Ferreira, Raúl; de Pablo, Arturo Blow-up for a fully fractional heat equation. (English) Zbl 07773449 Discrete Contin. Dyn. Syst. 44, No. 2, 569-584 (2024). MSC: 35B44 35R09 35R11 26A33 PDF BibTeX XML Cite \textit{R. Ferreira} and \textit{A. de Pablo}, Discrete Contin. Dyn. Syst. 44, No. 2, 569--584 (2024; Zbl 07773449) Full Text: DOI arXiv
Rey, Carolina Ana; Saintier, Nicolas Non-local equations and optimal Sobolev inequalities on compact manifolds. (English) Zbl 07767324 J. Geom. Anal. 34, No. 1, Paper No. 17, 33 p. (2024). MSC: 35R01 35A15 35A23 35R11 46E35 58J05 PDF BibTeX XML Cite \textit{C. A. Rey} and \textit{N. Saintier}, J. Geom. Anal. 34, No. 1, Paper No. 17, 33 p. (2024; Zbl 07767324) Full Text: DOI arXiv
Loreti, Paola; Sforza, Daniela; Yamamoto, M. Uniqueness of solution with zero boundary condition for time-fractional wave equations. (English) Zbl 07766560 Appl. Math. Lett. 148, Article ID 108862, 6 p. (2024). Reviewer: Abdallah Bradji (Annaba) MSC: 35R11 PDF BibTeX XML Cite \textit{P. Loreti} et al., Appl. Math. Lett. 148, Article ID 108862, 6 p. (2024; Zbl 07766560) Full Text: DOI
Kong, Lingzheng; Zhu, Liyan; Deng, Youjun Normalized solutions for nonlinear Kirchhoff type equations with low-order fractional Laplacian and critical exponent. (English) Zbl 07766557 Appl. Math. Lett. 147, Article ID 108864, 7 p. (2024). MSC: 35Jxx 35Axx 35Bxx PDF BibTeX XML Cite \textit{L. Kong} et al., Appl. Math. Lett. 147, Article ID 108864, 7 p. (2024; Zbl 07766557) Full Text: DOI
Martínez, Romeo; Gallegos, Armando; Macías-Díaz, Jorge E. A fractional tumor-growth model and the determination of the power law for different cancers based on data fitting. (English) Zbl 07766543 Appl. Math. Lett. 147, Article ID 108840, 5 p. (2024). MSC: 92Cxx 65Dxx 33Exx PDF BibTeX XML Cite \textit{R. Martínez} et al., Appl. Math. Lett. 147, Article ID 108840, 5 p. (2024; Zbl 07766543) Full Text: DOI
Ambrosio, Vincenzo On the uniform vanishing property at infinity of \(W^{s, p}\)-sequences. (English) Zbl 07763103 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 238, Article ID 113398, 17 p. (2024). MSC: 46E35 35R11 35J10 PDF BibTeX XML Cite \textit{V. Ambrosio}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 238, Article ID 113398, 17 p. (2024; Zbl 07763103) Full Text: DOI
Dinh Nguyen Duy Hai On regularization results for a two-dimensional nonlinear time-fractional inverse diffusion problem. (English) Zbl 07762454 J. Math. Anal. Appl. 530, No. 2, Article ID 127721, 35 p. (2024). Reviewer: Abdallah Bradji (Annaba) MSC: 35R30 35R11 65M32 PDF BibTeX XML Cite \textit{Dinh Nguyen Duy Hai}, J. Math. Anal. Appl. 530, No. 2, Article ID 127721, 35 p. (2024; Zbl 07762454) Full Text: DOI
Wang, Shu; Zhang, Shuzhen The global classical solution to compressible system with fractional viscous term. (English) Zbl 07761658 Nonlinear Anal., Real World Appl. 75, Article ID 103963, 19 p. (2024). MSC: 35Qxx 35Bxx 76Nxx PDF BibTeX XML Cite \textit{S. Wang} and \textit{S. Zhang}, Nonlinear Anal., Real World Appl. 75, Article ID 103963, 19 p. (2024; Zbl 07761658) Full Text: DOI
Meng, Yuxi; He, Xiaoming Normalized solutions for the fractional Choquard equations with Hardy-Littlewood-Sobolev upper critical exponent. (English) Zbl 07752320 Qual. Theory Dyn. Syst. 23, No. 1, Paper No. 19, 21 p. (2024). MSC: 35A15 35R11 35J61 PDF BibTeX XML Cite \textit{Y. Meng} and \textit{X. He}, Qual. Theory Dyn. Syst. 23, No. 1, Paper No. 19, 21 p. (2024; Zbl 07752320) Full Text: DOI
Baghani, Hamid; Nieto, Juan J. Some new properties of the Mittag-Leffler functions and their applications to solvability and stability of a class of fractional Langevin differential equations. (English) Zbl 07752319 Qual. Theory Dyn. Syst. 23, No. 1, Paper No. 18, 19 p. (2024). MSC: 26A33 34A12 34A25 PDF BibTeX XML Cite \textit{H. Baghani} and \textit{J. J. Nieto}, Qual. Theory Dyn. Syst. 23, No. 1, Paper No. 18, 19 p. (2024; Zbl 07752319) Full Text: DOI
Kassim, Mohammed D.; Abdeljawad, Thabet Non-existence results for a nonlinear fractional system of differential problems. (English) Zbl 07752318 Qual. Theory Dyn. Syst. 23, No. 1, Paper No. 17, 28 p. (2024). MSC: 34A08 26A33 34A12 PDF BibTeX XML Cite \textit{M. D. Kassim} and \textit{T. Abdeljawad}, Qual. Theory Dyn. Syst. 23, No. 1, Paper No. 17, 28 p. (2024; Zbl 07752318) Full Text: DOI
Macías-Díaz, J. E.; Serna-Reyes, Adán J.; Flores-Oropeza, Luis A. A stable and convergent finite-difference model which conserves the positivity and the dissipativity of Gibbs’ free energy for a nonlinear combustion equation. (English) Zbl 07750661 J. Comput. Appl. Math. 437, Article ID 115492, 13 p. (2024). MSC: 65-XX 35R11 26A33 65M06 65M12 34A08 PDF BibTeX XML Cite \textit{J. E. Macías-Díaz} et al., J. Comput. Appl. Math. 437, Article ID 115492, 13 p. (2024; Zbl 07750661) Full Text: DOI
Nasiri, T.; Zakeri, A.; Aminataei, A. A numerical solution for a quasi solution of the time-fractional stochastic backward parabolic equation. (English) Zbl 07750618 J. Comput. Appl. Math. 437, Article ID 115441, 20 p. (2024). Reviewer: Abdallah Bradji (Annaba) MSC: 65M32 65M30 65M06 65T60 65K10 65J20 65F22 65M12 65M15 60G22 35A15 41A50 35A01 35A02 35R30 26A33 35R11 35R60 PDF BibTeX XML Cite \textit{T. Nasiri} et al., J. Comput. Appl. Math. 437, Article ID 115441, 20 p. (2024; Zbl 07750618) Full Text: DOI
Cheng, Xiaoyu; Wang, Lizhen Fundamental solutions and conservation laws for conformable time fractional partial differential equation. (English) Zbl 07750614 J. Comput. Appl. Math. 437, Article ID 115434, 16 p. (2024). MSC: 35A30 35B06 35R11 26A33 35Q53 PDF BibTeX XML Cite \textit{X. Cheng} and \textit{L. Wang}, J. Comput. Appl. Math. 437, Article ID 115434, 16 p. (2024; Zbl 07750614) Full Text: DOI
Cheng, Xing; Li, Zhiyuan Uniqueness and stability for inverse source problem for fractional diffusion-wave equations. (English) Zbl 07773432 J. Inverse Ill-Posed Probl. 31, No. 6, 885-904 (2023). MSC: 35R30 35R11 26A33 PDF BibTeX XML Cite \textit{X. Cheng} and \textit{Z. Li}, J. Inverse Ill-Posed Probl. 31, No. 6, 885--904 (2023; Zbl 07773432) Full Text: DOI arXiv
Guan, Zhen; Wang, Jungang; Liu, Ying; Nie, Yufeng Unconditional convergence analysis of two linearized Galerkin FEMs for the nonlinear time-fractional diffusion-wave equation. (English) Zbl 07773391 Results Appl. Math. 19, Article ID 100389, 14 p. (2023). MSC: 65Mxx 35Rxx 65Nxx PDF BibTeX XML Cite \textit{Z. Guan} et al., Results Appl. Math. 19, Article ID 100389, 14 p. (2023; Zbl 07773391) Full Text: DOI
Wen, Jin; Li, Zhi-Yuan; Wang, Yong-Ping Solving the backward problem for time-fractional wave equations by the quasi-reversibility regularization method. (English) Zbl 07773319 Adv. Comput. Math. 49, No. 6, Paper No. 80, 26 p. (2023). MSC: 35R11 35K20 35R30 65N21 PDF BibTeX XML Cite \textit{J. Wen} et al., Adv. Comput. Math. 49, No. 6, Paper No. 80, 26 p. (2023; Zbl 07773319) Full Text: DOI
Shen, Xiaohui; Ye, Tiefeng; Shen, Tengfei Existence and multiplicity of solutions for the Cauchy problem of a fractional Lorentz force equation. (English) Zbl 07773200 Bound. Value Probl. 2023, Paper No. 104, 11 p. (2023). MSC: 26A33 34G20 34B15 PDF BibTeX XML Cite \textit{X. Shen} et al., Bound. Value Probl. 2023, Paper No. 104, 11 p. (2023; Zbl 07773200) Full Text: DOI OA License
Liao, Fangfang; Chen, Fulai; Geng, Shifeng; Liu, Dong On nonlinear fractional Choquard equation with indefinite potential and general nonlinearity. (English) Zbl 07773195 Bound. Value Probl. 2023, Paper No. 99, 24 p. (2023). MSC: 35R11 35B32 35J20 35J60 35R09 47J15 58E07 PDF BibTeX XML Cite \textit{F. Liao} et al., Bound. Value Probl. 2023, Paper No. 99, 24 p. (2023; Zbl 07773195) Full Text: DOI OA License
Liu, Yue; Zhao, Zhen; Zhang, Yanni; Pang, Jing Approximate solutions to fractional differential equations. (English) Zbl 07773107 AMM, Appl. Math. Mech., Engl. Ed. 44, No. 10, 1791-1802 (2023). MSC: 76B15 35R11 PDF BibTeX XML Cite \textit{Y. Liu} et al., AMM, Appl. Math. Mech., Engl. Ed. 44, No. 10, 1791--1802 (2023; Zbl 07773107) Full Text: DOI
Helal, Mohamed Random differential hyperbolic equations of fractional order in Fréchet spaces. (English) Zbl 07772702 Random Oper. Stoch. Equ. 31, No. 4, 389-398 (2023). MSC: 35R11 35R60 47H10 PDF BibTeX XML Cite \textit{M. Helal}, Random Oper. Stoch. Equ. 31, No. 4, 389--398 (2023; Zbl 07772702) Full Text: DOI
Araya, Hector; Barrera, John Trajectory fitting estimation for stochastic differential equations driven by fractional Brownian motion. (English) Zbl 07772699 Random Oper. Stoch. Equ. 31, No. 4, 339-349 (2023). MSC: 60G22 62M09 PDF BibTeX XML Cite \textit{H. Araya} and \textit{J. Barrera}, Random Oper. Stoch. Equ. 31, No. 4, 339--349 (2023; Zbl 07772699) Full Text: DOI
Vanterler da C. Sousa, José; Lamine, Mbarki; Tavares, Leandro S. Generalized telegraph equation with fractional \(p(x)\)-Laplacian. (English) Zbl 07772678 Minimax Theory Appl. 8, No. 2, 423-441 (2023). MSC: 35R11 35A15 35L72 47J30 PDF BibTeX XML Cite \textit{J. Vanterler da C. Sousa} et al., Minimax Theory Appl. 8, No. 2, 423--441 (2023; Zbl 07772678) Full Text: arXiv Link
Liu, Yang; Ran, Maohua; Zhang, Li Hamiltonian-preserving schemes for the two-dimensional fractional nonlinear Schrödinger wave equations. (English) Zbl 07772635 Comput. Math. Appl. 150, 54-69 (2023). MSC: 65M70 35Q41 35R11 70H05 PDF BibTeX XML Cite \textit{Y. Liu} et al., Comput. Math. Appl. 150, 54--69 (2023; Zbl 07772635) Full Text: DOI
Wang, Bixiang Uniform large deviations of fractional stochastic equations with polynomial drift on unbounded domains. (English) Zbl 07772257 Stoch. Dyn. 23, No. 6, Article ID 2350049, 32 p. (2023). MSC: 60F10 60H15 37L55 35R60 PDF BibTeX XML Cite \textit{B. Wang}, Stoch. Dyn. 23, No. 6, Article ID 2350049, 32 p. (2023; Zbl 07772257) Full Text: DOI
Mittal, A. K. Two-dimensional Jacobi pseudospectral quadrature solutions of two-dimensional fractional Volterra integral equations. (English) Zbl 07771806 Calcolo 60, No. 4, Paper No. 50, 21 p. (2023). MSC: 65N35 35L65 45D05 65R20 65H10 65D30 65D05 65N15 26A33 35R11 PDF BibTeX XML Cite \textit{A. K. Mittal}, Calcolo 60, No. 4, Paper No. 50, 21 p. (2023; Zbl 07771806) Full Text: DOI
Dasgupta, Aparajita; Kumar, Vishvesh; Mondal, Shyam Swarup Nonlinear fractional damped wave equation on compact Lie groups. (English) Zbl 07770080 Asymptotic Anal. 134, No. 3-4, 485-511 (2023). MSC: 35Qxx PDF BibTeX XML Cite \textit{A. Dasgupta} et al., Asymptotic Anal. 134, No. 3--4, 485--511 (2023; Zbl 07770080) Full Text: DOI arXiv
Attia, Nourhane; Akgül, Ali; Seba, Djamila; Nour, Abdelkader On solutions of time-fractional advection-diffusion equation. (English) Zbl 07769127 Numer. Methods Partial Differ. Equations 39, No. 6, 4489-4516 (2023). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{N. Attia} et al., Numer. Methods Partial Differ. Equations 39, No. 6, 4489--4516 (2023; Zbl 07769127) Full Text: DOI
Quynh, Nguyen Thi On positive supersolutions of fractional elliptic equations with gradient terms. (English) Zbl 07769093 Bull. Iran. Math. Soc. 49, No. 5, Paper No. 65, 18 p. (2023). MSC: 35R11 35B53 35J05 PDF BibTeX XML Cite \textit{N. T. Quynh}, Bull. Iran. Math. Soc. 49, No. 5, Paper No. 65, 18 p. (2023; Zbl 07769093) Full Text: DOI
Ma, Wenxian; Yang, Sibei On BMO and Hardy regularity estimates for a class of non-local elliptic equations. (English) Zbl 07768296 Proc. R. Soc. Edinb., Sect. A, Math. 153, No. 6, 2025-2052 (2023). MSC: 35R11 35B65 47B38 42B20 42B35 PDF BibTeX XML Cite \textit{W. Ma} and \textit{S. Yang}, Proc. R. Soc. Edinb., Sect. A, Math. 153, No. 6, 2025--2052 (2023; Zbl 07768296) Full Text: DOI
Zeng, Li; Wan, Xiaoliang; Zhou, Tao Adaptive deep density approximation for fractional Fokker-Planck equations. (English) Zbl 07766138 J. Sci. Comput. 97, No. 3, Paper No. 68, 31 p. (2023). MSC: 65M75 65C30 68T07 PDF BibTeX XML Cite \textit{L. Zeng} et al., J. Sci. Comput. 97, No. 3, Paper No. 68, 31 p. (2023; Zbl 07766138) Full Text: DOI arXiv
Binh, Ho Duy; Tien, Nguyen van; Minh, Vo Ngoc; Can, Nguyen Huu Terminal value problem for nonlinear parabolic and pseudo-parabolic systems. (English) Zbl 07765964 Discrete Contin. Dyn. Syst., Ser. S 16, No. 10, 2839-2863 (2023). MSC: 35R11 35B65 26A33 35K51 35K70 PDF BibTeX XML Cite \textit{H. D. Binh} et al., Discrete Contin. Dyn. Syst., Ser. S 16, No. 10, 2839--2863 (2023; Zbl 07765964) Full Text: DOI
Tuan, Nguyen Huy; Nguyen, Anh Tuan; Debbouche, Amar; Antonov, Valery Well-posedness results for nonlinear fractional diffusion equation with memory quantity. (English) Zbl 07765963 Discrete Contin. Dyn. Syst., Ser. S 16, No. 10, 2815-2838 (2023). MSC: 35R11 35B65 26A33 35K20 35R09 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Discrete Contin. Dyn. Syst., Ser. S 16, No. 10, 2815--2838 (2023; Zbl 07765963) Full Text: DOI
Wang, Bixiang Uniform large deviation principles of fractional stochastic reaction-diffusion equations on unbounded domains. (English) Zbl 07765960 Discrete Contin. Dyn. Syst., Ser. S 16, No. 10, 2765-2782 (2023). MSC: 60F10 60H15 37L55 35R60 35R11 35K57 PDF BibTeX XML Cite \textit{B. Wang}, Discrete Contin. Dyn. Syst., Ser. S 16, No. 10, 2765--2782 (2023; Zbl 07765960) Full Text: DOI
Zhu, Huijian; Peng, Yuming; Li, Yiyang; Zeng, Caibin Forward dynamics and memory effect in a fractional order chemostat minimal model with non-monotonic growth. (English) Zbl 07765959 Discrete Contin. Dyn. Syst., Ser. S 16, No. 10, 2749-2764 (2023). MSC: 92D25 33E12 34A08 34C60 PDF BibTeX XML Cite \textit{H. Zhu} et al., Discrete Contin. Dyn. Syst., Ser. S 16, No. 10, 2749--2764 (2023; Zbl 07765959) Full Text: DOI
Li, Yajing; Wang, Yejuan; Deng, Weihua; Nie, Daxin Existence and regularity results for semilinear stochastic time-tempered fractional wave equations with multiplicative Gaussian noise and additive fractional Gaussian noise. (English) Zbl 07765957 Discrete Contin. Dyn. Syst., Ser. S 16, No. 10, 2686-2720 (2023). MSC: 35B65 35R11 35R60 60H15 60G22 PDF BibTeX XML Cite \textit{Y. Li} et al., Discrete Contin. Dyn. Syst., Ser. S 16, No. 10, 2686--2720 (2023; Zbl 07765957) Full Text: DOI
Van Au, Vo; Caraballo, Tomás A mixed nonlinear time-fractional Rayleigh-Stokes equation. (English) Zbl 07765952 Discrete Contin. Dyn. Syst., Ser. S 16, No. 10, 2589-2612 (2023). MSC: 26A33 35R11 35K99 65J22 PDF BibTeX XML Cite \textit{V. Van Au} and \textit{T. Caraballo}, Discrete Contin. Dyn. Syst., Ser. S 16, No. 10, 2589--2612 (2023; Zbl 07765952) Full Text: DOI
Li, Lingyu; Chen, Zhang; Caraballo, Tomás Dynamics of a stochastic fractional nonlocal reaction-diffusion model driven by additive noise. (English) Zbl 07765950 Discrete Contin. Dyn. Syst., Ser. S 16, No. 10, 2530-2558 (2023). MSC: 60H15 35B40 35B41 35R60 35R11 35K57 37A50 PDF BibTeX XML Cite \textit{L. Li} et al., Discrete Contin. Dyn. Syst., Ser. S 16, No. 10, 2530--2558 (2023; Zbl 07765950) Full Text: DOI
Liu, Yarong; Wang, Yejuan Asymptotic behaviour of time fractional stochastic delay evolution equations with tempered fractional noise. (English) Zbl 07765948 Discrete Contin. Dyn. Syst., Ser. S 16, No. 10, 2483-2510 (2023). MSC: 34K50 60G22 34K20 34K37 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{Y. Wang}, Discrete Contin. Dyn. Syst., Ser. S 16, No. 10, 2483--2510 (2023; Zbl 07765948) Full Text: DOI
Wibowo, Supriyadi; Suparmi, A.; Indrati, Christiana Rini; Cari, C. Approximate solution of GCF PDM Schrödinger equation for a symmetrical modified Pöschl-Teller potential by GCF Laplace transform method. (English) Zbl 07765000 Int. J. Theor. Phys. 62, No. 10, Paper No. 222, 24 p. (2023). MSC: 81Q05 34A08 26A33 PDF BibTeX XML Cite \textit{S. Wibowo} et al., Int. J. Theor. Phys. 62, No. 10, Paper No. 222, 24 p. (2023; Zbl 07765000) Full Text: DOI
Loh, Jian Rong; Phang, Chang; Isah, Abdulnasir Numerical solution for arbitrary domain of fractional integro-differential equation via the general shifted Genocchi polynomials. (English) Zbl 07764938 J. Funct. Spaces 2023, Article ID 5921425, 12 p. (2023). MSC: 65L03 65R20 34A08 PDF BibTeX XML Cite \textit{J. R. Loh} et al., J. Funct. Spaces 2023, Article ID 5921425, 12 p. (2023; Zbl 07764938) Full Text: DOI
Neves, Wladimir; Orlando, Dionicio On fractional Benney type systems. (English) Zbl 07764537 SIAM J. Math. Anal. 55, No. 6, 7296-7327 (2023). MSC: 35R11 35D30 35Q60 35Q55 PDF BibTeX XML Cite \textit{W. Neves} and \textit{D. Orlando}, SIAM J. Math. Anal. 55, No. 6, 7296--7327 (2023; Zbl 07764537) Full Text: DOI arXiv
Li, Ruinan; Wang, Xinyu Transportation cost-information inequality for a stochastic heat equation driven by fractional-colored noise. (English) Zbl 07764469 Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 6, 2519-2532 (2023). MSC: 60H15 60H20 PDF BibTeX XML Cite \textit{R. Li} and \textit{X. Wang}, Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 6, 2519--2532 (2023; Zbl 07764469) Full Text: DOI
Alikulov, T. N.; Khalmukhamedov, A. R. On fractional powers of the Schrödinger operator with a potential singular on manifolds. (English. Russian original) Zbl 07763818 Russ. Math. 67, No. 5, 8-15 (2023); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2023, No. 5, 11-19 (2023). MSC: 35J10 35R11 PDF BibTeX XML Cite \textit{T. N. Alikulov} and \textit{A. R. Khalmukhamedov}, Russ. Math. 67, No. 5, 8--15 (2023; Zbl 07763818); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2023, No. 5, 11--19 (2023) Full Text: DOI
Kenne, Cyrille; Mophou, Gisèle On a weak maximum principle for a class of fractional diffusive equations. (English) Zbl 07762909 Analysis, München 43, No. 4, 215-230 (2023). MSC: 26A33 35B50 46E35 49K20 PDF BibTeX XML Cite \textit{C. Kenne} and \textit{G. Mophou}, Analysis, München 43, No. 4, 215--230 (2023; Zbl 07762909) Full Text: DOI arXiv
Correia, Jeziel N. Existence and multiplicity results for a doubly nonlocal equation with critical growth. (English) Zbl 07762483 Discrete Contin. Dyn. Syst. 43, No. 12, 4272-4298 (2023). MSC: 35J61 35R11 35B33 35A01 PDF BibTeX XML Cite \textit{J. N. Correia}, Discrete Contin. Dyn. Syst. 43, No. 12, 4272--4298 (2023; Zbl 07762483) Full Text: DOI
Gadzova, L. Kh. Naimark problem for a fractional ordinary differential equation. (English. Russian original) Zbl 07761815 Math. Notes 114, No. 2, 159-164 (2023); translation from Mat. Zametki 114, No. 2, 195-202 (2023). MSC: 26Axx 34Axx 26-XX PDF BibTeX XML Cite \textit{L. Kh. Gadzova}, Math. Notes 114, No. 2, 159--164 (2023; Zbl 07761815); translation from Mat. Zametki 114, No. 2, 195--202 (2023) Full Text: DOI
Durga, N.; Muthukumar, P.; Malik, Muslim Trajectory controllability of Hilfer fractional neutral stochastic differential equation with deviated argument and mixed fractional Brownian motion. (English) Zbl 07761619 Optimization 72, No. 11, 2865-2891 (2023). MSC: 90Cxx 49-XX PDF BibTeX XML Cite \textit{N. Durga} et al., Optimization 72, No. 11, 2865--2891 (2023; Zbl 07761619) Full Text: DOI
Li, Shihu; Liu, Wei; Xie, Yingchao Stochastic 3D Leray-\(\alpha\) model with fractional dissipation. (English) Zbl 07761600 Sci. China, Math. 66, No. 11, 2589-2614 (2023). MSC: 35Q30 76D05 76D03 35A01 35A02 35D30 26A33 35R11 35R60 60H15 PDF BibTeX XML Cite \textit{S. Li} et al., Sci. China, Math. 66, No. 11, 2589--2614 (2023; Zbl 07761600) Full Text: DOI arXiv
Jia, Junqing; Jiang, Xiaoyun Improved uniform error bounds of exponential wave integrator method for long-time dynamics of the space fractional Klein-Gordon equation with weak nonlinearity. (English) Zbl 07761546 J. Sci. Comput. 97, No. 3, Paper No. 58, 30 p. (2023). MSC: 65-XX 35R11 35Q55 65M12 65M15 PDF BibTeX XML Cite \textit{J. Jia} and \textit{X. Jiang}, J. Sci. Comput. 97, No. 3, Paper No. 58, 30 p. (2023; Zbl 07761546) Full Text: DOI arXiv
Gu, Qiling; Chen, Yanping; Zhou, Jianwei; Huang, Yunqing A two-grid virtual element method for nonlinear variable-order time-fractional diffusion equation on polygonal meshes. (English) Zbl 07761285 Int. J. Comput. Math. 100, No. 11, 2124-2139 (2023). MSC: 65M60 65N30 34K37 65M15 65M55 PDF BibTeX XML Cite \textit{Q. Gu} et al., Int. J. Comput. Math. 100, No. 11, 2124--2139 (2023; Zbl 07761285) Full Text: DOI
Guo, Jixiao; Chen, Yanping; Zhou, Jianwei; Huang, Yunqing The virtual element method for solving two-dimensional fractional cable equation on general polygonal meshes. (English) Zbl 07761279 Int. J. Comput. Math. 100, No. 10, 2026-2046 (2023). MSC: 03-08 26A33 35R11 PDF BibTeX XML Cite \textit{J. Guo} et al., Int. J. Comput. Math. 100, No. 10, 2026--2046 (2023; Zbl 07761279) Full Text: DOI
Binh, Tran Thanh; Thang, Bui Dinh; Phuong, Nguyen Duc On initial value problem for elliptic equation on the plane under Caputo derivative. (English) Zbl 07761150 Demonstr. Math. 56, Article ID 20220257, 15 p. (2023). MSC: 35R11 35B65 35J92 60H15 PDF BibTeX XML Cite \textit{T. T. Binh} et al., Demonstr. Math. 56, Article ID 20220257, 15 p. (2023; Zbl 07761150) Full Text: DOI OA License
Boichuk, Oleksandr; Feruk, Viktor Fredholm boundary-value problem for the system of fractional differential equations. (English) Zbl 07760401 Nonlinear Dyn. 111, No. 8, 7459-7468 (2023). MSC: 34A08 34B05 PDF BibTeX XML Cite \textit{O. Boichuk} and \textit{V. Feruk}, Nonlinear Dyn. 111, No. 8, 7459--7468 (2023; Zbl 07760401) Full Text: DOI
Vellappandi, M.; Kumar, Pushpendra; Govindaraj, V. Role of fractional derivatives in the mathematical modeling of the transmission of chlamydia in the United States from 1989 to 2019. (English) Zbl 07760320 Nonlinear Dyn. 111, No. 5, 4915-4929 (2023). MSC: 92D30 26A33 34C60 92C60 PDF BibTeX XML Cite \textit{M. Vellappandi} et al., Nonlinear Dyn. 111, No. 5, 4915--4929 (2023; Zbl 07760320) Full Text: DOI
Wang, Lingyu; Gao, Ben Exact solutions to the fractional complex Ginzburg-Landau equation with time-dependent coefficients under quadratic-cubic and power law nonlinearities. (English) Zbl 07760309 Nonlinear Dyn. 111, No. 5, 4709-4722 (2023). MSC: 35A25 35C08 35Q56 35R11 78A25 PDF BibTeX XML Cite \textit{L. Wang} and \textit{B. Gao}, Nonlinear Dyn. 111, No. 5, 4709--4722 (2023; Zbl 07760309) Full Text: DOI
Hu, Zhihao; Shi, Qihong Blow-up solutions for the space-time fractional evolution equation. (English) Zbl 07759433 J. Nonlinear Math. Phys. 30, No. 3, 917-931 (2023). MSC: 35R11 35B44 26A33 PDF BibTeX XML Cite \textit{Z. Hu} and \textit{Q. Shi}, J. Nonlinear Math. Phys. 30, No. 3, 917--931 (2023; Zbl 07759433) Full Text: DOI OA License
Lapin, A.; Yanbarisov, R. Numerical solution of a subdiffusion equation with variable order time fractional derivative and nonlinear diffusion coefficient. (English) Zbl 07759410 Lobachevskii J. Math. 44, No. 7, 2790-2803 (2023). MSC: 65Mxx 26Axx 35Rxx PDF BibTeX XML Cite \textit{A. Lapin} and \textit{R. Yanbarisov}, Lobachevskii J. Math. 44, No. 7, 2790--2803 (2023; Zbl 07759410) Full Text: DOI
Kadirkulov, B. J.; Jalilov, M. A. On a boundary value problem for a third-order equation of parabolic-hyperbolic type with a fractional order operator. (English) Zbl 07759404 Lobachevskii J. Math. 44, No. 7, 2725-2737 (2023). MSC: 35M12 35R11 PDF BibTeX XML Cite \textit{B. J. Kadirkulov} and \textit{M. A. Jalilov}, Lobachevskii J. Math. 44, No. 7, 2725--2737 (2023; Zbl 07759404) Full Text: DOI
Fedorov, V. E.; Skorynin, A. S. Strongly continuous resolving families of operators for equations with a fractional derivative. (English) Zbl 07759396 Lobachevskii J. Math. 44, No. 7, 2651-2659 (2023). MSC: 26Axx 34Axx 47Axx PDF BibTeX XML Cite \textit{V. E. Fedorov} and \textit{A. S. Skorynin}, Lobachevskii J. Math. 44, No. 7, 2651--2659 (2023; Zbl 07759396) Full Text: DOI
Mohebalizadeh, Hamed; Adibi, Hojatollah; Dehghan, Mehdi Well-posedness of space fractional Ginzburg-Landau equations involving the fractional Laplacian arising in a Bose-Einstein condensation and its kernel based approximation. (English) Zbl 07758921 Commun. Nonlinear Sci. Numer. Simul. 126, Article ID 107469, 23 p. (2023). MSC: 35R11 35Q56 PDF BibTeX XML Cite \textit{H. Mohebalizadeh} et al., Commun. Nonlinear Sci. Numer. Simul. 126, Article ID 107469, 23 p. (2023; Zbl 07758921) Full Text: DOI
Guo, Yuling; Wang, Zhongqing A fast time-stepping method based on the \(hp\)-version spectral collocation method for the nonlinear fractional delay differential equation. (English) Zbl 07758876 Commun. Nonlinear Sci. Numer. Simul. 126, Article ID 107424, 15 p. (2023). MSC: 65L60 34K37 45D05 65L70 PDF BibTeX XML Cite \textit{Y. Guo} and \textit{Z. Wang}, Commun. Nonlinear Sci. Numer. Simul. 126, Article ID 107424, 15 p. (2023; Zbl 07758876) Full Text: DOI
da Rocha, Gabriel G.; Lenzi, Ervin K. Stochastic resetting and linear reaction processes: a continuous time random walk approach. (English) Zbl 07758875 Commun. Nonlinear Sci. Numer. Simul. 126, Article ID 107423, 16 p. (2023). MSC: 35R60 60K50 PDF BibTeX XML Cite \textit{G. G. da Rocha} and \textit{E. K. Lenzi}, Commun. Nonlinear Sci. Numer. Simul. 126, Article ID 107423, 16 p. (2023; Zbl 07758875) Full Text: DOI
Kawala, A. M.; Abdelaziz, H. K. A hybrid technique based on Lucas polynomials for solving fractional diffusion partial differential equation. (English) Zbl 07758554 J. Elliptic Parabol. Equ. 9, No. 2, 1271-1289 (2023). MSC: 65M70 65N06 34A08 26A33 35R11 11B39 PDF BibTeX XML Cite \textit{A. M. Kawala} and \textit{H. K. Abdelaziz}, J. Elliptic Parabol. Equ. 9, No. 2, 1271--1289 (2023; Zbl 07758554) Full Text: DOI OA License
Abita, Rahmoune; Biccari, Umberto Multiplicity of solutions for fractional \(q(\cdot)\)-Laplacian equations. (English) Zbl 07758547 J. Elliptic Parabol. Equ. 9, No. 2, 1101-1129 (2023). MSC: 26A33 35R11 74G35 PDF BibTeX XML Cite \textit{R. Abita} and \textit{U. Biccari}, J. Elliptic Parabol. Equ. 9, No. 2, 1101--1129 (2023; Zbl 07758547) Full Text: DOI
Jarrín, Oscar; Loachamín, Geremy From anomalous to classical diffusion in a nonlinear heat equation. (English) Zbl 07758546 J. Elliptic Parabol. Equ. 9, No. 2, 1071-1099 (2023). MSC: 35B40 35B30 35K58 35R11 PDF BibTeX XML Cite \textit{O. Jarrín} and \textit{G. Loachamín}, J. Elliptic Parabol. Equ. 9, No. 2, 1071--1099 (2023; Zbl 07758546) Full Text: DOI arXiv
Huang, Xiaoya; Zhang, Zhenqiu Monotonicity of solutions for nonlocal double phase equations in bounded domains and the whole space. (English) Zbl 07758467 Front. Math. (Berl./Heidelb.) 18, No. 1, 105-122 (2023). MSC: 35A16 35R11 PDF BibTeX XML Cite \textit{X. Huang} and \textit{Z. Zhang}, Front. Math. (Berl./Heidelb.) 18, No. 1, 105--122 (2023; Zbl 07758467) Full Text: DOI
Lin, Yu-Chu; Wang, Haitao; Wu, Kung-Chien Mixture estimate in fractional sense and its application to the well-posedness of the Boltzmann equation with very soft potential. (English) Zbl 07758185 Math. Ann. 387, No. 3-4, 2061-2103 (2023). MSC: 35Q20 82C40 35B65 35A01 35A02 26A33 35R11 PDF BibTeX XML Cite \textit{Y.-C. Lin} et al., Math. Ann. 387, No. 3--4, 2061--2103 (2023; Zbl 07758185) Full Text: DOI
Wang, Shu; Zhang, Shuzhen The initial value problem for the equations of motion of fractional compressible viscous fluids. (English) Zbl 07758141 J. Differ. Equations 377, 369-417 (2023). MSC: 35Q30 76N10 35B65 60G51 35L65 26A33 35R11 PDF BibTeX XML Cite \textit{S. Wang} and \textit{S. Zhang}, J. Differ. Equations 377, 369--417 (2023; Zbl 07758141) Full Text: DOI
Lyu, Pin; Vong, Seakweng A weighted ADI scheme with variable time steps for diffusion-wave equations. (English) Zbl 07757601 Calcolo 60, No. 4, Paper No. 49, 20 p. (2023). MSC: 65M06 65N06 65M12 35B65 26A33 35R11 PDF BibTeX XML Cite \textit{P. Lyu} and \textit{S. Vong}, Calcolo 60, No. 4, Paper No. 49, 20 p. (2023; Zbl 07757601) Full Text: DOI
Ruhil, Santosh; Malik, Muslim Inverse problem for the Atangana-Baleanu fractional differential equation. (English) Zbl 07757071 J. Inverse Ill-Posed Probl. 31, No. 5, 763-779 (2023). MSC: 34A55 34A08 34G10 26A33 45D05 PDF BibTeX XML Cite \textit{S. Ruhil} and \textit{M. Malik}, J. Inverse Ill-Posed Probl. 31, No. 5, 763--779 (2023; Zbl 07757071) Full Text: DOI
Nie, Daxin; Deng, Weihua An inverse random source problem for the time-space fractional diffusion equation driven by fractional Brownian motion. (English) Zbl 07757069 J. Inverse Ill-Posed Probl. 31, No. 5, 723-738 (2023). MSC: 35R30 35R60 35K20 PDF BibTeX XML Cite \textit{D. Nie} and \textit{W. Deng}, J. Inverse Ill-Posed Probl. 31, No. 5, 723--738 (2023; Zbl 07757069) Full Text: DOI arXiv
Liao, Kaifang; Zhang, Lei; Wei, Ting Simultaneous inversion for a fractional order and a time source term in a time-fractional diffusion-wave equation. (English) Zbl 07757064 J. Inverse Ill-Posed Probl. 31, No. 5, 631-652 (2023). MSC: 65M32 65M30 65K10 65J20 33E12 26A33 35R11 35A01 35A02 15A69 74D10 35R30 35R25 35R60 PDF BibTeX XML Cite \textit{K. Liao} et al., J. Inverse Ill-Posed Probl. 31, No. 5, 631--652 (2023; Zbl 07757064) Full Text: DOI
Pathak, Vijai Kumar; Mishra, Lakshmi Narayan Investigating the existence of solution for nonlinear Hadamard fractional functional integral equations via measure of noncompactness and its application. (English) Zbl 07756035 Mishra, Ratnesh Kumar (ed.) et al., Advances in pure and applied algebra. Proceedings of the CONIAPS XXVII international conference 2021. Berlin: De Gruyter. De Gruyter Proc. Math., 129-147 (2023). MSC: 45G10 47N20 26A33 PDF BibTeX XML Cite \textit{V. K. Pathak} and \textit{L. N. Mishra}, in: Advances in pure and applied algebra. Proceedings of the CONIAPS XXVII international conference 2021. Berlin: De Gruyter. 129--147 (2023; Zbl 07756035) Full Text: DOI
Eychenne, Arnaud Asymptotic \(N\)-soliton-like solutions of the fractional Korteweg-de Vries equation. (English) Zbl 07755946 Rev. Mat. Iberoam. 39, No. 5, 1813-1862 (2023). MSC: 35Q53 35Q35 35B40 37K40 35C08 35A01 35A02 26A33 35R11 PDF BibTeX XML Cite \textit{A. Eychenne}, Rev. Mat. Iberoam. 39, No. 5, 1813--1862 (2023; Zbl 07755946) Full Text: DOI arXiv
Temoltzi-Ávila, R. On a robust stability criterion in the subdiffusion equation with Caputo-Dzherbashian fractional derivative. (English) Zbl 07754914 Bol. Soc. Mat. Mex., III. Ser. 29, No. 3, Paper No. 74, 16 p. (2023). MSC: 35R11 35A09 35B20 34A08 34D10 42A16 93D09 PDF BibTeX XML Cite \textit{R. Temoltzi-Ávila}, Bol. Soc. Mat. Mex., III. Ser. 29, No. 3, Paper No. 74, 16 p. (2023; Zbl 07754914) Full Text: DOI
Huang, Chaobao; An, Na; Chen, Hu; Yu, Xijun \(\alpha\)-robust error analysis of two nonuniform schemes for subdiffusion equations with variable-order derivatives. (English) Zbl 07754879 J. Sci. Comput. 97, No. 2, Paper No. 43, 21 p. (2023). MSC: 65M60 65M06 65N30 65M12 65M15 26A33 35R11 PDF BibTeX XML Cite \textit{C. Huang} et al., J. Sci. Comput. 97, No. 2, Paper No. 43, 21 p. (2023; Zbl 07754879) Full Text: DOI
Diethelm, Kai; Uhlig, Frank A new approach to shooting methods for terminal value problems of fractional differential equations. (English) Zbl 07754874 J. Sci. Comput. 97, No. 2, Paper No. 38, 29 p. (2023). MSC: 65L10 34A08 PDF BibTeX XML Cite \textit{K. Diethelm} and \textit{F. Uhlig}, J. Sci. Comput. 97, No. 2, Paper No. 38, 29 p. (2023; Zbl 07754874) Full Text: DOI arXiv OA License
Ben Salah, Mohamed Topological sensitivity method for reconstruction of the spatial component in the source term of a time-fractional diffusion equation. (English) Zbl 07754358 Ric. Mat. 72, No. 2, 599-624 (2023). MSC: 35R30 35R11 74P15 PDF BibTeX XML Cite \textit{M. Ben Salah}, Ric. Mat. 72, No. 2, 599--624 (2023; Zbl 07754358) Full Text: DOI
El Matloub, Jaouad; Ezzinbi, Khalil Mild solution in the \(\alpha\)-norm for some partial integrodifferential equations involving a nonlocal condition. (English) Zbl 07753888 Nonauton. Dyn. Syst. 10, Article ID 20230170, 13 p. (2023). MSC: 45J05 47N20 26A33 PDF BibTeX XML Cite \textit{J. El Matloub} and \textit{K. Ezzinbi}, Nonauton. Dyn. Syst. 10, Article ID 20230170, 13 p. (2023; Zbl 07753888) Full Text: DOI
Aidara, Sadibou; Ndiaye, Assane; Sow, Ahmadou Bamba Generalized BDSDEs driven by fractional Brownian motion. (English) Zbl 07753887 Nonauton. Dyn. Syst. 10, Article ID 20220167, 11 p. (2023). MSC: 60H10 60H07 60G22 PDF BibTeX XML Cite \textit{S. Aidara} et al., Nonauton. Dyn. Syst. 10, Article ID 20220167, 11 p. (2023; Zbl 07753887) Full Text: DOI OA License
Gogoi, Bikash; Hazarika, Bipan; Saha, Utpal Kumar; Tikare, Sanket Periodic boundary value problems for fractional dynamic equations on time scales. (English) Zbl 07753741 Result. Math. 78, No. 6, Paper No. 228, 21 p. (2023). Reviewer: Abdullah Özbekler (Ankara) MSC: 34A08 34B15 34N05 34D10 47H10 PDF BibTeX XML Cite \textit{B. Gogoi} et al., Result. Math. 78, No. 6, Paper No. 228, 21 p. (2023; Zbl 07753741) Full Text: DOI
Bag, Usha; Jain, Reena Orbitally \(p\)-implicit \(\mathcal{R}\)-contractive mapping and applications to nonlinear matrix equations and integral equations. (English) Zbl 07752914 J. Nonlinear Convex Anal. 24, No. 9, 2069-2091 (2023). MSC: 54H25 54E40 15A24 65F45 34A08 PDF BibTeX XML Cite \textit{U. Bag} and \textit{R. Jain}, J. Nonlinear Convex Anal. 24, No. 9, 2069--2091 (2023; Zbl 07752914) Full Text: Link
Methi, Giriraj; Kumar, Anil; Aggarwal, Rupal; Tikare, Sanket Applications of differential transform and Bell polynomials to various types of differential equations. (English) Zbl 07752908 J. Nonlinear Convex Anal. 24, No. 9, 1967-1976 (2023). MSC: 65L03 34K07 34K37 65L70 PDF BibTeX XML Cite \textit{G. Methi} et al., J. Nonlinear Convex Anal. 24, No. 9, 1967--1976 (2023; Zbl 07752908) Full Text: Link
Edward, Jenisha Linnet; Chanda, Ankush; Nashine, Hemant Kumar Solutions of higher order fractional differential equations in Riesz space with anti-periodic boundary conditions. (English) Zbl 07752905 J. Nonlinear Convex Anal. 24, No. 9, 1929-1938 (2023). MSC: 34A08 34A40 26D10 34C10 33E12 PDF BibTeX XML Cite \textit{J. L. Edward} et al., J. Nonlinear Convex Anal. 24, No. 9, 1929--1938 (2023; Zbl 07752905) Full Text: Link
Dipierro, Serena; Lippi, Edoardo Proietti; Valdinoci, Enrico (Non)local logistic equations with Neumann conditions. (English) Zbl 07752594 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 40, No. 5, 1093-1166 (2023). MSC: 35Q92 92D25 92B05 26A33 35R11 60G22 PDF BibTeX XML Cite \textit{S. Dipierro} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 40, No. 5, 1093--1166 (2023; Zbl 07752594) Full Text: DOI arXiv
Li, Chenkuan; Saadati, Reza; Eidinejad, Zahra Fixed point results for the fractional nonlinear problem with integral boundary condition. (English) Zbl 07751529 Mediterr. J. Math. 20, No. 6, Paper No. 298, 15 p. (2023). MSC: 34A08 34A12 34B10 PDF BibTeX XML Cite \textit{C. Li} et al., Mediterr. J. Math. 20, No. 6, Paper No. 298, 15 p. (2023; Zbl 07751529) Full Text: DOI
Maji, Sandip; Natesan, Srinivasan An efficient numerical method for fractional advection-diffusion-reaction problem with RLC fractional derivative. (English) Zbl 07751528 Mediterr. J. Math. 20, No. 6, Paper No. 297, 25 p. (2023). MSC: 65L10 34A08 65L12 65L20 PDF BibTeX XML Cite \textit{S. Maji} and \textit{S. Natesan}, Mediterr. J. Math. 20, No. 6, Paper No. 297, 25 p. (2023; Zbl 07751528) Full Text: DOI
Battaglia, Luca; Cozzi, Matteo; Fernández, Antonio J.; Pistoia, Angela Nonuniqueness for the nonlocal Liouville equation in \(\mathbb{R}\) and applications. (English) Zbl 07750777 SIAM J. Math. Anal. 55, No. 5, 4816-4842 (2023). MSC: 35R11 35A02 35C08 30F45 PDF BibTeX XML Cite \textit{L. Battaglia} et al., SIAM J. Math. Anal. 55, No. 5, 4816--4842 (2023; Zbl 07750777) Full Text: DOI arXiv
Chaker, Jamil; Kim, Minhyun Local regularity for Nonlocal equations with variable exponents. (English) Zbl 07750723 Math. Nachr. 296, No. 9, 4463-4489 (2023). MSC: 35B65 35A15 35D30 35B45 46E35 47G20 PDF BibTeX XML Cite \textit{J. Chaker} and \textit{M. Kim}, Math. Nachr. 296, No. 9, 4463--4489 (2023; Zbl 07750723) Full Text: DOI arXiv OA License
Biswas, Reshmi; Tiwari, Sweta Regularity results for Choquard equations involving fractional \(p\)-Laplacian. (English) Zbl 07750704 Math. Nachr. 296, No. 9, 4060-4085 (2023). MSC: 35J92 35R11 35A15 PDF BibTeX XML Cite \textit{R. Biswas} and \textit{S. Tiwari}, Math. Nachr. 296, No. 9, 4060--4085 (2023; Zbl 07750704) Full Text: DOI arXiv
Fu, Yayun; Cai, Wenjun; Wang, Yushun A linearly-implicit energy-preserving algorithm for the two-dimensional space-fractional nonlinear Schrödinger equation based on the SAV approach. (English) Zbl 07750343 J. Comput. Math. 41, No. 5, 797-816 (2023). MSC: 35R11 65M70 PDF BibTeX XML Cite \textit{Y. Fu} et al., J. Comput. Math. 41, No. 5, 797--816 (2023; Zbl 07750343) Full Text: DOI arXiv
Klimsiak, Tomasz Uniqueness for an obstacle problem arising from logistic-type equations with fractional Laplacian. (English) Zbl 07749895 Potential Anal. 59, No. 3, 897-916 (2023). MSC: 35R35 35A02 35J86 35R11 PDF BibTeX XML Cite \textit{T. Klimsiak}, Potential Anal. 59, No. 3, 897--916 (2023; Zbl 07749895) Full Text: DOI arXiv OA License
Xue, Zhongqin; Zhao, Xuan Compatible energy dissipation of the variable-step \(L1\) scheme for the space-time fractional Cahn-Hilliard equation. (English) Zbl 07749377 SIAM J. Sci. Comput. 45, No. 5, A2539-A2560 (2023). MSC: 65-XX 35R11 65M50 65M12 PDF BibTeX XML Cite \textit{Z. Xue} and \textit{X. Zhao}, SIAM J. Sci. Comput. 45, No. 5, A2539--A2560 (2023; Zbl 07749377) Full Text: DOI
Wang, Zhaoyang; Lin, Ping; Zhang, Lei A fast front-tracking approach and its analysis for a temporal multiscale flow problem with a fractional order boundary growth. (English) Zbl 07749375 SIAM J. Sci. Comput. 45, No. 5, B646-B672 (2023). MSC: 68Q25 68R10 68U05 PDF BibTeX XML Cite \textit{Z. Wang} et al., SIAM J. Sci. Comput. 45, No. 5, B646--B672 (2023; Zbl 07749375) Full Text: DOI arXiv
Kow, Pu-Zhao; Ma, Shiqi; Sahoo, Suman Kumar An inverse problem for semilinear equations involving the fractional Laplacian. (English) Zbl 07749164 Inverse Probl. 39, No. 9, Article ID 095006, 27 p. (2023). MSC: 35R30 35K20 35R11 PDF BibTeX XML Cite \textit{P.-Z. Kow} et al., Inverse Probl. 39, No. 9, Article ID 095006, 27 p. (2023; Zbl 07749164) Full Text: DOI arXiv
Torres, Soledad; Viitasaari, Lauri Stochastic differential equations with discontinuous diffusion coefficients. (English) Zbl 07748864 Theory Probab. Math. Stat. 109, 159-175 (2023). MSC: 60H05 60G22 26A33 PDF BibTeX XML Cite \textit{S. Torres} and \textit{L. Viitasaari}, Theory Probab. Math. Stat. 109, 159--175 (2023; Zbl 07748864) Full Text: DOI arXiv
Dou, Xilin; He, Xiaoming Multiplicity of solutions for a fractional Kirchhoff type equation with a critical nonlocal term. (English) Zbl 07748691 Fract. Calc. Appl. Anal. 26, No. 4, 1941-1963 (2023). MSC: 35R11 35J60 35J20 35A15 PDF BibTeX XML Cite \textit{X. Dou} and \textit{X. He}, Fract. Calc. Appl. Anal. 26, No. 4, 1941--1963 (2023; Zbl 07748691) Full Text: DOI
Cheng, Jiazhuo; Wang, Qiru Global existence and finite time blowup for a fractional pseudo-parabolic \(p\)-Laplacian equation. (English) Zbl 07748690 Fract. Calc. Appl. Anal. 26, No. 4, 1916-1940 (2023). MSC: 35B44 35K70 35R11 35K20 35K55 PDF BibTeX XML Cite \textit{J. Cheng} and \textit{Q. Wang}, Fract. Calc. Appl. Anal. 26, No. 4, 1916--1940 (2023; Zbl 07748690) Full Text: DOI
Maes, Frederick; Van Bockstal, Karel Existence and uniqueness of a weak solution to fractional single-phase-lag heat equation. (English) Zbl 07748681 Fract. Calc. Appl. Anal. 26, No. 4, 1663-1690 (2023). MSC: 35R11 35K05 26A33 35D30 PDF BibTeX XML Cite \textit{F. Maes} and \textit{K. Van Bockstal}, Fract. Calc. Appl. Anal. 26, No. 4, 1663--1690 (2023; Zbl 07748681) Full Text: DOI arXiv