Shi, Haipan; Yang, Heju; Qiao, Yuying Properties of the fractional Clifford-Fourier transform. (English) Zbl 07765876 Integral Transforms Spec. Funct. 34, No. 12, 931-946 (2023). MSC: 26A33 30E20 42A38 PDF BibTeX XML Cite \textit{H. Shi} et al., Integral Transforms Spec. Funct. 34, No. 12, 931--946 (2023; Zbl 07765876) Full Text: DOI
Lastra, Alberto; Prisuelos-Arribas, Cruz Solutions of linear systems of moment differential equations via generalized matrix exponentials. (English) Zbl 07739123 J. Differ. Equations 372, 591-611 (2023). Reviewer: Mykola Grygorenko (Kyïv) MSC: 34M25 34M03 30D15 34A08 15A16 PDF BibTeX XML Cite \textit{A. Lastra} and \textit{C. Prisuelos-Arribas}, J. Differ. Equations 372, 591--611 (2023; Zbl 07739123) Full Text: DOI arXiv
Nadeem, Muhammad; Wahash, Hanan A. Analysis of fractional Kundu-Eckhaus and massive Thirring equations using a hybridization scheme. (English) Zbl 1518.35642 J. Funct. Spaces 2023, Article ID 6704537, 7 p. (2023). MSC: 35R11 35A22 PDF BibTeX XML Cite \textit{M. Nadeem} and \textit{H. A. Wahash}, J. Funct. Spaces 2023, Article ID 6704537, 7 p. (2023; Zbl 1518.35642) Full Text: DOI
Eidinejad, Zahra; Saadati, Reza; Li, Chenkuan Laplace inverse and MR approach to existence of a unique solution and the Hyers-Ulam-Wright stability analysis of the nonhomogeneous fractional delay oscillation equation by matrix-valued fuzzy controllers. (English) Zbl 1509.34078 J. Inequal. Appl. 2022, Paper No. 129, 15 p. (2022). MSC: 34K37 37K20 47N20 44A10 26A33 PDF BibTeX XML Cite \textit{Z. Eidinejad} et al., J. Inequal. Appl. 2022, Paper No. 129, 15 p. (2022; Zbl 1509.34078) Full Text: DOI
Bennasr, Lassad Sonine-Dimovski transform and spectral synthesis associated with the hyper-Bessel operator on the complex plane. (English) Zbl 1503.26004 Fract. Calc. Appl. Anal. 25, No. 5, 1852-1872 (2022). MSC: 26A33 34A25 33C10 30B60 44A05 44A35 PDF BibTeX XML Cite \textit{L. Bennasr}, Fract. Calc. Appl. Anal. 25, No. 5, 1852--1872 (2022; Zbl 1503.26004) Full Text: DOI
Biolek, Dalibor; Garrappa, Roberto; Biolková, Viera Impulse response of commensurate fractional-order systems: multiple complex poles. (English) Zbl 1503.34139 Fract. Calc. Appl. Anal. 25, No. 5, 1837-1851 (2022). MSC: 34K37 33E12 44A10 26A33 PDF BibTeX XML Cite \textit{D. Biolek} et al., Fract. Calc. Appl. Anal. 25, No. 5, 1837--1851 (2022; Zbl 1503.34139) Full Text: DOI
Varanis, M.; Oliveira, C.; Ribeiro, M. A.; Lenz, W. B.; Tusset, A. M.; Balthazar, Jose Manoel On the use of synchrosqueezing transform for chaos and nonlinear dynamics analysis in fractional-order systems. (English) Zbl 1504.34122 Balthazar, Jose Manoel (ed.), Nonlinear vibrations excited by limited power sources. Cham: Springer. Mech. Mach. Sci. 116, 175-189 (2022). MSC: 34C60 34A08 34C23 34C20 34C28 37C60 70K40 PDF BibTeX XML Cite \textit{M. Varanis} et al., Mech. Mach. Sci. 116, 175--189 (2022; Zbl 1504.34122) Full Text: DOI
Faress, Moussa; Fahlaoui, Said U.P for wavelet transform on the affine automorporphism group of quaternionic Heisenberg group. (English) Zbl 1500.42018 Palest. J. Math. 11, No. 3, 205-215 (2022). Reviewer: Yuri A. Farkov (Moskva) MSC: 42C40 22E10 26A33 PDF BibTeX XML Cite \textit{M. Faress} and \textit{S. Fahlaoui}, Palest. J. Math. 11, No. 3, 205--215 (2022; Zbl 1500.42018) Full Text: Link
Fan, Zeng; Guo, Xin Product-type operators on the space of fractional Cauchy transforms. (English) Zbl 1506.47055 J. Funct. Spaces 2022, Article ID 2644844, 13 p. (2022). MSC: 47B38 30H05 PDF BibTeX XML Cite \textit{Z. Fan} and \textit{X. Guo}, J. Funct. Spaces 2022, Article ID 2644844, 13 p. (2022; Zbl 1506.47055) Full Text: DOI
Kamalakkannan, R.; Roopkumar, R.; Zayed, A. On the extension of the coupled fractional Fourier transform and its properties. (English) Zbl 1489.42006 Integral Transforms Spec. Funct. 33, No. 1, 65-80 (2022). MSC: 42B10 42A38 44A15 44A35 PDF BibTeX XML Cite \textit{R. Kamalakkannan} et al., Integral Transforms Spec. Funct. 33, No. 1, 65--80 (2022; Zbl 1489.42006) Full Text: DOI
Aghili, Arman Fourier, Laguerre, Laplace transforms with applications. (English) Zbl 1512.44002 J. Math. Appl. 44, 5-17 (2021). MSC: 44A10 42A38 44A20 30E20 26A33 PDF BibTeX XML Cite \textit{A. Aghili}, J. Math. Appl. 44, 5--17 (2021; Zbl 1512.44002) Full Text: DOI
Yao, Zichen; Yang, Zhanwen; Zhang, Yusong A stability criterion for fractional-order complex-valued differential equations with distributed delays. (English) Zbl 1505.34120 Chaos Solitons Fractals 152, Article ID 111277, 7 p. (2021). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 34K37 34K20 44A10 PDF BibTeX XML Cite \textit{Z. Yao} et al., Chaos Solitons Fractals 152, Article ID 111277, 7 p. (2021; Zbl 1505.34120) Full Text: DOI
Lu, Junfeng; Sun, Yi Numerical approaches to time fractional Boussinesq-Burgers equations. (English) Zbl 1506.35201 Fractals 29, No. 8, Article ID 2150244, 10 p. (2021). MSC: 35Q53 35Q35 35A22 35B20 26A33 35R11 65M99 PDF BibTeX XML Cite \textit{J. Lu} and \textit{Y. Sun}, Fractals 29, No. 8, Article ID 2150244, 10 p. (2021; Zbl 1506.35201) Full Text: DOI
Salihi, Ylldrita; Markoski, Gjorgji; Gjurchinovski, Aleksandar On numerical solutions of linear fractional differential equations. (English) Zbl 1510.65147 Mat. Bilt. 45, No. 1, 35-47 (2021). MSC: 65L06 34A08 34C28 74H15 PDF BibTeX XML Cite \textit{Y. Salihi} et al., Mat. Bilt. 45, No. 1, 35--47 (2021; Zbl 1510.65147) Full Text: DOI
He, Ji-Huan; Hou, Wei-Fan; He, Chun-Hui; Saeed, Tareq; Hayat, Tasawar Variational approach to fractal solitary waves. (English) Zbl 1482.35249 Fractals 29, No. 7, Article ID 2150199, 5 p. (2021). MSC: 35R11 35C07 35C08 35Q35 PDF BibTeX XML Cite \textit{J.-H. He} et al., Fractals 29, No. 7, Article ID 2150199, 5 p. (2021; Zbl 1482.35249) Full Text: DOI
Anjum, Naveed; He, Chun-Hui; He, Ji-Huan Two-scale fractal theory for the population dynamics. (English) Zbl 1481.92098 Fractals 29, No. 7, Article ID 2150182, 10 p. (2021). MSC: 92D25 28A80 PDF BibTeX XML Cite \textit{N. Anjum} et al., Fractals 29, No. 7, Article ID 2150182, 10 p. (2021; Zbl 1481.92098) Full Text: DOI
Ain, Qura Tul; Anjum, Naveed; He, Chun-Hui An analysis of time-fractional heat transfer problem using two-scale approach. (English) Zbl 1480.35386 GEM. Int. J. Geomath. 12, Paper No. 18, 10 p. (2021). MSC: 35R11 35A25 35K15 PDF BibTeX XML Cite \textit{Q. T. Ain} et al., GEM. Int. J. Geomath. 12, Paper No. 18, 10 p. (2021; Zbl 1480.35386) Full Text: DOI
Tassaddiq, Asifa A new representation of the extended \(k\)-gamma function with applications. (English) Zbl 1481.33004 Math. Methods Appl. Sci. 44, No. 14, 11174-11195 (2021). Reviewer: Ahmad Mohammad (Pune) MSC: 33B15 26A33 PDF BibTeX XML Cite \textit{A. Tassaddiq}, Math. Methods Appl. Sci. 44, No. 14, 11174--11195 (2021; Zbl 1481.33004) Full Text: DOI
Karaman, Bahar The use of improved-F expansion method for the time-fractional Benjamin-Ono equation. (English) Zbl 1468.35232 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 3, Paper No. 128, 7 p. (2021). MSC: 35R11 35C05 35R09 PDF BibTeX XML Cite \textit{B. Karaman}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 3, Paper No. 128, 7 p. (2021; Zbl 1468.35232) Full Text: DOI
Prakash, Amit; Kaur, Hardish Analysis and numerical simulation of fractional Biswas-Milovic model. (English) Zbl 07318221 Math. Comput. Simul. 181, 298-315 (2021). MSC: 65N99 35Q55 44A10 PDF BibTeX XML Cite \textit{A. Prakash} and \textit{H. Kaur}, Math. Comput. Simul. 181, 298--315 (2021; Zbl 07318221) Full Text: DOI
Kaya, U. Cauchy fractional derivative. (English) Zbl 1453.26007 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat., Mekh., Fiz. 12, No. 4, 28-32 (2020). MSC: 26A33 30E20 PDF BibTeX XML Cite \textit{U. Kaya}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat., Mekh., Fiz. 12, No. 4, 28--32 (2020; Zbl 1453.26007) Full Text: DOI MNR
Zhao, Xin; Xia, Shanlei Exact traveling wave solutions for the time fractional nonlinear evolution equation by sub-equation method. (Chinese. English summary) Zbl 1463.35156 J. Northeast Norm. Univ., Nat. Sci. Ed. 52, No. 2, 26-29 (2020). MSC: 35C07 35Q53 35R11 PDF BibTeX XML Cite \textit{X. Zhao} and \textit{S. Xia}, J. Northeast Norm. Univ., Nat. Sci. Ed. 52, No. 2, 26--29 (2020; Zbl 1463.35156) Full Text: DOI
Zoulikha, Chougui; Ouannas, Adel A new generalized synchronization scheme to control fractional chaotic dynamical systems with different dimensions and orders. (English) Zbl 1497.34080 Nonlinear Stud. 27, No. 3, 845-854 (2020). Reviewer: Ponnuraj Muthukumar (Gobichettipalayam) MSC: 34D06 34A08 34C28 34H10 44A10 PDF BibTeX XML Cite \textit{C. Zoulikha} and \textit{A. Ouannas}, Nonlinear Stud. 27, No. 3, 845--854 (2020; Zbl 1497.34080) Full Text: Link
Shi, Haipan; Yang, Heju; Li, Zunfeng; Qiao, Yuying Fractional Clifford-Fourier transform and its application. (English) Zbl 1451.30098 Adv. Appl. Clifford Algebr. 30, No. 5, Paper No. 68, 16 p. (2020). MSC: 30G35 30E20 30E25 45E05 PDF BibTeX XML Cite \textit{H. Shi} et al., Adv. Appl. Clifford Algebr. 30, No. 5, Paper No. 68, 16 p. (2020; Zbl 1451.30098) Full Text: DOI
Zhang, Xi; Wu, Ran-chao Modified projective synchronization of fractional-order chaotic systems with different dimensions. (English) Zbl 1436.34056 Acta Math. Appl. Sin., Engl. Ser. 36, No. 2, 527-538 (2020). MSC: 34D06 34A08 34C28 34H05 44A10 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{R.-c. Wu}, Acta Math. Appl. Sin., Engl. Ser. 36, No. 2, 527--538 (2020; Zbl 1436.34056) Full Text: DOI
Wei, Yiheng; Liu, Da-Yan; Tse, Peter W.; Wang, Yong Discussion on the Leibniz rule and Laplace transform of fractional derivatives using series representation. (English) Zbl 1436.26008 Integral Transforms Spec. Funct. 31, No. 4, 304-322 (2020). Reviewer: Andrey Zahariev (Plovdiv) MSC: 26A33 30K05 44A10 65L05 PDF BibTeX XML Cite \textit{Y. Wei} et al., Integral Transforms Spec. Funct. 31, No. 4, 304--322 (2020; Zbl 1436.26008) Full Text: DOI arXiv
Ruan, Zhousheng; Zhang, Sen Simultaneous inversion of time-dependent source term and fractional order for a time-fractional diffusion equation. (English) Zbl 1454.65108 J. Comput. Appl. Math. 368, Article ID 112566, 15 p. (2020). Reviewer: Robert Plato (Siegen) MSC: 65M32 65M12 65M60 35R11 26A33 44A10 30B40 33E12 PDF BibTeX XML Cite \textit{Z. Ruan} and \textit{S. Zhang}, J. Comput. Appl. Math. 368, Article ID 112566, 15 p. (2020; Zbl 1454.65108) Full Text: DOI
Zhang, Lanfang; Ji, Juanjuan; Jiang, Julang; Zhang, Chaolong The new exact analytical solutions and numerical simulation of \((3+1)\)-dimensional time fractional KZK equation. (English) Zbl 1456.35172 Int. J. Comput. Sci. Math. 10, No. 2, 174-192 (2019). MSC: 35Q35 76Q05 35R11 PDF BibTeX XML Cite \textit{L. Zhang} et al., Int. J. Comput. Sci. Math. 10, No. 2, 174--192 (2019; Zbl 1456.35172) Full Text: DOI
Herzallah, Mohamed A. E. Comments on “Different methods for \((3+1)\)-dimensional space-time fractional modified KdV-Zakharov-Kuznetsov equation”. (English) Zbl 1443.35126 Comput. Math. Appl. 77, No. 1, 66-68 (2019). MSC: 35Q53 35C05 35R11 PDF BibTeX XML Cite \textit{M. A. E. Herzallah}, Comput. Math. Appl. 77, No. 1, 66--68 (2019; Zbl 1443.35126) Full Text: DOI
Chyzhykov, Igor; Beregova, Galyna On asymptotic behavior of fractional Cauchy transform. (English) Zbl 1429.30032 Anal. Math. Phys. 9, No. 2, 809-820 (2019). Reviewer: Anatoly N. Kochubei (Kyïv) MSC: 30E20 PDF BibTeX XML Cite \textit{I. Chyzhykov} and \textit{G. Beregova}, Anal. Math. Phys. 9, No. 2, 809--820 (2019; Zbl 1429.30032) Full Text: DOI
Gupta, A. K. On the exact solution of time-fractional \((2 + 1)\) dimensional Konopelchenko-Dubrovsky equation. (English) Zbl 1419.35211 Int. J. Appl. Comput. Math. 5, No. 3, Paper No. 95, 8 p. (2019). MSC: 35R11 35Q53 PDF BibTeX XML Cite \textit{A. K. Gupta}, Int. J. Appl. Comput. Math. 5, No. 3, Paper No. 95, 8 p. (2019; Zbl 1419.35211) Full Text: DOI
Shone, T. T.; Patra, A. Solution for non-linear fractional partial differential equations using fractional complex transform. (English) Zbl 1419.35225 Int. J. Appl. Comput. Math. 5, No. 3, Paper No. 90, 8 p. (2019). MSC: 35R11 35Q35 76N15 PDF BibTeX XML Cite \textit{T. T. Shone} and \textit{A. Patra}, Int. J. Appl. Comput. Math. 5, No. 3, Paper No. 90, 8 p. (2019; Zbl 1419.35225) Full Text: DOI
Sahoo, S.; Saha Ray, S. A novel approach for stochastic solutions of Wick-type stochastic time-fractional Benjamin-Bona-Mahony equation for modeling long surface gravity waves of small amplitude. (English) Zbl 1414.60048 Stochastic Anal. Appl. 37, No. 3, 377-387 (2019). MSC: 60H15 60H30 60H35 PDF BibTeX XML Cite \textit{S. Sahoo} and \textit{S. Saha Ray}, Stochastic Anal. Appl. 37, No. 3, 377--387 (2019; Zbl 1414.60048) Full Text: DOI
Benahmadi, Abdelhadi; Ghanmi, Allal Non-trivial 1d and 2d Segal-Bargmann transforms. (English) Zbl 1409.44001 Integral Transforms Spec. Funct. 30, No. 7, 547-563 (2019). MSC: 44A15 35A22 33C45 42C05 42A38 32A10 PDF BibTeX XML Cite \textit{A. Benahmadi} and \textit{A. Ghanmi}, Integral Transforms Spec. Funct. 30, No. 7, 547--563 (2019; Zbl 1409.44001) Full Text: DOI
Zayed, Ahmed A new perspective on the two-dimensional fractional Fourier transform and its relationship with the Wigner distribution. (English) Zbl 1430.42013 J. Fourier Anal. Appl. 25, No. 2, 460-487 (2019). Reviewer: Joseph Lakey (Las Cruces) MSC: 42B10 42C05 33C50 94A11 PDF BibTeX XML Cite \textit{A. Zayed}, J. Fourier Anal. Appl. 25, No. 2, 460--487 (2019; Zbl 1430.42013) Full Text: DOI
Sun, Jianshe Analytical approximate solutions of \((n + 1)\)-dimensional fractal Harry Dym equations. (English) Zbl 1433.26008 Fractals 26, No. 6, Article ID 1850094, 15 p. (2018). MSC: 26A33 44A99 28A80 PDF BibTeX XML Cite \textit{J. Sun}, Fractals 26, No. 6, Article ID 1850094, 15 p. (2018; Zbl 1433.26008) Full Text: DOI
Aguilar, Jean-Philippe; Coste, Cyril; Korbel, Jan Series representation of the pricing formula for the European option driven by space-time fractional diffusion. (English) Zbl 1422.91675 Fract. Calc. Appl. Anal. 21, No. 4, 981-1004 (2018). MSC: 91G20 26A33 60G22 44A10 PDF BibTeX XML Cite \textit{J.-P. Aguilar} et al., Fract. Calc. Appl. Anal. 21, No. 4, 981--1004 (2018; Zbl 1422.91675) Full Text: DOI arXiv
Pandey, S. C. The Lorenzo-Hartley’s function for fractional calculus and its applications pertaining to fractional order modelling of anomalous relaxation in dielectrics. (English) Zbl 1401.26015 Comput. Appl. Math. 37, No. 3, 2648-2666 (2018). MSC: 26A33 33E12 33E20 44A10 PDF BibTeX XML Cite \textit{S. C. Pandey}, Comput. Appl. Math. 37, No. 3, 2648--2666 (2018; Zbl 1401.26015) Full Text: DOI
Zayed, Ahmed Two-dimensional fractional Fourier transform and some of its properties. (English) Zbl 1393.42011 Integral Transforms Spec. Funct. 29, No. 7, 553-570 (2018). MSC: 42B10 42C05 33C50 94A11 PDF BibTeX XML Cite \textit{A. Zayed}, Integral Transforms Spec. Funct. 29, No. 7, 553--570 (2018; Zbl 1393.42011) Full Text: DOI
Abelman, S.; Selvakumaran, K. A.; Rashidi, M. M.; Purohit, S. D. Subordination conditions for a class of non-Bazilevič type defined by using fractional \(q\)-calculus operators. (English) Zbl 1474.30038 Facta Univ., Ser. Math. Inf. 32, No. 2, 255-267 (2017). MSC: 30C45 PDF BibTeX XML Cite \textit{S. Abelman} et al., Facta Univ., Ser. Math. Inf. 32, No. 2, 255--267 (2017; Zbl 1474.30038) Full Text: DOI
Sahoo, Subhadarshan; Ray, Santanu Saha The new exact solutions of variant types of time fractional coupled Schrödinger equations in plasma physics. (English) Zbl 1488.35575 J. Appl. Anal. Comput. 7, No. 3, 824-840 (2017). MSC: 35R11 26A33 34A08 PDF BibTeX XML Cite \textit{S. Sahoo} and \textit{S. S. Ray}, J. Appl. Anal. Comput. 7, No. 3, 824--840 (2017; Zbl 1488.35575) Full Text: DOI
Tariq, Hira; Akram, Ghazala New approach for exact solutions of time fractional Cahn-Allen equation and time fractional phi-4 equation. (English) Zbl 1400.35226 Physica A 473, 352-362 (2017). MSC: 35R11 35C05 PDF BibTeX XML Cite \textit{H. Tariq} and \textit{G. Akram}, Physica A 473, 352--362 (2017; Zbl 1400.35226) Full Text: DOI
Sahoo, S.; Saha Ray, Santanu New double-periodic solutions of fractional Drinfeld-Sokolov-Wilson equation in shallow water waves. (English) Zbl 1380.34021 Nonlinear Dyn. 88, No. 3, 1869-1882 (2017). MSC: 34A08 35R11 76B15 34C25 PDF BibTeX XML Cite \textit{S. Sahoo} and \textit{S. Saha Ray}, Nonlinear Dyn. 88, No. 3, 1869--1882 (2017; Zbl 1380.34021) Full Text: DOI
Yang, Chunde; Li, Wenjing; Zhu, Wei Consensus analysis of fractional-order multiagent systems with double-integrator. (English) Zbl 1368.93013 Discrete Dyn. Nat. Soc. 2017, Article ID 9256532, 8 p. (2017). MSC: 93A14 68T42 90B18 93C15 93D05 05C82 34A08 PDF BibTeX XML Cite \textit{C. Yang} et al., Discrete Dyn. Nat. Soc. 2017, Article ID 9256532, 8 p. (2017; Zbl 1368.93013) Full Text: DOI
Sahoo, S.; Ray, S. Saha A new method for exact solutions of variant types of time-fractional Korteweg-de Vries equations in shallow water waves. (English) Zbl 1361.35200 Math. Methods Appl. Sci. 40, No. 1, 106-114 (2017). MSC: 35R11 35Q53 35A01 PDF BibTeX XML Cite \textit{S. Sahoo} and \textit{S. S. Ray}, Math. Methods Appl. Sci. 40, No. 1, 106--114 (2017; Zbl 1361.35200) Full Text: DOI
Sahoo, S.; Saha Ray, S. Solitary wave solutions for time fractional third order modified KdV equation using two reliable techniques \((G^{\prime} / G)\)-expansion method and improved \((G^{\prime} / G)\)-expansion method. (English) Zbl 1400.35204 Physica A 448, 265-282 (2016). MSC: 35Q53 35C08 35R11 PDF BibTeX XML Cite \textit{S. Sahoo} and \textit{S. Saha Ray}, Physica A 448, 265--282 (2016; Zbl 1400.35204) Full Text: DOI
Çenesiz, Y.; Kurt, A. New fractional complex transform for conformable fractional partial differential equations. (English) Zbl 06932191 J. Appl. Math. Stat. Inform. 12, No. 2, 41-47 (2016). MSC: 35R11 34A08 26A33 PDF BibTeX XML Cite \textit{Y. Çenesiz} and \textit{A. Kurt}, J. Appl. Math. Stat. Inform. 12, No. 2, 41--47 (2016; Zbl 06932191) Full Text: DOI
Akbulut, Arzu; Kaplan, Melike; Bekir, Ahmet Auxiliary equation method for fractional differential equations with modified Riemann-Liouville derivative. (English) Zbl 1401.35308 Int. J. Nonlinear Sci. Numer. Simul. 17, No. 7-8, 413-420 (2016). MSC: 35R11 35C05 35Q53 PDF BibTeX XML Cite \textit{A. Akbulut} et al., Int. J. Nonlinear Sci. Numer. Simul. 17, No. 7--8, 413--420 (2016; Zbl 1401.35308) Full Text: DOI
Lopes, António M.; Machado, J. A. Tenreiro Application of fractional techniques in the analysis of forest fires. (English) Zbl 1401.94082 Int. J. Nonlinear Sci. Numer. Simul. 17, No. 7-8, 381-390 (2016). MSC: 94A17 26A33 42A38 65T50 PDF BibTeX XML Cite \textit{A. M. Lopes} and \textit{J. A. T. Machado}, Int. J. Nonlinear Sci. Numer. Simul. 17, No. 7--8, 381--390 (2016; Zbl 1401.94082) Full Text: DOI
Atangana, Abdon; Koca, Ilknur Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order. (English) Zbl 1360.34150 Chaos Solitons Fractals 89, 447-454 (2016). MSC: 34K23 26A33 37M05 PDF BibTeX XML Cite \textit{A. Atangana} and \textit{I. Koca}, Chaos Solitons Fractals 89, 447--454 (2016; Zbl 1360.34150) Full Text: DOI
Saha Ray, S. New exact solutions of nonlinear fractional acoustic wave equations in ultrasound. (English) Zbl 1359.35218 Comput. Math. Appl. 71, No. 3, 859-868 (2016). MSC: 35R11 35B10 35C07 35Q53 76Q05 35L05 PDF BibTeX XML Cite \textit{S. Saha Ray}, Comput. Math. Appl. 71, No. 3, 859--868 (2016; Zbl 1359.35218) Full Text: DOI
Balci, Mehmet Ali Fractional virus epidemic model on financial networks. (English) Zbl 1354.91177 Open Math. 14, 1074-1086 (2016). MSC: 91G80 05C82 26A33 90B10 92D30 PDF BibTeX XML Cite \textit{M. A. Balci}, Open Math. 14, 1074--1086 (2016; Zbl 1354.91177) Full Text: DOI
Aslan, Ismail Exact solutions for a local fractional DDE associated with a nonlinear transmission line. (English) Zbl 1351.34095 Commun. Theor. Phys. 66, No. 3, 315-320 (2016). MSC: 34K37 34A08 34K07 PDF BibTeX XML Cite \textit{I. Aslan}, Commun. Theor. Phys. 66, No. 3, 315--320 (2016; Zbl 1351.34095) Full Text: DOI Link
Sahoo, S.; Saha Ray, S. New solitary wave solutions of time-fractional coupled Jaulent-Miodek equation by using two reliable methods. (English) Zbl 1355.35036 Nonlinear Dyn. 85, No. 2, 1167-1176 (2016). MSC: 35C07 35R11 35P25 47J35 PDF BibTeX XML Cite \textit{S. Sahoo} and \textit{S. Saha Ray}, Nonlinear Dyn. 85, No. 2, 1167--1176 (2016; Zbl 1355.35036) Full Text: DOI
Nigmatullin, Raoul R.; Khamzin, Airat A.; Baleanu, Dumitru On the Laplace integral representation of multivariate Mittag-Leffler functions in anomalous relaxation. (English) Zbl 1383.78012 Math. Methods Appl. Sci. 39, No. 11, 2983-2992 (2016). MSC: 78A25 26A33 30E20 33E12 35A22 PDF BibTeX XML Cite \textit{R. R. Nigmatullin} et al., Math. Methods Appl. Sci. 39, No. 11, 2983--2992 (2016; Zbl 1383.78012) Full Text: DOI
Bekir, Ahmet; Guner, Ozkan; Aksoy, Esin Periodic and hyperbolic solutions of nonlinear fractional differential equations. (English) Zbl 1335.35272 Appl. Comput. Math. 15, No. 1, 88-95 (2016). MSC: 35R11 34A08 PDF BibTeX XML Cite \textit{A. Bekir} et al., Appl. Comput. Math. 15, No. 1, 88--95 (2016; Zbl 1335.35272) Full Text: Link
Xue, Dingyü; Chen, YangQuan Scientific computing with MATLAB. 2nd edition. (English) Zbl 1344.65001 Boca Raton, FL: CRC Press (ISBN 978-1-4987-5777-5/hbk; 978-0-367-78313-6/pbk; 978-1-315-36785-9/ebook). xvii, 586 p. (2016). Reviewer: Rolf Dieter Grigorieff (Berlin) MSC: 65-01 00A06 68-04 68N15 68W30 65Mxx 65Nxx 65Fxx 65R10 65E05 65H05 65K05 65Lxx 65Dxx 65Cxx 65T60 PDF BibTeX XML Cite \textit{D. Xue} and \textit{Y. Chen}, Scientific computing with MATLAB. 2nd edition. Boca Raton, FL: CRC Press (2016; Zbl 1344.65001) Full Text: DOI
Gómez S., Cesar A. A nonlinear fractional Sharma-Tasso-Olver equation: new exact solutions. (English) Zbl 1410.35274 Appl. Math. Comput. 266, 385-389 (2015). MSC: 35R11 35C05 PDF BibTeX XML Cite \textit{C. A. Gómez S.}, Appl. Math. Comput. 266, 385--389 (2015; Zbl 1410.35274) Full Text: DOI
Sahoo, S.; Saha Ray, S. New approach to find exact solutions of time-fractional Kuramoto-Sivashinsky equation. (English) Zbl 1400.35225 Physica A 434, 240-245 (2015). MSC: 35R11 35C05 35Q53 PDF BibTeX XML Cite \textit{S. Sahoo} and \textit{S. Saha Ray}, Physica A 434, 240--245 (2015; Zbl 1400.35225) Full Text: DOI
Younis, Muhammad; ur Rehman, Hamood; Iftikhar, Muzammal Computational examples of a class of fractional order nonlinear evolution equations using modified extended direct algebraic method. (English) Zbl 1384.65076 J. Comput. Methods Sci. Eng. 15, No. 3, 359-365 (2015). MSC: 65M99 35K55 35R11 PDF BibTeX XML Cite \textit{M. Younis} et al., J. Comput. Methods Sci. Eng. 15, No. 3, 359--365 (2015; Zbl 1384.65076) Full Text: DOI
Jia, Zhijuan; Hu, Mingsheng; Chen, Qiaoling; Jai, Suimin Local fractional differential equations by the exp-function method. (English) Zbl 1356.65210 Int. J. Numer. Methods Heat Fluid Flow 25, No. 8, 1845-1849 (2015). MSC: 65L99 34A08 PDF BibTeX XML Cite \textit{Z. Jia} et al., Int. J. Numer. Methods Heat Fluid Flow 25, No. 8, 1845--1849 (2015; Zbl 1356.65210) Full Text: DOI
Li, Zheng-Biao; Zhu, Wei-Hong Fractional series expansion method for fractional differential equations. (English) Zbl 1356.35271 Int. J. Numer. Methods Heat Fluid Flow 25, No. 7, 1525-1530 (2015). MSC: 35R11 35C10 PDF BibTeX XML Cite \textit{Z.-B. Li} and \textit{W.-H. Zhu}, Int. J. Numer. Methods Heat Fluid Flow 25, No. 7, 1525--1530 (2015; Zbl 1356.35271) Full Text: DOI
Agarwal, Ritu; Paliwal, G. S. Some results on differential subordinations for a class of functions defined using generalized Ruscheweyh derivative operator. (English) Zbl 1355.30011 Int. Bull. Math. Res., IBMR 2, No. 1, Spec. Iss., 16-26 (2015). MSC: 30C45 26A33 44A10 PDF BibTeX XML Cite \textit{R. Agarwal} and \textit{G. S. Paliwal}, Int. Bull. Math. Res., IBMR 2, No. 1, 16--26 (2015; Zbl 1355.30011) Full Text: Link
Bekir, Ahmet; Aksoy, Esin; Cevikel, Adem C. Exact solutions of nonlinear time fractional partial differential equations by sub-equation method. (English) Zbl 1329.35332 Math. Methods Appl. Sci. 38, No. 13, 2779-2784 (2015). MSC: 35R11 35A22 35C05 PDF BibTeX XML Cite \textit{A. Bekir} et al., Math. Methods Appl. Sci. 38, No. 13, 2779--2784 (2015; Zbl 1329.35332) Full Text: DOI
Al-Smadi, Mohammed; Freihat, Asad; Arqub, Omar Abu; Shawagfeh, Nabil A novel multistep generalized differential transform method for solving fractional-order Lü chaotic and hyperchaotic systems. (English) Zbl 1322.65113 J. Comput. Anal. Appl. 19, No. 4, 713-724 (2015). MSC: 65P20 34C28 34A08 65L06 37D45 PDF BibTeX XML Cite \textit{M. Al-Smadi} et al., J. Comput. Anal. Appl. 19, No. 4, 713--724 (2015; Zbl 1322.65113)
Zayed, Ahmed I. Solution of the energy concentration problem in reproducing-kernel Hilbert space. (English) Zbl 1342.46028 SIAM J. Appl. Math. 75, No. 1, 21-37 (2015). MSC: 46E22 94A12 30C40 PDF BibTeX XML Cite \textit{A. I. Zayed}, SIAM J. Appl. Math. 75, No. 1, 21--37 (2015; Zbl 1342.46028) Full Text: DOI
Umarov, Sabir Introduction to fractional and pseudo-differential equations with singular symbols. (English) Zbl 1331.35005 Developments in Mathematics 41. Cham: Springer (ISBN 978-3-319-20770-4/hbk; 978-3-319-20771-1/ebook). xvi, 434 p. (2015). Reviewer: Alexander Schnurr (Siegen) MSC: 35-02 35S05 35R11 47G30 60J75 PDF BibTeX XML Cite \textit{S. Umarov}, Introduction to fractional and pseudo-differential equations with singular symbols. Cham: Springer (2015; Zbl 1331.35005) Full Text: DOI
Ray, S. Saha; Sahoo, S. A novel analytical method with fractional complex transform for new exact solutions of time-fractional fifth-order Sawada-Kotera equation. (English) Zbl 1327.35412 Rep. Math. Phys. 75, No. 1, 63-72 (2015). MSC: 35R11 35C08 35K25 PDF BibTeX XML Cite \textit{S. S. Ray} and \textit{S. Sahoo}, Rep. Math. Phys. 75, No. 1, 63--72 (2015; Zbl 1327.35412) Full Text: DOI
Machado, J. A. Tenreiro; Lopes, António M. Analysis of natural and artificial phenomena using signal processing and fractional calculus. (English) Zbl 1323.92092 Fract. Calc. Appl. Anal. 18, No. 2, 459-478 (2015). MSC: 92C42 26A33 91C20 91G80 86A15 86A10 92C55 PDF BibTeX XML Cite \textit{J. A. T. Machado} and \textit{A. M. Lopes}, Fract. Calc. Appl. Anal. 18, No. 2, 459--478 (2015; Zbl 1323.92092) Full Text: DOI Link
Mathai, A. M. Fractional calculus: a new look. (English) Zbl 1445.26008 J. Ramanujan Soc. Math. Math. Sci. 3, No. 2, 1-16 (2014). MSC: 26A33 44A10 33C60 35J10 PDF BibTeX XML Cite \textit{A. M. Mathai}, J. Ramanujan Soc. Math. Math. Sci. 3, No. 2, 1--16 (2014; Zbl 1445.26008) Full Text: Link
Bardaro, Carlo; Butzer, Paul Leo; Mantellini, Ilaria The exponential sampling theorem of signal analysis and the reproducing kernel formula in the Mellin transform setting. (English) Zbl 1346.94072 Sampl. Theory Signal Image Process. 13, No. 1, 35-66 (2014). MSC: 94A20 30D10 42C15 46E22 PDF BibTeX XML Cite \textit{C. Bardaro} et al., Sampl. Theory Signal Image Process. 13, No. 1, 35--66 (2014; Zbl 1346.94072) Full Text: Link
Singh, Harpal; Kaur, Lakhwinder; Singh, Kulbir Fractional M-band dual tree complex wavelet transform for digital watermarking. (English) Zbl 1322.94023 Sādhanā 39, No. 2, 345-361 (2014). MSC: 94A08 94A62 94A11 PDF BibTeX XML Cite \textit{H. Singh} et al., Sādhanā 39, No. 2, 345--361 (2014; Zbl 1322.94023) Full Text: DOI Link
Prasad, Akhilesh; Kumar, Manish Boundedness of pseudo-differential operator associated with fractional Fourier transform. (English) Zbl 1314.32052 Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 84, No. 4, 549-554 (2014). MSC: 32W25 42B10 45P05 26A33 PDF BibTeX XML Cite \textit{A. Prasad} and \textit{M. Kumar}, Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 84, No. 4, 549--554 (2014; Zbl 1314.32052) Full Text: DOI
Di Matteo, A.; Di Paola, M.; Pirrotta, A. Probabilistic characterization of nonlinear systems under Poisson white noise via complex fractional moments. (English) Zbl 1314.93063 Nonlinear Dyn. 77, No. 3, 729-738 (2014). MSC: 93E12 60H40 PDF BibTeX XML Cite \textit{A. Di Matteo} et al., Nonlinear Dyn. 77, No. 3, 729--738 (2014; Zbl 1314.93063) Full Text: DOI
Shakeel, Muhammad; Ul-Hassan, Qazi Mahmood; Ahmad, Jamshad; Naqvi, Tauseef Exact solutions of the time fractional BBM-Burgers equation by novel \((G^{\prime}/G)\)-expansion method. (English) Zbl 1303.65089 Adv. Math. Phys. 2014, Article ID 181594, 15 p. (2014). MSC: 65M99 35Q53 35A22 PDF BibTeX XML Cite \textit{M. Shakeel} et al., Adv. Math. Phys. 2014, Article ID 181594, 15 p. (2014; Zbl 1303.65089) Full Text: DOI
Ram, Mangey (ed.); Frenkel, Ilia B. (ed.); Gupta, Arpan (ed.) Preface: Applied mathematical techniques in engineering applications and related topics. II. (English) Zbl 1298.00343 Math. Eng. Sci. Aerosp. MESA 5, No. 3, 239-240 (2014). MSC: 00B25 30B40 30E10 34A08 34A37 34K06 34K28 35A24 35Q35 37C25 41A10 43A50 44A10 62N05 65Y10 68M15 68T27 81P45 90B25 92B20 94Cxx PDF BibTeX XML Cite \textit{M. Ram} (ed.) et al., Math. Eng. Sci. Aerosp. MESA 5, No. 3, 239--240 (2014; Zbl 1298.00343) Full Text: Link
Gómez S., Cesar A. A note on the exact solution for the fractional Burgers equation. (English) Zbl 1297.35272 Int. J. Pure Appl. Math. 93, No. 2, 229-232 (2014). MSC: 35R11 35C05 PDF BibTeX XML Cite \textit{C. A. Gómez S.}, Int. J. Pure Appl. Math. 93, No. 2, 229--232 (2014; Zbl 1297.35272) Full Text: DOI Link
He, Ji-Huan Exp-function method for fractional differential equations. (English) Zbl 1401.35317 Int. J. Nonlinear Sci. Numer. Simul. 14, No. 6, 363-366 (2013). MSC: 35R11 35C08 PDF BibTeX XML Cite \textit{J.-H. He}, Int. J. Nonlinear Sci. Numer. Simul. 14, No. 6, 363--366 (2013; Zbl 1401.35317) Full Text: DOI
Su, Wei-Hua; Yang, Xiao-Jun; Jafari, H.; Baleanu, Dumitru Fractional complex transform method for wave equations on Cantor sets within local fractional differential operator. (English) Zbl 1380.35163 Adv. Difference Equ. 2013, Paper No. 97, 8 p. (2013). MSC: 35R11 35A22 35L05 PDF BibTeX XML Cite \textit{W.-H. Su} et al., Adv. Difference Equ. 2013, Paper No. 97, 8 p. (2013; Zbl 1380.35163) Full Text: DOI
Zheng, Bin; Wen, Chuanbao Exact solutions for fractional partial differential equations by a new fractional sub-equation method. (English) Zbl 1379.35347 Adv. Difference Equ. 2013, Paper No. 199, 12 p. (2013). MSC: 35R11 35Q53 35C08 35A22 PDF BibTeX XML Cite \textit{B. Zheng} and \textit{C. Wen}, Adv. Difference Equ. 2013, Paper No. 199, 12 p. (2013; Zbl 1379.35347) Full Text: DOI
Morita, Tohru; Sato, Ken-ichi Liouville and Riemann-Liouville fractional derivatives via contour integrals. (English) Zbl 1312.30051 Fract. Calc. Appl. Anal. 16, No. 3, 630-653 (2013). MSC: 30E10 26A33 PDF BibTeX XML Cite \textit{T. Morita} and \textit{K.-i. Sato}, Fract. Calc. Appl. Anal. 16, No. 3, 630--653 (2013; Zbl 1312.30051) Full Text: DOI
Mohamed, Mohamed S.; Al-Malki, Faisal; Talib, Rabeaa Approximate analytical and numerical solutions to fractional Newell-Whitehead equation by fractional complex transform. (English) Zbl 1322.35165 Int. J. Appl. Math. 26, No. 6, 657-669 (2013). MSC: 35R11 35A22 35A35 PDF BibTeX XML Cite \textit{M. S. Mohamed} et al., Int. J. Appl. Math. 26, No. 6, 657--669 (2013; Zbl 1322.35165)
Mathai, A. M. Fractional integral operators in the complex matrix variate case. (English) Zbl 1283.45008 Linear Algebra Appl. 439, No. 10, 2901-2913 (2013). MSC: 45P05 26A33 44A15 44A35 PDF BibTeX XML Cite \textit{A. M. Mathai}, Linear Algebra Appl. 439, No. 10, 2901--2913 (2013; Zbl 1283.45008) Full Text: DOI
Pan, Lin; Guan, Zhihong; Zhou, Long Chaos multiscale-synchronization between two different fractional-order hyperchaotic systems based on feedback control. (English) Zbl 1275.34073 Int. J. Bifurcation Chaos Appl. Sci. Eng. 23, No. 8, Article ID 1350146, 16 p. (2013). MSC: 34D06 34A08 34H15 34C28 PDF BibTeX XML Cite \textit{L. Pan} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 23, No. 8, Article ID 1350146, 16 p. (2013; Zbl 1275.34073) Full Text: DOI
Castro, L. P.; Saitoh, S. Fractional functions and their representations. (English) Zbl 1285.46024 Complex Anal. Oper. Theory 7, No. 4, 1049-1063 (2013). MSC: 46E22 42A38 47B32 30C40 PDF BibTeX XML Cite \textit{L. P. Castro} and \textit{S. Saitoh}, Complex Anal. Oper. Theory 7, No. 4, 1049--1063 (2013; Zbl 1285.46024) Full Text: DOI
Kumar, Sanoj; Kumar, Sanjeev; Raman, Balasubramanian; Sukavanam, N. Image disparity estimation based on fractional dual-tree complex wavelet transform: a multi-scale approach. (English) Zbl 1266.42086 Int. J. Wavelets Multiresolut. Inf. Process. 11, No. 1, Paper No. 1350004, 21 p. (2013). Reviewer: Constantin Popa (Constanţa) MSC: 42C40 PDF BibTeX XML Cite \textit{S. Kumar} et al., Int. J. Wavelets Multiresolut. Inf. Process. 11, No. 1, Paper No. 1350004, 21 p. (2013; Zbl 1266.42086) Full Text: DOI
Ibrahim, Rabha W. Fractional complex transforms for fractional differential equations. (English) Zbl 1377.35266 Adv. Difference Equ. 2012, Paper No. 192, 12 p. (2012). MSC: 35R11 PDF BibTeX XML Cite \textit{R. W. Ibrahim}, Adv. Difference Equ. 2012, Paper No. 192, 12 p. (2012; Zbl 1377.35266) Full Text: DOI
Castro, L. P.; Saitoh, S. Applications of reproducing kernels to fractional functions and convolution inequalities. (English) Zbl 1302.46017 Burenkov, V. I. (ed.) et al., Progress in analysis. Proceedings of the 8th congress of the International Society for Analysis, its Applications, and Computation (ISAAC), Moscow, Russia, August 22–27, 2011. Volume 1. Moscow: Peoples’ Friendship University of Russia (ISBN 978-5-209-04582-3/hbk). 230-237 (2012). MSC: 46E22 30C40 44A35 44A10 PDF BibTeX XML Cite \textit{L. P. Castro} and \textit{S. Saitoh}, in: Progress in analysis. Proceedings of the 8th congress of the International Society for Analysis, its Applications, and Computation (ISAAC), Moscow, Russia, August 22--27, 2011. Volume 1. Moscow: Peoples' Friendship University of Russia. 230--237 (2012; Zbl 1302.46017)
Goyal, Amit; Alka; Raju, Thokala Soloman; Kumar, C. Nagaraja Lorentzian-type soliton solutions of ac-driven complex Ginzburg-Landau equation. (English) Zbl 1290.35258 Appl. Math. Comput. 218, No. 24, 11931-11937 (2012). Reviewer: Baasansuren Jadamba (Rochester) MSC: 35Q56 35Q51 65M06 35C09 PDF BibTeX XML Cite \textit{A. Goyal} et al., Appl. Math. Comput. 218, No. 24, 11931--11937 (2012; Zbl 1290.35258) Full Text: DOI
Hibschweiler, R. A. Composition operators on spaces of fractional Cauchy transforms. (English) Zbl 1294.47037 Complex Anal. Oper. Theory 6, No. 4, 897-911 (2012). Reviewer: Evgueni Doubtsov (St. Petersburg) MSC: 47B33 30E20 46E15 PDF BibTeX XML Cite \textit{R. A. Hibschweiler}, Complex Anal. Oper. Theory 6, No. 4, 897--911 (2012; Zbl 1294.47037) Full Text: DOI
He, Ji-Huan; Elagan, S. K.; Li, Z. B. Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. (English) Zbl 1255.26002 Phys. Lett., A 376, No. 4, 257-259 (2012). MSC: 26A33 34K37 34M25 PDF BibTeX XML Cite \textit{J.-H. He} et al., Phys. Lett., A 376, No. 4, 257--259 (2012; Zbl 1255.26002) Full Text: DOI
Obeidat, Abdalla; Gharaibeh, Maen; Al-Ali, Manal; Rousan, Akram Evolution of a current in a resistor. (English) Zbl 1312.94123 Fract. Calc. Appl. Anal. 14, No. 2, 247-259 (2011). MSC: 94C05 26A33 30B10 33E12 44A10 33B15 PDF BibTeX XML Cite \textit{A. Obeidat} et al., Fract. Calc. Appl. Anal. 14, No. 2, 247--259 (2011; Zbl 1312.94123) Full Text: DOI
He, Ji-Huan A short remark on fractional variational iteration method. (English) Zbl 1252.49027 Phys. Lett., A 375, No. 38, 3362-3364 (2011). MSC: 49K05 49S05 26A33 26A18 PDF BibTeX XML Cite \textit{J.-H. He}, Phys. Lett., A 375, No. 38, 3362--3364 (2011; Zbl 1252.49027) Full Text: DOI
Chen, Ren-Yu; Zhou, Ze-Hua Hypercyclicity of weighted composition operators on the unit ball of \(\mathbb C^{N}\). (English) Zbl 1227.47012 J. Korean Math. Soc. 48, No. 5, 969-984 (2011). Reviewer: Antonios Manoussos (Bielefeld) MSC: 47B33 47A16 46E15 32A36 PDF BibTeX XML Cite \textit{R.-Y. Chen} and \textit{Z.-H. Zhou}, J. Korean Math. Soc. 48, No. 5, 969--984 (2011; Zbl 1227.47012) Full Text: DOI
Pan, Lin; Zhou, Wuneng; Zhou, Long; Sun, Kehui Chaos synchronization between two different fractional-order hyperchaotic systems. (English) Zbl 1221.37220 Commun. Nonlinear Sci. Numer. Simul. 16, No. 6, 2628-2640 (2011). MSC: 37N35 93B52 34H10 34A08 34C28 34D06 37D45 PDF BibTeX XML Cite \textit{L. Pan} et al., Commun. Nonlinear Sci. Numer. Simul. 16, No. 6, 2628--2640 (2011; Zbl 1221.37220) Full Text: DOI
Tenreiro Machado, J. A.; Costa, António C.; Quelhas, Maria Dulce Fractional dynamics in DNA. (English) Zbl 1218.92038 Commun. Nonlinear Sci. Numer. Simul. 16, No. 8, 2963-2969 (2011). MSC: 92C40 37N25 37F99 PDF BibTeX XML Cite \textit{J. A. Tenreiro Machado} et al., Commun. Nonlinear Sci. Numer. Simul. 16, No. 8, 2963--2969 (2011; Zbl 1218.92038) Full Text: DOI Link
Gepreel, Khaled A. The homotopy perturbation method applied to the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equations. (English) Zbl 1219.35347 Appl. Math. Lett. 24, No. 8, 1428-1434 (2011). MSC: 35R11 26A33 35A35 35A22 35A24 PDF BibTeX XML Cite \textit{K. A. Gepreel}, Appl. Math. Lett. 24, No. 8, 1428--1434 (2011; Zbl 1219.35347) Full Text: DOI
Krishna, B. T. Studies on fractional order differentiators and integrators: a survey. (English) Zbl 1203.94035 Signal Process. 91, No. 3, 386-426 (2011). MSC: 94A12 34A08 26A33 PDF BibTeX XML Cite \textit{B. T. Krishna}, Signal Process. 91, No. 3, 386--426 (2011; Zbl 1203.94035) Full Text: DOI
Dubtsov, E. S. Families of fractional Cauchy transforms in the ball. (English. Russian original) Zbl 1211.32005 St. Petersbg. Math. J. 21, No. 6, 957-978 (2010); translation from Algebra Anal. 21, No. 6, 151-181 (2009). Reviewer: Boo Rim Choe (Seoul) MSC: 32A26 32A37 PDF BibTeX XML Cite \textit{E. S. Dubtsov}, St. Petersbg. Math. J. 21, No. 6, 957--978 (2010; Zbl 1211.32005); translation from Algebra Anal. 21, No. 6, 151--181 (2009) Full Text: DOI
Chaurasia, V. B. L.; Agnihotri, Mukesh The two dimensional generalized Weyl fractional calculus and special functions. (English) Zbl 1205.26010 Tamkang J. Math. 41, No. 2, 139-148 (2010). Reviewer: Juan J. Trujillo (La Laguna) MSC: 26A33 32A17 PDF BibTeX XML Cite \textit{V. B. L. Chaurasia} and \textit{M. Agnihotri}, Tamkang J. Math. 41, No. 2, 139--148 (2010; Zbl 1205.26010) Full Text: Link