Noghrei, Nafiseh; Kerayechian, Asghar; Soheili, Ali R. Gaussian radial basis function and quadrature sinc method for two-dimensional space-fractional diffusion equations. (English) Zbl 07530122 Math. Sci., Springer 16, No. 1, 87-96 (2022). MSC: 76R50 26A33 PDF BibTeX XML Cite \textit{N. Noghrei} et al., Math. Sci., Springer 16, No. 1, 87--96 (2022; Zbl 07530122) Full Text: DOI OpenURL
An, Shujuan; Tian, Kai; Ding, Zhaodong; Jian, Yongjun Electroosmotic and pressure-driven slip flow of fractional viscoelastic fluids in microchannels. (English) Zbl 07529365 Appl. Math. Comput. 425, Article ID 127073, 9 p. (2022). MSC: 76Axx 76Wxx 26Axx PDF BibTeX XML Cite \textit{S. An} et al., Appl. Math. Comput. 425, Article ID 127073, 9 p. (2022; Zbl 07529365) Full Text: DOI OpenURL
Adjimi, Naas; Benbachir, Maarma Existence results for Langevin equation with Riesz-Caputo fractional derivative. (English) Zbl 07529143 Surv. Math. Appl. 17, 225-239 (2022). MSC: 34-XX 26A33 34B15 PDF BibTeX XML Cite \textit{N. Adjimi} and \textit{M. Benbachir}, Surv. Math. Appl. 17, 225--239 (2022; Zbl 07529143) Full Text: Link OpenURL
Khalouta, Ali A novel representation of numerical solution for fractional Bratu-type equation. (English) Zbl 07528827 Adv. Stud.: Euro-Tbil. Math. J. 15, No. 1, 93-109 (2022). MSC: 65-XX 26A33 34A08 34K28 35C10 PDF BibTeX XML Cite \textit{A. Khalouta}, Adv. Stud.: Euro-Tbil. Math. J. 15, No. 1, 93--109 (2022; Zbl 07528827) Full Text: DOI OpenURL
Liu, Chongyang; Gong, Zhaohua; Teo, Kok Lay; Wang, Song Optimal control of nonlinear fractional-order systems with multiple time-varying delays. (English) Zbl 07528371 J. Optim. Theory Appl. 193, No. 1-3, 856-876 (2022). MSC: 34K37 49M37 90C55 PDF BibTeX XML Cite \textit{C. Liu} et al., J. Optim. Theory Appl. 193, No. 1--3, 856--876 (2022; Zbl 07528371) Full Text: DOI OpenURL
Berra, Fabio From \(A_1\) to \(A_{\infty}\): new mixed inequalities for certain maximal operators. (English) Zbl 07528125 Potential Anal. 57, No. 1, 1-27 (2022). MSC: 42B25 26A33 PDF BibTeX XML Cite \textit{F. Berra}, Potential Anal. 57, No. 1, 1--27 (2022; Zbl 07528125) Full Text: DOI OpenURL
Peng, Li; Zhou, Yong; He, Jia Wei The well-posedness analysis of distributed order fractional diffusion problems on \(\mathbb{R}^N\). (English) Zbl 07528121 Monatsh. Math. 198, No. 2, 445-463 (2022). MSC: 35R11 34A12 26A33 PDF BibTeX XML Cite \textit{L. Peng} et al., Monatsh. Math. 198, No. 2, 445--463 (2022; Zbl 07528121) Full Text: DOI OpenURL
Raheem, Abdur; Afreen, Asma; Khatoon, Areefa Philos-type oscillation criteria for fractional differential equations with impulsive conditions. (English) Zbl 07528039 South East Asian J. Math. Math. Sci. 18, No. 1, 159-178 (2022). MSC: 34-XX 26A33 34A08 34D20 34K11 35R12 PDF BibTeX XML Cite \textit{A. Raheem} et al., South East Asian J. Math. Math. Sci. 18, No. 1, 159--178 (2022; Zbl 07528039) Full Text: Link OpenURL
Aruldoss, R.; Devi, R. Anusuya An efficient fractional integration operational matrix of the Chebyshev wavelets and its applications for multi-order fractional differential equations. (English) Zbl 07528038 South East Asian J. Math. Math. Sci. 18, No. 1, 147-158 (2022). MSC: 42C40 26A33 34A08 PDF BibTeX XML Cite \textit{R. Aruldoss} and \textit{R. A. Devi}, South East Asian J. Math. Math. Sci. 18, No. 1, 147--158 (2022; Zbl 07528038) Full Text: Link OpenURL
Bairwa, R. K.; Kumar, Ajay; Singh, Karan An efficient computational technique for solving generalized time-fractional biological population model. (English) Zbl 07528037 South East Asian J. Math. Math. Sci. 18, No. 1, 129-146 (2022). MSC: 92D25 26A33 33E12 35R11 44A20 PDF BibTeX XML Cite \textit{R. K. Bairwa} et al., South East Asian J. Math. Math. Sci. 18, No. 1, 129--146 (2022; Zbl 07528037) Full Text: Link OpenURL
Kamble, Govind P.; Ul-Haque, Mohammed Mazhar Existence of upper solution of FIE involving generalized Mittag-Leffler function. (English) Zbl 07528036 South East Asian J. Math. Math. Sci. 18, No. 1, 113-128 (2022). MSC: 45L05 26A33 31A10 81Q05 PDF BibTeX XML Cite \textit{G. P. Kamble} and \textit{M. M. Ul-Haque}, South East Asian J. Math. Math. Sci. 18, No. 1, 113--128 (2022; Zbl 07528036) Full Text: Link OpenURL
Yewale, Bhagwat R.; Pachpatte, Deepak B. On some reverses of Minkowski’s, Hölder’s And Hardy’s type inequalities using \(\psi \)-fractional integral operators. (English) Zbl 07528035 South East Asian J. Math. Math. Sci. 18, No. 1, 97-112 (2022). MSC: 26A33 26D10 PDF BibTeX XML Cite \textit{B. R. Yewale} and \textit{D. B. Pachpatte}, South East Asian J. Math. Math. Sci. 18, No. 1, 97--112 (2022; Zbl 07528035) Full Text: Link OpenURL
Zehra, Anum; Younus, Awais; Tunc, Cemil Controllability and observability of linear impulsive differential algebraic system with Caputo fractional derivative. (English) Zbl 07527938 Comput. Methods Differ. Equ. 10, No. 1, 200-214 (2022). MSC: 26A33 34A08 34A37 34H05 93B05 93B07 PDF BibTeX XML Cite \textit{A. Zehra} et al., Comput. Methods Differ. Equ. 10, No. 1, 200--214 (2022; Zbl 07527938) Full Text: DOI OpenURL
Budak, Huseyin; Kara, Hasan; Kapucu, Rabia New midpoint type inequalities for generalized fractional integral. (English) Zbl 07527930 Comput. Methods Differ. Equ. 10, No. 1, 93-108 (2022). MSC: 26D15 26B25 26D10 PDF BibTeX XML Cite \textit{H. Budak} et al., Comput. Methods Differ. Equ. 10, No. 1, 93--108 (2022; Zbl 07527930) Full Text: DOI OpenURL
Aryani, Elnaz; Babaei, Afshin; Valinejad, Ali A numerical technique for solving nonlinear fractional stochastic integro-differential equations with \(n\)-dimensional Wiener process. (English) Zbl 07527928 Comput. Methods Differ. Equ. 10, No. 1, 61-76 (2022). MSC: 45J05 60H20 26A33 65C30 PDF BibTeX XML Cite \textit{E. Aryani} et al., Comput. Methods Differ. Equ. 10, No. 1, 61--76 (2022; Zbl 07527928) Full Text: DOI OpenURL
Harikrishnan, Sugumaran; Baghani, Omid; Kanagarajan, Kuppusamy Qualitative analysis of fractional differential equations with \(\psi\)-Hilfer fractional derivative. (English) Zbl 07527924 Comput. Methods Differ. Equ. 10, No. 1, 1-11 (2022). MSC: 26A33 34A12 30E20 PDF BibTeX XML Cite \textit{S. Harikrishnan} et al., Comput. Methods Differ. Equ. 10, No. 1, 1--11 (2022; Zbl 07527924) Full Text: DOI OpenURL
Nguyen Van Thin Multiplicity and concentration of solutions to a fractional \(p\)-Laplace problem with exponential growth. (English) Zbl 07527817 Ann. Fenn. Math. 47, No. 2, 603-639 (2022). MSC: 35A15 35A23 35J35 35J60 35R11 PDF BibTeX XML Cite \textit{Nguyen Van Thin}, Ann. Fenn. Math. 47, No. 2, 603--639 (2022; Zbl 07527817) Full Text: DOI OpenURL
Jacob, S. Britto; Selvam, A. George Maria Stability of nonlinear hybrid fractional differential equation with Atangana-Baleanu operator. (English) Zbl 07527600 Adv. Differ. Equ. Control Process. 26, 1-19 (2022). MSC: 26A33 34A08 34A12 34D20 PDF BibTeX XML Cite \textit{S. B. Jacob} and \textit{A. G. M. Selvam}, Adv. Differ. Equ. Control Process. 26, 1--19 (2022; Zbl 07527600) Full Text: DOI OpenURL
Abbas, Mohamed I. Positive solutions of boundary value problems for fractional differential equations involving the generalized proportional derivatives. (English) Zbl 07527192 Acta Math. Univ. Comen., New Ser. 91, No. 1, 39-51 (2022). MSC: 34A08 34B18 34B27 PDF BibTeX XML Cite \textit{M. I. Abbas}, Acta Math. Univ. Comen., New Ser. 91, No. 1, 39--51 (2022; Zbl 07527192) Full Text: Link OpenURL
Banihashemi, S.; Jafari, H.; Babaei, A. An efficient computational scheme to solve a class of fractional stochastic systems with mixed delays. (English) Zbl 07526831 Commun. Nonlinear Sci. Numer. Simul. 111, Article ID 106408, 24 p. (2022). MSC: 34K37 34K50 60H35 65C30 PDF BibTeX XML Cite \textit{S. Banihashemi} et al., Commun. Nonlinear Sci. Numer. Simul. 111, Article ID 106408, 24 p. (2022; Zbl 07526831) Full Text: DOI OpenURL
Tuan, Hoang The Smallest asymptotic bound of solutions to positive mixed fractional-order inhomogeneous linear systems with time-varying delays. (English) Zbl 07526681 J. Franklin Inst. 359, No. 8, 3768-3778 (2022). MSC: 93D20 93C28 26A33 93C05 PDF BibTeX XML Cite \textit{H. T. Tuan}, J. Franklin Inst. 359, No. 8, 3768--3778 (2022; Zbl 07526681) Full Text: DOI OpenURL
Lazreg, Jamal Eddine; Benkhettou, Nadia; Benchohra, Mouffak; Karapinar, Erdal Neutral functional sequential differential equations with Caputo fractional derivative on time scales. (English) Zbl 07525635 Fixed Point Theory Algorithms Sci. Eng. 2022, Paper No. 6, 16 p. (2022). MSC: 26A33 34A08 PDF BibTeX XML Cite \textit{J. E. Lazreg} et al., Fixed Point Theory Algorithms Sci. Eng. 2022, Paper No. 6, 16 p. (2022; Zbl 07525635) Full Text: DOI OpenURL
Yang, Shuping; Xiong, Xiangtuan; Pan, Ping; Sun, Yue Stationary iterated weighted Tikhonov regularization method for identifying an unknown source term of time-fractional radial heat equation. (English) Zbl 07525426 Numer. Algorithms 90, No. 2, 881-903 (2022). MSC: 65M32 65M30 65J20 65M12 65M15 35B45 35B65 35K05 35R30 35R25 26A33 35R11 35Q79 PDF BibTeX XML Cite \textit{S. Yang} et al., Numer. Algorithms 90, No. 2, 881--903 (2022; Zbl 07525426) Full Text: DOI OpenURL
Faisal, Shah; Khan, Muhammad Adil; Khan, Tahir Ullah; Saeed, Tareq; Mohammad Mahdi Sayed, Zaid Mohammmad Unifications of continuous and discrete fractional inequalities of the Hermite-Hadamard-Jensen-Mercer type via majorization. (English) Zbl 07525278 J. Funct. Spaces 2022, Article ID 6964087, 24 p. (2022). MSC: 26D10 26A33 26D15 PDF BibTeX XML Cite \textit{S. Faisal} et al., J. Funct. Spaces 2022, Article ID 6964087, 24 p. (2022; Zbl 07525278) Full Text: DOI OpenURL
Neamah, Majid K.; Ibrahim, Alawiah; Mehdy, Hala Shaker; Redhwan, Saleh S.; Abdo, Mohammed S. Some new fractional inequalities involving convex functions and generalized fractional integral operator. (English) Zbl 07525248 J. Funct. Spaces 2022, Article ID 2350193, 7 p. (2022). MSC: 26D15 26A33 PDF BibTeX XML Cite \textit{M. K. Neamah} et al., J. Funct. Spaces 2022, Article ID 2350193, 7 p. (2022; Zbl 07525248) Full Text: DOI OpenURL
Srivastava, H. M.; Raghavan, Divya; Nagarajan, Sukavanam A comparative study of the stability of some fractional-order cobweb economic models. (English) Zbl 07524915 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 3, Paper No. 98, 20 p. (2022). MSC: 91-XX 26A33 33E12 PDF BibTeX XML Cite \textit{H. M. Srivastava} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 3, Paper No. 98, 20 p. (2022; Zbl 07524915) Full Text: DOI OpenURL
Has, Aykut; Yilmaz, Beyhan Special fractional curve pairs with fractional calculus. (English) Zbl 07524497 Int. Electron. J. Geom. 15, No. 1, 132-144 (2022). MSC: 53A04 26A33 PDF BibTeX XML Cite \textit{A. Has} and \textit{B. Yilmaz}, Int. Electron. J. Geom. 15, No. 1, 132--144 (2022; Zbl 07524497) Full Text: DOI OpenURL
Hamouda, Saada; Mahmoudi, Sofiane Growth of solutions of a class of linear fractional differential equations with polynomial coefficients. (English) Zbl 07524449 Opusc. Math. 42, No. 3, 415-426 (2022). MSC: 34M10 26A33 PDF BibTeX XML Cite \textit{S. Hamouda} and \textit{S. Mahmoudi}, Opusc. Math. 42, No. 3, 415--426 (2022; Zbl 07524449) Full Text: DOI OpenURL
Asl, Malek A.; Saei, Farhad D.; Javidi, Mohammad; Mahmoudi, Yaghoub Stability and error of the new numerical solution of fractional Riesz space telegraph equation with time delay. (English) Zbl 07524410 Facta Univ., Ser. Math. Inf. 37, No. 1, 137-158 (2022). MSC: 34A08 33F05 26A33 PDF BibTeX XML Cite \textit{M. A. Asl} et al., Facta Univ., Ser. Math. Inf. 37, No. 1, 137--158 (2022; Zbl 07524410) Full Text: DOI OpenURL
Çetinkaya, Süleyman; Bayrak, Mine Aylin; Demir, Ali; Baleanu, Dumitru Solutions for the fractional mathematical models of diffusion process. (English) Zbl 07524408 Facta Univ., Ser. Math. Inf. 37, No. 1, 103-120 (2022). MSC: 34K37 35A22 26A33 PDF BibTeX XML Cite \textit{S. Çetinkaya} et al., Facta Univ., Ser. Math. Inf. 37, No. 1, 103--120 (2022; Zbl 07524408) Full Text: DOI OpenURL
Saadi, Abdelkader; Houas, Mohamed Existence and Ulam stability of solutions for nonlinear Caputo-Hadamard fractional differential equations involving two fractional orders. (English) Zbl 07524407 Facta Univ., Ser. Math. Inf. 37, No. 1, 089-102 (2022). MSC: 26A33 34A12 PDF BibTeX XML Cite \textit{A. Saadi} and \textit{M. Houas}, Facta Univ., Ser. Math. Inf. 37, No. 1, 089--102 (2022; Zbl 07524407) Full Text: DOI OpenURL
Roidos, Nikolaos; Shao, Yuanzhen Functional inequalities involving nonlocal operators on complete Riemannian manifolds and their applications to the fractional porous medium equation. (English) Zbl 07524389 Evol. Equ. Control Theory 11, No. 3, 793-825 (2022). MSC: 26A33 35R11 76S05 35K65 35K67 35R01 39B62 PDF BibTeX XML Cite \textit{N. Roidos} and \textit{Y. Shao}, Evol. Equ. Control Theory 11, No. 3, 793--825 (2022; Zbl 07524389) Full Text: DOI OpenURL
Dragomir, Silvestru Server Some inequalities of Ostrowski type for double integral mean of absolutely continuous functions. (English) Zbl 07523958 Math. Pannonica (N.S.) 28, No. 1, 32-43 (2022). MSC: 26D15 26D10 26D07 26A33 PDF BibTeX XML Cite \textit{S. S. Dragomir}, Math. Pannonica (N.S.) 28, No. 1, 32--43 (2022; Zbl 07523958) Full Text: DOI OpenURL
Guerfi, Abderrahim; Ardjouni, Abdelouaheb Existence, uniqueness, continuous dependence and Ulam stability of mild solutions for an iterative fractional differential equation. (English. French summary) Zbl 07523613 Cubo 24, No. 1, 83-94 (2022). MSC: 34K37 34K40 34K14 45G05 47H09 47H10 PDF BibTeX XML Cite \textit{A. Guerfi} and \textit{A. Ardjouni}, Cubo 24, No. 1, 83--94 (2022; Zbl 07523613) Full Text: Link OpenURL
Ogawa, Shigeyoshi Mean value theorems for the noncausal stochastic integral. (English) Zbl 07523448 Japan J. Ind. Appl. Math. 39, No. 2, 801-814 (2022). MSC: 60H05 60H99 60J65 26A24 26A33 PDF BibTeX XML Cite \textit{S. Ogawa}, Japan J. Ind. Appl. Math. 39, No. 2, 801--814 (2022; Zbl 07523448) Full Text: DOI OpenURL
Pattnaik, Ashapurna; Padhan, Saroj Kumar; Mohapatra, R. N. Sufficient conditions for extremum of fractional variational problems. (English) Zbl 07523412 RAIRO, Oper. Res. 56, No. 2, 637-648 (2022). MSC: 26A33 58E15 34K37 49K10 49K20 35R11 PDF BibTeX XML Cite \textit{A. Pattnaik} et al., RAIRO, Oper. Res. 56, No. 2, 637--648 (2022; Zbl 07523412) Full Text: DOI OpenURL
Chauhan, Rajendrakumar B.; Chudasama, Meera H. A study of the right local general truncated \(M\)-fractional derivative. (English) Zbl 07523397 Commun. Korean Math. Soc. 37, No. 2, 503-520 (2022). MSC: 26A06 26A24 26A33 26A42 33E12 PDF BibTeX XML Cite \textit{R. B. Chauhan} and \textit{M. H. Chudasama}, Commun. Korean Math. Soc. 37, No. 2, 503--520 (2022; Zbl 07523397) Full Text: DOI OpenURL
Natali, Fábio; Le, Uyen; Pelinovsky, Dmitry E. Periodic waves in the fractional modified Korteweg-de Vries equation. (English) Zbl 07522538 J. Dyn. Differ. Equations 34, No. 2, 1601-1640 (2022); correction ibid. 34, No. 2, 1641-1642 (2022). MSC: 76B15 76M30 35Q35 35Q53 26A33 PDF BibTeX XML Cite \textit{F. Natali} et al., J. Dyn. Differ. Equations 34, No. 2, 1601--1640 (2022; Zbl 07522538) Full Text: DOI OpenURL
Singh, Vikram; Chaudhary, Renu; Som, Lalit Kumar Approximate controllability of stochastic differential system with non-Lipschitz conditions. (English) Zbl 07517489 Stochastic Anal. Appl. 40, No. 3, 505-519 (2022). MSC: 34-XX 26A33 34A08 47H10 34G20 34A12 65C30 PDF BibTeX XML Cite \textit{V. Singh} et al., Stochastic Anal. Appl. 40, No. 3, 505--519 (2022; Zbl 07517489) Full Text: DOI OpenURL
Set, Erhan; Choi, Junesang; Demİrbaş, Sevdenur Some new Chebyshev type inequalities for fractional integral operator containing a further extension of Mittag-Leffler function in the kernel. (English) Zbl 07517304 Afr. Mat. 33, No. 2, Paper No. 42, 9 p. (2022). MSC: 26A33 26D10 33B15 33E12 PDF BibTeX XML Cite \textit{E. Set} et al., Afr. Mat. 33, No. 2, Paper No. 42, 9 p. (2022; Zbl 07517304) Full Text: DOI OpenURL
Khochemane, Houssem Eddine; Ardjouni, Abdelouaheb; Zitouni, Salah Existence and Ulam stability results for two orders neutral fractional differential equations. (English) Zbl 07517297 Afr. Mat. 33, No. 2, Paper No. 35, 16 p. (2022). MSC: 26A33 34A08 34K05 PDF BibTeX XML Cite \textit{H. E. Khochemane} et al., Afr. Mat. 33, No. 2, Paper No. 35, 16 p. (2022; Zbl 07517297) Full Text: DOI OpenURL
Saanouni, Tarek; Nafti, Hayat Decay of radial solutions to a class of defocusing mass-sub-critical fractional Schrödinger equations. (English) Zbl 07517128 Ann. Funct. Anal. 13, No. 3, Paper No. 34, 17 p. (2022). MSC: 35Q55 35J10 35B40 81Q05 26A33 35R11 PDF BibTeX XML Cite \textit{T. Saanouni} and \textit{H. Nafti}, Ann. Funct. Anal. 13, No. 3, Paper No. 34, 17 p. (2022; Zbl 07517128) Full Text: DOI OpenURL
Guariglia, Emanuel Fractional calculus of the Lerch zeta function. (English) Zbl 07516913 Mediterr. J. Math. 19, No. 3, Paper No. 109, 11 p. (2022). MSC: 11-XX 26A33 11M35 30D05 PDF BibTeX XML Cite \textit{E. Guariglia}, Mediterr. J. Math. 19, No. 3, Paper No. 109, 11 p. (2022; Zbl 07516913) Full Text: DOI OpenURL
Saanouni, Tarek; Alharbi, Majed Ghazi Fractional Choquard equations with an inhomogeneous combined non-linearity. (English) Zbl 07516912 Mediterr. J. Math. 19, No. 3, Paper No. 108, 24 p. (2022). MSC: 35Q55 35B44 35A01 26A33 35R11 PDF BibTeX XML Cite \textit{T. Saanouni} and \textit{M. G. Alharbi}, Mediterr. J. Math. 19, No. 3, Paper No. 108, 24 p. (2022; Zbl 07516912) Full Text: DOI OpenURL
Vabishchevich, Petr N. Factorized schemes for first and second order evolution equations with fractional powers of operators. (English) Zbl 07516755 Comput. Methods Appl. Math. 22, No. 2, 493-510 (2022). MSC: 65-XX 26A33 35R11 65F60 65M06 PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, Comput. Methods Appl. Math. 22, No. 2, 493--510 (2022; Zbl 07516755) Full Text: DOI OpenURL
Tavasani, B. Bagherzadeh; Sheikhani, A. H. Refahi; Aminikhah, H. Numerical scheme to solve a class of variable-order Hilfer-Prabhakar fractional differential equations with Jacobi wavelets polynomials. (English) Zbl 07515500 Appl. Math., Ser. B (Engl. Ed.) 37, No. 1, 35-51 (2022). MSC: 26A33 34A08 65N35 PDF BibTeX XML Cite \textit{B. B. Tavasani} et al., Appl. Math., Ser. B (Engl. Ed.) 37, No. 1, 35--51 (2022; Zbl 07515500) Full Text: DOI OpenURL
Yin, Baoli; Liu, Yang; Li, Hong; Zhang, Zhimin Efficient shifted fractional trapezoidal rule for subdiffusion problems with nonsmooth solutions on uniform meshes. (English) Zbl 07515303 BIT 62, No. 2, 631-666 (2022). MSC: 65-XX 26A33 65D25 65D30 PDF BibTeX XML Cite \textit{B. Yin} et al., BIT 62, No. 2, 631--666 (2022; Zbl 07515303) Full Text: DOI OpenURL
Irmak, Hüseyin An extensive note on various fractional-order type operators and some of their effects to certain holomorphic functions. (English) Zbl 07513766 Ann. Univ. Paedagog. Crac., Stud. Math. 355(21), 7-15 (2022). MSC: 30-XX 26A33 35A30 41A58 30C55 33D15 26E05 30K05 PDF BibTeX XML Cite \textit{H. Irmak}, Ann. Univ. Paedagog. Crac., Stud. Math. 355(21), 7--15 (2022; Zbl 07513766) Full Text: DOI OpenURL
Ma, Li Comparative analysis on the blow-up occurrence of solutions to Hadamard type fractional differential systems. (English) Zbl 07513116 Int. J. Comput. Math. 99, No. 5, 895-908 (2022). MSC: 26A33 74H35 PDF BibTeX XML Cite \textit{L. Ma}, Int. J. Comput. Math. 99, No. 5, 895--908 (2022; Zbl 07513116) Full Text: DOI OpenURL
Ma, Fangfang Fractional version of the Jensen-Mercer and Hermite-Jensen-Mercer type inequalities for strongly h-convex function. (English) Zbl 07512926 AIMS Math. 7, No. 1, 784-803 (2022). MSC: 26D15 26A33 26A51 PDF BibTeX XML Cite \textit{F. Ma}, AIMS Math. 7, No. 1, 784--803 (2022; Zbl 07512926) Full Text: DOI OpenURL
Manigandan, M.; Muthaiah, Subramanian; Nandhagopal, T.; Vadivel, R.; Unyong, B.; Gunasekaran, N. Existence results for coupled system of nonlinear differential equations and inclusions involving sequential derivatives of fractional order. (English) Zbl 07512924 AIMS Math. 7, No. 1, 723-755 (2022). MSC: 34A08 34A60 34B10 PDF BibTeX XML Cite \textit{M. Manigandan} et al., AIMS Math. 7, No. 1, 723--755 (2022; Zbl 07512924) Full Text: DOI OpenURL
Soontharanon, Jarunee; Sitthiwirattham, Thanin On sequential fractional Caputo \((p, q)\)-integrodifference equations via three-point fractional Riemann-Liouville \((p, q)\)-difference boundary condition. (English) Zbl 07512923 AIMS Math. 7, No. 1, 704-722 (2022). MSC: 39A13 39A27 39A70 26A33 PDF BibTeX XML Cite \textit{J. Soontharanon} and \textit{T. Sitthiwirattham}, AIMS Math. 7, No. 1, 704--722 (2022; Zbl 07512923) Full Text: DOI OpenURL
Yue, Ye; Farid, Ghulam; Demirel, Ayșe Kübra; Nazeer, Waqas; Zhao, Yinghui Hadamard and Fejér-Hadamard inequalities for generalized \(k\)-fractional integrals involving further extension of Mittag-Leffler function. (English) Zbl 07512922 AIMS Math. 7, No. 1, 681-703 (2022). MSC: 26D15 26A33 26A51 33E12 PDF BibTeX XML Cite \textit{Y. Yue} et al., AIMS Math. 7, No. 1, 681--703 (2022; Zbl 07512922) Full Text: DOI OpenURL
Wattanakejorn, Varaporn; Ntouyas, Sotiris K.; Sitthiwirattham, Thanin On a boundary value problem for fractional Hahn integro-difference equations with four-point fractional integral boundary conditions. (English) Zbl 07512919 AIMS Math. 7, No. 1, 632-650 (2022). MSC: 39A13 39A27 39A70 47N20 05A30 26A33 PDF BibTeX XML Cite \textit{V. Wattanakejorn} et al., AIMS Math. 7, No. 1, 632--650 (2022; Zbl 07512919) Full Text: DOI OpenURL
Farhadi, Afshin; Hanert, Emmanuel A fractional diffusion model of CD\(8^+\) T cells response to parasitic infection in the brain. (English) Zbl 07512752 Math. Model. Nat. Phenom. 17, Paper No. 3, 21 p. (2022). MSC: 35Q92 26A33 60K50 35K57 35Q92 65M60 PDF BibTeX XML Cite \textit{A. Farhadi} and \textit{E. Hanert}, Math. Model. Nat. Phenom. 17, Paper No. 3, 21 p. (2022; Zbl 07512752) Full Text: DOI OpenURL
Sweilam, Nasser H.; Assiri, Taghreed A.; Hasan, Muner M. Abou Optimal control problem of variable-order delay system of advertising procedure: numerical treatment. (English) Zbl 07512226 Discrete Contin. Dyn. Syst., Ser. S 15, No. 5, 1247-1268 (2022). MSC: 49S05 26A33 49M25 65L03 91Bxx PDF BibTeX XML Cite \textit{N. H. Sweilam} et al., Discrete Contin. Dyn. Syst., Ser. S 15, No. 5, 1247--1268 (2022; Zbl 07512226) Full Text: DOI OpenURL
Latif, Asia; Hussain, Rashida New Hadamard-type inequalities for \(E\)-convex functions involving generalized fractional integrals. (English) Zbl 07512190 J. Inequal. Appl. 2022, Paper No. 35, 18 p. (2022). MSC: 26A51 39B62 26D15 26D10 PDF BibTeX XML Cite \textit{A. Latif} and \textit{R. Hussain}, J. Inequal. Appl. 2022, Paper No. 35, 18 p. (2022; Zbl 07512190) Full Text: DOI OpenURL
Boutiara, Abdellatif; Benbachir, Maamar; Kaabar, Mohammed K. A.; Martínez, Francisco; Samei, Mohammad Esmael; Kaplan, Melike Explicit iteration and unbounded solutions for fractional \(q\)-difference equations with boundary conditions on an infinite interval. (English) Zbl 07512184 J. Inequal. Appl. 2022, Paper No. 29, 27 p. (2022). MSC: 26A33 34A08 PDF BibTeX XML Cite \textit{A. Boutiara} et al., J. Inequal. Appl. 2022, Paper No. 29, 27 p. (2022; Zbl 07512184) Full Text: DOI OpenURL
Malik, Sumaiya; Khan, Khuram Ali; Nosheen, Ammara; Awan, Khalid Mahmood Generalization of Montgomery identity via Taylor formula on time scales. (English) Zbl 07512179 J. Inequal. Appl. 2022, Paper No. 24, 17 p. (2022). MSC: 26D15 26A33 26A51 26E70 39B62 PDF BibTeX XML Cite \textit{S. Malik} et al., J. Inequal. Appl. 2022, Paper No. 24, 17 p. (2022; Zbl 07512179) Full Text: DOI OpenURL
Awan, Muhammad Uzair; Kashuri, Artion; Nisar, Kottakkaran Sooppy; Javed, Muhammad Zakria; Iftikhar, Sabah; Kumam, Poom; Chaipunya, Parin New fractional identities, associated novel fractional inequalities with applications to means and error estimations for quadrature formulas. (English) Zbl 07512158 J. Inequal. Appl. 2022, Paper No. 3, 34 p. (2022). MSC: 26A51 26A33 26D07 26D10 26D15 PDF BibTeX XML Cite \textit{M. U. Awan} et al., J. Inequal. Appl. 2022, Paper No. 3, 34 p. (2022; Zbl 07512158) Full Text: DOI OpenURL
Asim, Muhammad; Hussain, Amjad; Sarfraz, Naqash Weighted variable Morrey-Herz estimates for fractional Hardy operators. (English) Zbl 07512157 J. Inequal. Appl. 2022, Paper No. 2, 12 p. (2022). MSC: 42B35 26D10 47B38 47G10 PDF BibTeX XML Cite \textit{M. Asim} et al., J. Inequal. Appl. 2022, Paper No. 2, 12 p. (2022; Zbl 07512157) Full Text: DOI OpenURL
Butt, Saad Ihsan; Agarwal, Praveen; Yousaf, Saba; Guirao, Juan L. G. Generalized fractal Jensen and Jensen-Mercer inequalities for harmonic convex function with applications. (English) Zbl 07512156 J. Inequal. Appl. 2022, Paper No. 1, 18 p. (2022). MSC: 26D10 26A51 26A33 PDF BibTeX XML Cite \textit{S. I. Butt} et al., J. Inequal. Appl. 2022, Paper No. 1, 18 p. (2022; Zbl 07512156) Full Text: DOI OpenURL
Cresson, Jacky; Jiménez, Fernando; Ober-Blöbaum, Sina Continuous and discrete Noether’s fractional conserved quantities for restricted calculus of variations. (English) Zbl 07512089 J. Geom. Mech. 14, No. 1, 57-89 (2022). MSC: 49K21 26A33 70Hxx 70G65 37M15 PDF BibTeX XML Cite \textit{J. Cresson} et al., J. Geom. Mech. 14, No. 1, 57--89 (2022; Zbl 07512089) Full Text: DOI OpenURL
Xu, Shuli; Feng, Yuqiang; Jiang, Jun; Nie, Na A variation of constant formula for Caputo fractional stochastic differential equations with jump-diffusion. (English) Zbl 07512049 Stat. Probab. Lett. 185, Article ID 109406, 11 p. (2022). MSC: 60H05 34K05 34A12 26A33 PDF BibTeX XML Cite \textit{S. Xu} et al., Stat. Probab. Lett. 185, Article ID 109406, 11 p. (2022; Zbl 07512049) Full Text: DOI OpenURL
Georgiev, Slavi G.; Vulkov, Lubin G. Parameter identification approach for a fractional dynamics model of honeybee population. (English) Zbl 07511618 Lirkov, Ivan (ed.) et al., Large-scale scientific computing. 13th international conference, LSSC 2021, Sozopol, Bulgaria, June 7–11, 2021. Revised selected papers. Cham: Springer. Lect. Notes Comput. Sci. 13127, 40-48 (2022). MSC: 92D25 26A33 PDF BibTeX XML Cite \textit{S. G. Georgiev} and \textit{L. G. Vulkov}, Lect. Notes Comput. Sci. 13127, 40--48 (2022; Zbl 07511618) Full Text: DOI OpenURL
Bin-Saad, Maged G.; Hasanov, Anvar; Ruzhansky, Michael Some properties relating to the Mittag-Leffler function of two variables. (English) Zbl 07510853 Integral Transforms Spec. Funct. 33, No. 5, 400-418 (2022). MSC: 33E12 65R10 26A33 PDF BibTeX XML Cite \textit{M. G. Bin-Saad} et al., Integral Transforms Spec. Funct. 33, No. 5, 400--418 (2022; Zbl 07510853) Full Text: DOI OpenURL
Wei, Leilei; Wei, Xiaojing; Tang, Bo Numerical analysis of variable-order fractional KdV-Burgers-Kuramoto equation. (English) Zbl 07510633 Electron Res. Arch. 30, No. 4, 1263-1281 (2022). MSC: 65Mxx PDF BibTeX XML Cite \textit{L. Wei} et al., Electron Res. Arch. 30, No. 4, 1263--1281 (2022; Zbl 07510633) Full Text: DOI OpenURL
Li, Dewang; Qiu, Meilan; Jiang, Jianming; Yang, Shuiping The application of an optimized fractional order accumulated grey model with variable parameters in the total energy consumption of Jiangsu province and the consumption level of Chinese residents. (English) Zbl 07510609 Electron Res. Arch. 30, No. 3, 798-812 (2022). MSC: 93C41 93C15 26A33 90C59 PDF BibTeX XML Cite \textit{D. Li} et al., Electron Res. Arch. 30, No. 3, 798--812 (2022; Zbl 07510609) Full Text: DOI OpenURL
Fan, Qin; Wu, Guo-Cheng; Fu, Hui A note on function space and boundedness of the general fractional integral in continuous time random walk. (English) Zbl 07509993 J. Nonlinear Math. Phys. 29, No. 1, 95-102 (2022). MSC: 26A33 34A08 35R11 PDF BibTeX XML Cite \textit{Q. Fan} et al., J. Nonlinear Math. Phys. 29, No. 1, 95--102 (2022; Zbl 07509993) Full Text: DOI OpenURL
Naik, Parvaiz Ahmad; Ghoreishi, Mohammad; Zu, Jian Approximate solution of a nonlinear fractional-order HIV model using homotopy analysis method. (English) Zbl 07509157 Int. J. Numer. Anal. Model. 19, No. 1, 52-84 (2022). MSC: 26A33 34D20 37M05 37N25 65L20 92B05 93A30 PDF BibTeX XML Cite \textit{P. A. Naik} et al., Int. J. Numer. Anal. Model. 19, No. 1, 52--84 (2022; Zbl 07509157) Full Text: Link OpenURL
Cattani, Carlo Haar wavelet fractional derivative. (English) Zbl 07507907 Proc. Est. Acad. Sci. 71, No. 1, 55-64 (2022). MSC: 42C40 26A33 PDF BibTeX XML Cite \textit{C. Cattani}, Proc. Est. Acad. Sci. 71, No. 1, 55--64 (2022; Zbl 07507907) Full Text: DOI OpenURL
Choudhary, Renu; Singh, Satpal; Kumar, Devendra A second-order numerical scheme for the time-fractional partial differential equations with a time delay. (English) Zbl 07507667 Comput. Appl. Math. 41, No. 3, Paper No. 114, 28 p. (2022). MSC: 26A33 65D07 34K37 65M12 65M70 35R11 PDF BibTeX XML Cite \textit{R. Choudhary} et al., Comput. Appl. Math. 41, No. 3, Paper No. 114, 28 p. (2022; Zbl 07507667) Full Text: DOI OpenURL
Marasi, H. R.; Derakhshan, M. H. Haar wavelet collocation method for variable order fractional integro-differential equations with stability analysis. (English) Zbl 07507659 Comput. Appl. Math. 41, No. 3, Paper No. 106, 19 p. (2022). MSC: 26A33 34A08 65L05 45J99 65R20 PDF BibTeX XML Cite \textit{H. R. Marasi} and \textit{M. H. Derakhshan}, Comput. Appl. Math. 41, No. 3, Paper No. 106, 19 p. (2022; Zbl 07507659) Full Text: DOI OpenURL
Shafiya, M.; Nagamani, G. Extended dissipativity criterion for fractional-order neural networks with time-varying parameter and interval uncertainties. (English) Zbl 07507648 Comput. Appl. Math. 41, No. 3, Paper No. 95, 24 p. (2022). MSC: 26A33 68T07 93D05 PDF BibTeX XML Cite \textit{M. Shafiya} and \textit{G. Nagamani}, Comput. Appl. Math. 41, No. 3, Paper No. 95, 24 p. (2022; Zbl 07507648) Full Text: DOI OpenURL
Rashid, Saima; Abouelmagd, Elbaz I.; Khalid, Aasma; Farooq, Fozia Bashir; Chu, Yu-Ming Some recent developments on dynamical \(\hbar\)-discrete fractional type inequalities in the frame of nonsingular and nonlocal kernels. (English) Zbl 07507594 Fractals 30, No. 2, Article ID 2240110, 15 p. (2022). MSC: 39A13 39A70 34A08 26A33 PDF BibTeX XML Cite \textit{S. Rashid} et al., Fractals 30, No. 2, Article ID 2240110, 15 p. (2022; Zbl 07507594) Full Text: DOI OpenURL
Yuan, Xiaolin; Ren, Guojian; Yu, Yongguang; Sun, Wenjiao Mean-square pinning control of fractional stochastic discrete-time complex networks. (English) Zbl 07507141 J. Franklin Inst. 359, No. 6, 2663-2680 (2022). MSC: 93E03 26A33 93C55 93B70 PDF BibTeX XML Cite \textit{X. Yuan} et al., J. Franklin Inst. 359, No. 6, 2663--2680 (2022; Zbl 07507141) Full Text: DOI OpenURL
Azevedo, Joelma; Pozo, Juan Carlos; Viana, Arlúcio Global solutions to the non-local Navier-Stokes equations. (English) Zbl 07506980 Discrete Contin. Dyn. Syst., Ser. B 27, No. 5, 2515-2535 (2022). MSC: 35Q35 76A05 35R09 26A33 35R11 35B30 35B40 35A01 35A02 PDF BibTeX XML Cite \textit{J. Azevedo} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 5, 2515--2535 (2022; Zbl 07506980) Full Text: DOI OpenURL
Mahato, Kanailal; Singh, Prashant Hardy type uncertainty principles for fractional Hankel transform. (English) Zbl 07506486 J. Pseudo-Differ. Oper. Appl. 13, No. 2, Paper No. 19, 11 p. (2022). MSC: 44A15 42A38 43A32 26D10 33C45 PDF BibTeX XML Cite \textit{K. Mahato} and \textit{P. Singh}, J. Pseudo-Differ. Oper. Appl. 13, No. 2, Paper No. 19, 11 p. (2022; Zbl 07506486) Full Text: DOI OpenURL
Priya, M.; Uthayakumar, R. Fractal dimension of graph of Katugampola fractional integral and some general characterizations. (English) Zbl 07506412 J. Anal. 30, No. 1, 175-193 (2022). MSC: 26A33 28A78 28A80 26B30 PDF BibTeX XML Cite \textit{M. Priya} and \textit{R. Uthayakumar}, J. Anal. 30, No. 1, 175--193 (2022; Zbl 07506412) Full Text: DOI OpenURL
Wu, Cong; Liu, Xinzhi Updating \(t_{k - 1}\) is significant to Caputo fractional order switching systems: a reply to Hu’s comments. (English) Zbl 07505638 Nonlinear Anal., Hybrid Syst. 44, Article ID 101123, 4 p. (2022). MSC: 93C30 93D05 26A33 PDF BibTeX XML Cite \textit{C. Wu} and \textit{X. Liu}, Nonlinear Anal., Hybrid Syst. 44, Article ID 101123, 4 p. (2022; Zbl 07505638) Full Text: DOI OpenURL
Kamalapriya, B.; Balachandran, K.; Annapoorani, N. Existence results for fractional integrodifferential equations of Sobolev type with deviating arguments. (English) Zbl 07505296 J. Appl. Nonlinear Dyn. 11, No. 1, 57-67 (2022). MSC: 45J05 26A33 47N20 PDF BibTeX XML Cite \textit{B. Kamalapriya} et al., J. Appl. Nonlinear Dyn. 11, No. 1, 57--67 (2022; Zbl 07505296) Full Text: DOI OpenURL
Du, Qiang; Tian, Xiaochuan; Wright, Cory; Yu, Yue Nonlocal trace spaces and extension results for nonlocal calculus. (English) Zbl 07505259 J. Funct. Anal. 282, No. 12, Article ID 109453, 63 p. (2022). MSC: 46E35 47G10 35A23 35R11 PDF BibTeX XML Cite \textit{Q. Du} et al., J. Funct. Anal. 282, No. 12, Article ID 109453, 63 p. (2022; Zbl 07505259) Full Text: DOI OpenURL
Jothilakshmi, G.; Vadivoo, B. S.; Almalki, Y.; Debbouche, A. Controllability analysis of multiple fractional order integro-differential damping systems with impulsive interpretation. (English) Zbl 07503436 J. Comput. Appl. Math. 410, Article ID 114204, 14 p. (2022). MSC: 93B05 93C15 93C27 26A33 45J05 PDF BibTeX XML Cite \textit{G. Jothilakshmi} et al., J. Comput. Appl. Math. 410, Article ID 114204, 14 p. (2022; Zbl 07503436) Full Text: DOI OpenURL
Mainardi, Francesco Fractional calculus and waves in linear viscoelasticity. An introduction to mathematical models (to appear). 2nd edition. (English) Zbl 07503096 Singapore: World Scientific (ISBN 978-1-78326-398-1/hbk). 650 p. (2022). MSC: 26-02 74-02 26A33 35Q74 PDF BibTeX XML Cite \textit{F. Mainardi}, Fractional calculus and waves in linear viscoelasticity. An introduction to mathematical models (to appear). 2nd edition. Singapore: World Scientific (2022; Zbl 07503096) Full Text: DOI OpenURL
Sandev Trifce; Iomin, Alexander Special functions of fractional calculus. Applications to diffusion and random search processes (to appear). (English) Zbl 07502796 Singapore: World Scientific (ISBN 978-981-12-5294-5/hbk). 250 p. (2022). MSC: 33-01 26-01 33Cxx 26A33 60Gxx PDF BibTeX XML Cite \textit{Sandev Trifce} and \textit{A. Iomin}, Special functions of fractional calculus. Applications to diffusion and random search processes (to appear). Singapore: World Scientific (2022; Zbl 07502796) Full Text: DOI OpenURL
Chang, Yong-Kui; Wei, Yanyan Pseudo \(S\)-asymptotically Bloch type periodic solutions to fractional integro-differential equations with Stepanov-like force terms. (English) Zbl 07502564 Z. Angew. Math. Phys. 73, No. 2, Paper No. 77, 17 p. (2022). MSC: 34K30 34K37 34K13 45J99 PDF BibTeX XML Cite \textit{Y.-K. Chang} and \textit{Y. Wei}, Z. Angew. Math. Phys. 73, No. 2, Paper No. 77, 17 p. (2022; Zbl 07502564) Full Text: DOI OpenURL
Boutiara, Abdelatif; Benbachir, Maamar; Guerbati, Kaddour Existence and uniqueness solutions of a BVP for nonlinear Caputo-Hadamard fractional differential equation. (English) Zbl 07502359 J. Appl. Nonlinear Dyn. 11, No. 2, 359-374 (2022). MSC: 34A08 34B15 26A33 47N20 PDF BibTeX XML Cite \textit{A. Boutiara} et al., J. Appl. Nonlinear Dyn. 11, No. 2, 359--374 (2022; Zbl 07502359) Full Text: DOI OpenURL
Zhang, Shuaiqi; Chen, Zhen-Qing Fokker-Planck equation for Feynman-Kac transform of anomalous processes. (English) Zbl 1483.60151 Stochastic Processes Appl. 147, 300-326 (2022). MSC: 60K50 35Q84 35R11 60H30 26A33 PDF BibTeX XML Cite \textit{S. Zhang} and \textit{Z.-Q. Chen}, Stochastic Processes Appl. 147, 300--326 (2022; Zbl 1483.60151) Full Text: DOI OpenURL
Yamazaki, Kazuo Remarks on the non-uniqueness in law of the Navier-Stokes equations up to the J.-L. Lions’ exponent. (English) Zbl 07502141 Stochastic Processes Appl. 147, 226-269 (2022). MSC: 35Q30 76D05 35B65 35A02 26A33 35R11 35R60 PDF BibTeX XML Cite \textit{K. Yamazaki}, Stochastic Processes Appl. 147, 226--269 (2022; Zbl 07502141) Full Text: DOI OpenURL
Diop, Amadou; Frederico, Gastão S. F.; Vanterler da C. Sousa, J. On controllability for a class of multi-term time-fractional random differential equations with state-dependent delay. (English) Zbl 07501306 Ann. Funct. Anal. 13, No. 2, Paper No. 20, 23 p. (2022). MSC: 34K35 93B05 34K30 34K37 34K50 60H10 PDF BibTeX XML Cite \textit{A. Diop} et al., Ann. Funct. Anal. 13, No. 2, Paper No. 20, 23 p. (2022; Zbl 07501306) Full Text: DOI OpenURL
Duman, Okan; Develi, Faruk Existence and Hyers-Ulam stability results for partial fractional-order delay differential equations. (English) Zbl 07501062 Result. Math. 77, No. 3, Paper No. 97, 17 p. (2022). MSC: 26A33 34G20 47H10 PDF BibTeX XML Cite \textit{O. Duman} and \textit{F. Develi}, Result. Math. 77, No. 3, Paper No. 97, 17 p. (2022; Zbl 07501062) Full Text: DOI OpenURL
Li, Yulong Integral representation bound of the true solution to the BVP of double-sided fractional diffusion advection reaction equation. (English) Zbl 07501047 Rend. Circ. Mat. Palermo (2) 71, No. 1, 407-428 (2022). MSC: 26A33 34A08 46N20 PDF BibTeX XML Cite \textit{Y. Li}, Rend. Circ. Mat. Palermo (2) 71, No. 1, 407--428 (2022; Zbl 07501047) Full Text: DOI OpenURL
Oliveira, D. S. Properties of \(\psi\)-Mittag-Leffler fractional integrals. (English) Zbl 07501035 Rend. Circ. Mat. Palermo (2) 71, No. 1, 233-246 (2022). MSC: 26A33 33E12 34A08 PDF BibTeX XML Cite \textit{D. S. Oliveira}, Rend. Circ. Mat. Palermo (2) 71, No. 1, 233--246 (2022; Zbl 07501035) Full Text: DOI OpenURL
Abbas, Saïd; Benchohra, Mouffak; Nieto, Juan J. Caputo-Fabrizio fractional differential equations with non instantaneous impulses. (English) Zbl 07501028 Rend. Circ. Mat. Palermo (2) 71, No. 1, 131-144 (2022). MSC: 26A33 34A37 34G20 PDF BibTeX XML Cite \textit{S. Abbas} et al., Rend. Circ. Mat. Palermo (2) 71, No. 1, 131--144 (2022; Zbl 07501028) Full Text: DOI OpenURL
Kumar, Ankit; Jeet, Kamal; Vats, Ramesh Kumar Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. (English) Zbl 1483.34104 Evol. Equ. Control Theory 11, No. 2, 605-619 (2022). MSC: 34K30 34K37 35R11 45G10 93B05 PDF BibTeX XML Cite \textit{A. Kumar} et al., Evol. Equ. Control Theory 11, No. 2, 605--619 (2022; Zbl 1483.34104) Full Text: DOI OpenURL
Ngoc, Tran Bao; Tuan, Nguyen Huy; Sakthivel, R.; O’Regan, Donal Analysis of nonlinear fractional diffusion equations with a Riemann-Liouville derivative. (English) Zbl 07500386 Evol. Equ. Control Theory 11, No. 2, 439-455 (2022). MSC: 26A33 35B65 35B05 35R11 PDF BibTeX XML Cite \textit{T. B. Ngoc} et al., Evol. Equ. Control Theory 11, No. 2, 439--455 (2022; Zbl 07500386) Full Text: DOI OpenURL
Zeng, Biao Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. (English) Zbl 1483.34108 Evol. Equ. Control Theory 11, No. 1, 239-258 (2022). MSC: 34K30 34K37 34K45 93B52 PDF BibTeX XML Cite \textit{B. Zeng}, Evol. Equ. Control Theory 11, No. 1, 239--258 (2022; Zbl 1483.34108) Full Text: DOI OpenURL
Tuan, Nguyen Anh; O’Regan, Donal; Baleanu, Dumitru; Tuan, Nguyen H. On time fractional pseudo-parabolic equations with nonlocal integral conditions. (English) Zbl 07500376 Evol. Equ. Control Theory 11, No. 1, 225-238 (2022). MSC: 26A33 35B65 35R11 PDF BibTeX XML Cite \textit{N. A. Tuan} et al., Evol. Equ. Control Theory 11, No. 1, 225--238 (2022; Zbl 07500376) Full Text: DOI OpenURL
Ramos, Priscila Santos; Sousa, J. Vanterler da C.; de Oliveira, E. Capelas Existence and uniqueness of mild solutions for quasi-linear fractional integro-differential equations. (English) Zbl 1483.34105 Evol. Equ. Control Theory 11, No. 1, 1-24 (2022). MSC: 34K30 34K37 34K45 45J05 47H08 47H10 PDF BibTeX XML Cite \textit{P. S. Ramos} et al., Evol. Equ. Control Theory 11, No. 1, 1--24 (2022; Zbl 1483.34105) Full Text: DOI OpenURL
Gomoyunov, Mikhail Igorevich Minimax solutions of Hamilton-Jacobi equations with fractional coinvariant derivatives. (English) Zbl 07500012 ESAIM, Control Optim. Calc. Var. 28, Paper No. 23, 36 p. (2022). MSC: 35F21 35D99 26A33 35R11 PDF BibTeX XML Cite \textit{M. I. Gomoyunov}, ESAIM, Control Optim. Calc. Var. 28, Paper No. 23, 36 p. (2022; Zbl 07500012) Full Text: DOI OpenURL