOI OpenURL
Feng, Xiaobing; Sutton, Mitchell On a new class of fractional calculus of variations and related fractional differential equations. (English) Zbl 07511581 Differ. Integral Equ. 35, No. 5-6, 299-338 (2022). Reviewer: Abdallah Bradji (Annaba) MSC: 35R11 45G05 49J99 PDF BibTeX XML Cite \textit{X. Feng} and \textit{M. Sutton}, Differ. Integral Equ. 35, No. 5--6, 299--338 (2022; Zbl 07511581) OpenURL
Bin-Saad, Maged G.; Hasanov, Anvar; Ruzhansky, Michael Some properties relating to the Mittag-Leffler function of two variables. (English) Zbl 07510853 Integral Transforms Spec. Funct. 33, No. 5, 400-418 (2022). Reviewer: Sergei V. Rogosin (Minsk) MSC: 33E12 26A33 65R10 PDF BibTeX XML Cite \textit{M. G. Bin-Saad} et al., Integral Transforms Spec. Funct. 33, No. 5, 400--418 (2022; Zbl 07510853) Full Text: DOI OpenURL
Cattani, Carlo Haar wavelet fractional derivative. (English) Zbl 07507907 Proc. Est. Acad. Sci. 71, No. 1, 55-64 (2022). Reviewer: Qiao-Fang Lian (Beijing) MSC: 42C40 26A33 PDF BibTeX XML Cite \textit{C. Cattani}, Proc. Est. Acad. Sci. 71, No. 1, 55--64 (2022; Zbl 07507907) Full Text: DOI OpenURL
Kim, Yoon Tae; Park, Hyun Suk Fourth moment bound and stationary Gaussian processes with positive correlation. (English) Zbl 1485.60026 J. Korean Stat. Soc. 51, No. 1, 172-197 (2022). MSC: 60F05 60G15 60H07 PDF BibTeX XML Cite \textit{Y. T. Kim} and \textit{H. S. Park}, J. Korean Stat. Soc. 51, No. 1, 172--197 (2022; Zbl 1485.60026) Full Text: DOI OpenURL
Rani, Noosheza; Fernandez, Arran Solving Prabhakar differential equations using Mikusiński’s operational calculus. (English) Zbl 07507660 Comput. Appl. Math. 41, No. 3, Paper No. 107, 15 p. (2022). MSC: 34A08 44A40 33E12 PDF BibTeX XML Cite \textit{N. Rani} and \textit{A. Fernandez}, Comput. Appl. Math. 41, No. 3, Paper No. 107, 15 p. (2022; Zbl 07507660) Full Text: DOI OpenURL
Rashid, Saima; Abouelmagd, Elbaz I.; Khalid, Aasma; Farooq, Fozia Bashir; Chu, Yu-Ming Some recent developments on dynamical \(\hbar\)-discrete fractional type inequalities in the frame of nonsingular and nonlocal kernels. (English) Zbl 1487.39011 Fractals 30, No. 2, Article ID 2240110, 15 p. (2022). MSC: 39A13 39A70 34A08 26A33 PDF BibTeX XML Cite \textit{S. Rashid} et al., Fractals 30, No. 2, Article ID 2240110, 15 p. (2022; Zbl 1487.39011) Full Text: DOI OpenURL
Assaad, Obayda; Nualart, David; Tudor, Ciprian A.; Viitasaari, Lauri Quantitative normal approximations for the stochastic fractional heat equation. (English) Zbl 07507361 Stoch. Partial Differ. Equ., Anal. Comput. 10, No. 1, 223-254 (2022). MSC: 60H15 60H07 60G15 60F05 PDF BibTeX XML Cite \textit{O. Assaad} et al., Stoch. Partial Differ. Equ., Anal. Comput. 10, No. 1, 223--254 (2022; Zbl 07507361) Full Text: DOI OpenURL
Kamalapriya, B.; Balachandran, K.; Annapoorani, N. Existence results for fractional integrodifferential equations of Sobolev type with deviating arguments. (English) Zbl 1486.45012 J. Appl. Nonlinear Dyn. 11, No. 1, 57-67 (2022). MSC: 45J05 26A33 47N20 PDF BibTeX XML Cite \textit{B. Kamalapriya} et al., J. Appl. Nonlinear Dyn. 11, No. 1, 57--67 (2022; Zbl 1486.45012) Full Text: DOI OpenURL
Orlovsky, Dmitry; Piskarev, Sergey Inverse problem with final overdetermination for time-fractional differential equation in a Banach space. (English) Zbl 07503656 J. Inverse Ill-Posed Probl. 30, No. 2, 221-237 (2022). MSC: 34A08 34G20 34A55 PDF BibTeX XML Cite \textit{D. Orlovsky} and \textit{S. Piskarev}, J. Inverse Ill-Posed Probl. 30, No. 2, 221--237 (2022; Zbl 07503656) Full Text: DOI OpenURL
Mainardi, Francesco Fractional calculus and waves in linear viscoelasticity. An introduction to mathematical models (to appear). 2nd edition. (English) Zbl 07503096 Singapore: World Scientific (ISBN 978-1-78326-398-1/hbk). 650 p. (2022). MSC: 26-02 74-02 26A33 35Q74 PDF BibTeX XML Cite \textit{F. Mainardi}, Fractional calculus and waves in linear viscoelasticity. An introduction to mathematical models (to appear). 2nd edition. Singapore: World Scientific (2022; Zbl 07503096) Full Text: DOI OpenURL
Hong, Jialin; Liu, Zhihui; Sheng, Derui Optimal Hölder continuity and hitting probabilities for SPDEs with rough fractional noises. (English) Zbl 07496960 J. Math. Anal. Appl. 512, No. 1, Article ID 126125, 21 p. (2022). MSC: 60H15 60G17 60G22 60H07 PDF BibTeX XML Cite \textit{J. Hong} et al., J. Math. Anal. Appl. 512, No. 1, Article ID 126125, 21 p. (2022; Zbl 07496960) Full Text: DOI OpenURL
McLean, William; Mustapha, Kassem Uniform stability for a spatially discrete, subdiffusive Fokker-Planck equation. (English) Zbl 07496453 Numer. Algorithms 89, No. 4, 1441-1463 (2022). MSC: 65-XX 26A33 35K20 65M12 65M60 PDF BibTeX XML Cite \textit{W. McLean} and \textit{K. Mustapha}, Numer. Algorithms 89, No. 4, 1441--1463 (2022; Zbl 07496453) Full Text: DOI OpenURL
Almeida, Ricardo; Morgado, M. Luísa Optimality conditions involving the Mittag-Leffler tempered fractional derivative. (English) Zbl 07495848 Discrete Contin. Dyn. Syst., Ser. S 15, No. 3, 519-534 (2022). MSC: 26A33 49K05 49M05 PDF BibTeX XML Cite \textit{R. Almeida} and \textit{M. L. Morgado}, Discrete Contin. Dyn. Syst., Ser. S 15, No. 3, 519--534 (2022; Zbl 07495848) Full Text: DOI OpenURL
Özarslan, Mehmet Ali; Fernandez, Arran On the fractional calculus of multivariate Mittag-Leffler functions. (English) Zbl 07494123 Int. J. Comput. Math. 99, No. 2, 247-273 (2022). MSC: 68-XX 65-XX PDF BibTeX XML Cite \textit{M. A. Özarslan} and \textit{A. Fernandez}, Int. J. Comput. Math. 99, No. 2, 247--273 (2022; Zbl 07494123) Full Text: DOI OpenURL
Tien Dung, Nguyen; Thu Hang, Nguyen; Phuong Thuy, Pham Thi Density estimates for the exponential functionals of fractional Brownian motion. (English) Zbl 07492999 C. R., Math., Acad. Sci. Paris 360, 151-159 (2022). MSC: 60G22 60H07 PDF BibTeX XML Cite \textit{N. Tien Dung} et al., C. R., Math., Acad. Sci. Paris 360, 151--159 (2022; Zbl 07492999) Full Text: DOI arXiv OpenURL
Cao, Qiyong; Gao, Hongjun High order Anderson parabolic model driven by rough noise in space. (English) Zbl 1484.60020 Stoch. Dyn. 22, No. 1, Article ID 2150052, 24 p. (2022). MSC: 60E10 82B35 60J76 60G22 PDF BibTeX XML Cite \textit{Q. Cao} and \textit{H. Gao}, Stoch. Dyn. 22, No. 1, Article ID 2150052, 24 p. (2022; Zbl 1484.60020) Full Text: DOI OpenURL
Patnaik, Sansit; Jokar, Mehdi; Semperlotti, Fabio Variable-order approach to nonlocal elasticity: theoretical formulation, order identification via deep learning, and applications. (English) Zbl 07492669 Comput. Mech. 69, No. 1, 267-298 (2022). MSC: 74-XX PDF BibTeX XML Cite \textit{S. Patnaik} et al., Comput. Mech. 69, No. 1, 267--298 (2022; Zbl 07492669) Full Text: DOI OpenURL
Azmoodeh, Ehsan; Mishura, Yuliya; Sabzikar, Farzad How does tempering affect the local and global properties of fractional Brownian motion? (English) Zbl 1484.60046 J. Theor. Probab. 35, No. 1, 484-527 (2022). MSC: 60G22 60G15 60F17 60H07 PDF BibTeX XML Cite \textit{E. Azmoodeh} et al., J. Theor. Probab. 35, No. 1, 484--527 (2022; Zbl 1484.60046) Full Text: DOI arXiv OpenURL
Gehringer, Johann; Li, Xue-Mei Functional limit theorems for the fractional Ornstein-Uhlenbeck process. (English) Zbl 1486.60062 J. Theor. Probab. 35, No. 1, 426-456 (2022). MSC: 60F17 60G18 60G22 60H05 60H07 60H10 PDF BibTeX XML Cite \textit{J. Gehringer} and \textit{X.-M. Li}, J. Theor. Probab. 35, No. 1, 426--456 (2022; Zbl 1486.60062) Full Text: DOI arXiv OpenURL
Wu, Chaojun; Zhang, Qi; Yang, Ningning; Jia, Rong; Liu, Chongxin Dynamical analysis of a fractional-order boost converter with fractional-order memristive load. (English) Zbl 07491275 Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 3, Article ID 2250032, 14 p. (2022). MSC: 34C60 34A08 34C23 94C60 PDF BibTeX XML Cite \textit{C. Wu} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 3, Article ID 2250032, 14 p. (2022; Zbl 07491275) Full Text: DOI OpenURL
Singh, Vikram; Pandey, Dwijendra N. Multi-term time-fractional stochastic differential equations with non-Lipschitz coefficients. (English) Zbl 07491028 Differ. Equ. Dyn. Syst. 30, No. 1, 197-209 (2022). MSC: 34A08 34F05 34G20 26A33 34A12 47D06 47H10 PDF BibTeX XML Cite \textit{V. Singh} and \textit{D. N. Pandey}, Differ. Equ. Dyn. Syst. 30, No. 1, 197--209 (2022; Zbl 07491028) Full Text: DOI OpenURL
Basim, Mays; Senu, Norazak; Ibrahim, Zarina Bibi; Ahmadian, Ali; Salahshour, Soheil A robust operational matrix of nonsingular derivative to solve fractional variable-order differential equations. (English) Zbl 07490677 Fractals 30, No. 1, Article ID 2240041, 13 p. (2022). MSC: 34A08 34A25 PDF BibTeX XML Cite \textit{M. Basim} et al., Fractals 30, No. 1, Article ID 2240041, 13 p. (2022; Zbl 07490677) Full Text: DOI OpenURL
Zada, Laiq; Nawaz, Rashid; Alqudah, Mohammad A.; Sooppy Nisar, Kottakkaran A new technique for approximate solution of fractional-order partial differential equations. (English) Zbl 07490651 Fractals 30, No. 1, Article ID 2240015, 8 p. (2022). MSC: 26Axx 34Axx 65Mxx PDF BibTeX XML Cite \textit{L. Zada} et al., Fractals 30, No. 1, Article ID 2240015, 8 p. (2022; Zbl 07490651) Full Text: DOI OpenURL
Wang, Fuzhang; Hanif, Usama; Nosheen, Ammara; Khan, Khuram Ali; Ahmad, Hijaz; Nonlaopon, Kamsing Some Hardy-type inequalities for convex functions via delta fractional integrals. (English) Zbl 07490640 Fractals 30, No. 1, Article ID 2240004, 15 p. (2022). MSC: 26Dxx 39Axx 26Exx PDF BibTeX XML Cite \textit{F. Wang} et al., Fractals 30, No. 1, Article ID 2240004, 15 p. (2022; Zbl 07490640) Full Text: DOI OpenURL
Pandey, Prashant; Singh, Jagdev An efficient computational approach for nonlinear variable order fuzzy fractional partial differential equations. (English) Zbl 07490206 Comput. Appl. Math. 41, No. 1, Paper No. 38, 21 p. (2022). MSC: 35A25 35R11 35R13 41A10 PDF BibTeX XML Cite \textit{P. Pandey} and \textit{J. Singh}, Comput. Appl. Math. 41, No. 1, Paper No. 38, 21 p. (2022; Zbl 07490206) Full Text: DOI OpenURL
Jalil, Ahmed F. Abdel; Khudair, Ayad R. Toward solving fractional differential equations via solving ordinary differential equations. (English) Zbl 07490205 Comput. Appl. Math. 41, No. 1, Paper No. 37, 12 p. (2022). MSC: 34A08 34A30 26A33 PDF BibTeX XML Cite \textit{A. F. A. Jalil} and \textit{A. R. Khudair}, Comput. Appl. Math. 41, No. 1, Paper No. 37, 12 p. (2022; Zbl 07490205) Full Text: DOI OpenURL
Khandelwal, Yogesh; Khandelwal, Rachana Insight on treatment of HIV-1 infection on populace of \(\mathcal{CD}4^+T\)-cells based on a fractional differential model. (English) Zbl 07489892 Int. J. Appl. Comput. Math. 8, No. 1, Paper No. 9, 18 p. (2022). MSC: 34A08 65Yxx 44A99 PDF BibTeX XML Cite \textit{Y. Khandelwal} and \textit{R. Khandelwal}, Int. J. Appl. Comput. Math. 8, No. 1, Paper No. 9, 18 p. (2022; Zbl 07489892) Full Text: DOI OpenURL
Ouyang, Cheng; Roberson-Vickery, William Quasi-sure non-self-intersection for rough differential equations driven by fractional Brownian motion. (English) Zbl 07488310 Electron. Commun. Probab. 27, Paper No. 15, 12 p. (2022). MSC: 60L20 60H10 60H07 PDF BibTeX XML Cite \textit{C. Ouyang} and \textit{W. Roberson-Vickery}, Electron. Commun. Probab. 27, Paper No. 15, 12 p. (2022; Zbl 07488310) Full Text: DOI OpenURL
Hu, Yaozhong; Wang, Xiong Stochastic heat equation with general rough noise. (English) Zbl 1483.60094 Ann. Inst. Henri Poincaré, Probab. Stat. 58, No. 1, 379-423 (2022). MSC: 60H15 35K08 60G15 60G22 60H05 60H07 PDF BibTeX XML Cite \textit{Y. Hu} and \textit{X. Wang}, Ann. Inst. Henri Poincaré, Probab. Stat. 58, No. 1, 379--423 (2022; Zbl 1483.60094) Full Text: DOI OpenURL
Ahmed, Wagdi F. S.; Salamooni, Ahmad Y. A.; Pawar, Dnyaneshwar D. Solution of fractional kinetic equation for Hadamard type fractional integral via Mellin transform. (English) Zbl 07479489 Gulf J. Math. 12, No. 1, 15-27 (2022). MSC: 74S40 74A25 26A33 PDF BibTeX XML Cite \textit{W. F. S. Ahmed} et al., Gulf J. Math. 12, No. 1, 15--27 (2022; Zbl 07479489) Full Text: Link OpenURL