Refice, Ahmed; Inc, Mustafa; Hashemi, Mir Sajjad; Souid, Mohammed Said Boundary value problem of Riemann-Liouville fractional differential equations in the variable exponent Lebesgue spaces \(L^{p(.)}\). (English) Zbl 07549969 J. Geom. Phys. 178, Article ID 104554, 13 p. (2022). MSC: 26A33 34K37 PDF BibTeX XML Cite \textit{A. Refice} et al., J. Geom. Phys. 178, Article ID 104554, 13 p. (2022; Zbl 07549969) Full Text: DOI OpenURL
Bouteraa, N.; Inc, Mustafa; Hashemi, M. S.; Benaicha, S. Study on the existence and nonexistence of solutions for a class of nonlinear Erdélyi-Kober type fractional differential equation on unbounded domain. (English) Zbl 07549963 J. Geom. Phys. 178, Article ID 104546, 8 p. (2022). MSC: 34B10 34B15 47H11 PDF BibTeX XML Cite \textit{N. Bouteraa} et al., J. Geom. Phys. 178, Article ID 104546, 8 p. (2022; Zbl 07549963) Full Text: DOI OpenURL
Akbulut, Arzu; Islam, S. M. Rayhanul Study on the Biswas-Arshed equation with the beta time derivative. (English) Zbl 07549907 Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 167, 13 p. (2022). MSC: 35R11 35A22 35C05 PDF BibTeX XML Cite \textit{A. Akbulut} and \textit{S. M. R. Islam}, Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 167, 13 p. (2022; Zbl 07549907) Full Text: DOI OpenURL
Awonusika, Richard Olu Analytical solutions of a class of fractional Lane-Emden equation: a power series method. (English) Zbl 07549895 Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 155, 36 p. (2022). MSC: 33C05 33C45 34A08 34B16 65L05 PDF BibTeX XML Cite \textit{R. O. Awonusika}, Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 155, 36 p. (2022; Zbl 07549895) Full Text: DOI OpenURL
Rida, S. Z.; Hussien, H. S.; Noreldeen, A. H.; Farag, M. M. Effective fractional technical for some fractional initial value problems. (English) Zbl 07549889 Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 149, 18 p. (2022). MSC: 33E12 65N35 34A08 97N20 PDF BibTeX XML Cite \textit{S. Z. Rida} et al., Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 149, 18 p. (2022; Zbl 07549889) Full Text: DOI OpenURL
Abu Arqub, Omar; Hayat, Tasawar; Alhodaly, Mohammed Analysis of Lie symmetry, explicit series solutions, and conservation laws for the nonlinear time-fractional Phi-four equation in two-dimensional space. (English) Zbl 07549885 Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 145, 17 p. (2022). MSC: 35R11 35B06 35C10 PDF BibTeX XML Cite \textit{O. Abu Arqub} et al., Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 145, 17 p. (2022; Zbl 07549885) Full Text: DOI OpenURL
Ferdous, F.; Hafez, M. G.; Akther, S. Oblique traveling wave closed-form solutions to space-time fractional coupled dispersive long wave equation through the generalized exponential expansion method. (English) Zbl 07549882 Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 142, 14 p. (2022). MSC: 35C07 35C05 35R11 PDF BibTeX XML Cite \textit{F. Ferdous} et al., Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 142, 14 p. (2022; Zbl 07549882) Full Text: DOI OpenURL
Owolabi, Kolade M.; Pindza, Edson Dynamics of fractional chaotic systems with Chebyshev spectral approximation method. (English) Zbl 07549880 Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 140, 22 p. (2022). MSC: 34A34 35A05 35K57 65L05 65M06 93C10 PDF BibTeX XML Cite \textit{K. M. Owolabi} and \textit{E. Pindza}, Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 140, 22 p. (2022; Zbl 07549880) Full Text: DOI OpenURL
Mohapatra, S. N.; Mishra, S. R.; Jena, P. Time-fractional differential equations with variable order using RDTM and ADM: application to infectious-disease model. (English) Zbl 07549878 Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 138, 20 p. (2022). MSC: 34-XX 35-XX PDF BibTeX XML Cite \textit{S. N. Mohapatra} et al., Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 138, 20 p. (2022; Zbl 07549878) Full Text: DOI OpenURL
Huaroto, Gerardo; Neves, Wladimir Initial mixed-boundary value problem for anisotropic fractional degenerate parabolic equations. (English) Zbl 07549723 Commun. Math. Sci. 20, No. 5, 1279-1304 (2022). MSC: 35R11 35D30 35K55 35K61 35K65 PDF BibTeX XML Cite \textit{G. Huaroto} and \textit{W. Neves}, Commun. Math. Sci. 20, No. 5, 1279--1304 (2022; Zbl 07549723) Full Text: DOI OpenURL
Zhou, Qin; Feng, Minfu Analysis of a full discretization for a fractional/normal diffusion equation with rough Dirichlet boundary data. (English) Zbl 07549613 J. Sci. Comput. 92, No. 1, Paper No. 25, 17 p. (2022). MSC: 65Mxx 35Kxx 35Rxx PDF BibTeX XML Cite \textit{Q. Zhou} and \textit{M. Feng}, J. Sci. Comput. 92, No. 1, Paper No. 25, 17 p. (2022; Zbl 07549613) Full Text: DOI OpenURL
She, Zi-Hang A class of unconditioned stable 4-point WSGD schemes and fast iteration methods for space fractional diffusion equations. (English) Zbl 07549606 J. Sci. Comput. 92, No. 1, Paper No. 18, 35 p. (2022). MSC: 26A33 65F10 65L12 65L20 65M22 PDF BibTeX XML Cite \textit{Z.-H. She}, J. Sci. Comput. 92, No. 1, Paper No. 18, 35 p. (2022; Zbl 07549606) Full Text: DOI OpenURL
Sobirov, Z. A.; Rakhimov, K. U. Green’s function method for subdiffusion equation on the ladder-type graph with equal bonds. (English) Zbl 07549299 Uzb. Mat. Zh. 66, No. 1, 161-172 (2022). MSC: 35R11 35K20 35B45 PDF BibTeX XML Cite \textit{Z. A. Sobirov} and \textit{K. U. Rakhimov}, Uzb. Mat. Zh. 66, No. 1, 161--172 (2022; Zbl 07549299) Full Text: DOI OpenURL
Boudjeriou, Tahir Global existence and blow-up of solutions for a parabolic equation involving the fractional \(p(x)\)-Laplacian. (English) Zbl 07548874 Appl. Anal. 101, No. 8, 2903-2921 (2022). MSC: 35R11 35B40 35B41 35B44 35K92 PDF BibTeX XML Cite \textit{T. Boudjeriou}, Appl. Anal. 101, No. 8, 2903--2921 (2022; Zbl 07548874) Full Text: DOI OpenURL
Huang, Ling; Wang, Li; Feng, Shenghao Ground state solutions for fractional Schrödinger-Choquard-Kirchhoff type equations with critical growth. (English) Zbl 07548760 Complex Var. Elliptic Equ. 67, No. 7, 1624-1638 (2022). MSC: 35R11 35A15 35B33 35J62 PDF BibTeX XML Cite \textit{L. Huang} et al., Complex Var. Elliptic Equ. 67, No. 7, 1624--1638 (2022; Zbl 07548760) Full Text: DOI OpenURL
Zhang, Peng; Han, Zhi-qing Existence of solutions for a nonhomogeneous sublinear fractional Schrödinger equation. (English) Zbl 07548753 Complex Var. Elliptic Equ. 67, No. 6, 1504-1523 (2022). MSC: 35A15 35J61 35R11 45G05 PDF BibTeX XML Cite \textit{P. Zhang} and \textit{Z.-q. Han}, Complex Var. Elliptic Equ. 67, No. 6, 1504--1523 (2022; Zbl 07548753) Full Text: DOI OpenURL
Zhen, Maoding; Yang, Meihua Multiple solutions for a coupled Kirchhoff system with fractional \(p\)-Laplacian and sign-changing weight functions. (English) Zbl 07548743 Complex Var. Elliptic Equ. 67, No. 6, 1326-1351 (2022). MSC: 35A15 35J92 35R11 47G20 PDF BibTeX XML Cite \textit{M. Zhen} and \textit{M. Yang}, Complex Var. Elliptic Equ. 67, No. 6, 1326--1351 (2022; Zbl 07548743) Full Text: DOI OpenURL
Shevchenko, Radomyra; Woerner, Jeannette H. C. Inference for fractional Ornstein-Uhlenbeck type processes with periodic mean in the non-ergodic case. (English) Zbl 07548154 Stochastic Anal. Appl. 40, No. 4, 589-609 (2022). MSC: 62M09 60G22 60H10 PDF BibTeX XML Cite \textit{R. Shevchenko} and \textit{J. H. C. Woerner}, Stochastic Anal. Appl. 40, No. 4, 589--609 (2022; Zbl 07548154) Full Text: DOI OpenURL
Sun, Mingzhe; Shi, Shaoyun; Repovš, Dušan D. Degenerate fractional Kirchhoff-type system with magnetic fields and upper critical growth. (English) Zbl 07548048 Mediterr. J. Math. 19, No. 4, Paper No. 170, 23 p. (2022). MSC: 35J62 35R11 35A01 35A15 PDF BibTeX XML Cite \textit{M. Sun} et al., Mediterr. J. Math. 19, No. 4, Paper No. 170, 23 p. (2022; Zbl 07548048) Full Text: DOI OpenURL
Wang, Li; Cheng, Kun; Wang, Jixiu The multiplicity and concentration of positive solutions for the Kirchhoff-Choquard equation with magnetic fields. (English) Zbl 07547415 Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 4, 1453-1484 (2022). MSC: 35A15 35B25 35R11 58E05 PDF BibTeX XML Cite \textit{L. Wang} et al., Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 4, 1453--1484 (2022; Zbl 07547415) Full Text: DOI OpenURL
Pratap, Anbalagan; Raja, Ramachandran; Cao, Jinde; Huang, Chuangxia; Alzabut, Jehad; Bagdasar, Ovidiu \(\mathcal{O}(t^{-\beta})\)-synchronization and asymptotic synchronization of delayed fractional order neural networks. (English) Zbl 07547406 Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 4, 1273-1292 (2022). MSC: 34K24 34K37 93D20 PDF BibTeX XML Cite \textit{A. Pratap} et al., Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 4, 1273--1292 (2022; Zbl 07547406) Full Text: DOI OpenURL
Graef, John R.; Heidarkhani, Shapour; Kong, Lingju; Moradi, Shahin Existence results for impulsive fractional differential equations with \(p\)-Laplacian via variational methods. (English) Zbl 07547243 Math. Bohem. 147, No. 1, 95-112 (2022). MSC: 26A33 34B15 34K45 PDF BibTeX XML Cite \textit{J. R. Graef} et al., Math. Bohem. 147, No. 1, 95--112 (2022; Zbl 07547243) Full Text: DOI OpenURL
Fernandez, Arran; Restrepo, Joel E.; Suragan, Durvudkhan Prabhakar-type linear differential equations with variable coefficients. (English) Zbl 07547234 Differ. Integral Equ. 35, No. 9-10, 581-610 (2022). MSC: 26A33 34A08 33E12 PDF BibTeX XML Cite \textit{A. Fernandez} et al., Differ. Integral Equ. 35, No. 9--10, 581--610 (2022; Zbl 07547234) OpenURL
Song, Chaoqun; Xiang, Mingqi Multiple solutions for weighted fractional \(p\)-Laplace equations involving singular nonlinearity. (English) Zbl 07547230 Differ. Integral Equ. 35, No. 9-10, 483-509 (2022). MSC: 35R11 35A15 47G20 PDF BibTeX XML Cite \textit{C. Song} and \textit{M. Xiang}, Differ. Integral Equ. 35, No. 9--10, 483--509 (2022; Zbl 07547230) OpenURL
Jafari, Mohsen; Kheiri, Hossein Free terminal time optimal control of a fractional-order model for the HIV/AIDS epidemic. (English) Zbl 07547182 Int. J. Biomath. 15, No. 5, Article ID 2250022, 26 p. (2022). MSC: 92-XX 26A33 37B25 37M05 49K15 PDF BibTeX XML Cite \textit{M. Jafari} and \textit{H. Kheiri}, Int. J. Biomath. 15, No. 5, Article ID 2250022, 26 p. (2022; Zbl 07547182) Full Text: DOI OpenURL
Kumar, Sachin; Zeidan, Dia Numerical study of Zika model as a mosquito-borne virus with non-singular fractional derivative. (English) Zbl 07547178 Int. J. Biomath. 15, No. 5, Article ID 2250018, 19 p. (2022). MSC: 92D30 33E12 34A08 34K37 37B10 44A15 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{D. Zeidan}, Int. J. Biomath. 15, No. 5, Article ID 2250018, 19 p. (2022; Zbl 07547178) Full Text: DOI OpenURL
Priyadharsini, J.; Balasubramaniam, P. Solvability of fuzzy fractional stochastic pantograph differential system. (English) Zbl 07547149 Iran. J. Fuzzy Syst. 19, No. 1, 47-60 (2022). MSC: 34Axx 34Kxx 26Axx PDF BibTeX XML Cite \textit{J. Priyadharsini} and \textit{P. Balasubramaniam}, Iran. J. Fuzzy Syst. 19, No. 1, 47--60 (2022; Zbl 07547149) Full Text: DOI OpenURL
Kow, Pu-Zhao; Lin, Yi-Hsuan; Wang, Jenn-Nan The Calderón problem for the fractional wave equation: uniqueness and optimal stability. (English) Zbl 07547017 SIAM J. Math. Anal. 54, No. 3, 3379-3419 (2022). MSC: 35R30 35A02 35B35 35L20 35R11 PDF BibTeX XML Cite \textit{P.-Z. Kow} et al., SIAM J. Math. Anal. 54, No. 3, 3379--3419 (2022; Zbl 07547017) Full Text: DOI OpenURL
Garrappa, Roberto; Popolizio, Marina A computationally efficient strategy for time-fractional diffusion-reaction equations. (English) Zbl 07546666 Comput. Math. Appl. 116, 181-193 (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{R. Garrappa} and \textit{M. Popolizio}, Comput. Math. Appl. 116, 181--193 (2022; Zbl 07546666) Full Text: DOI OpenURL
Lahrouz, A.; El Mahjour, H.; Settati, A.; Erriani, M.; El Jarroudi, H. Bifurcation from an epidemic model in the presence of memory effects. (English) Zbl 07546045 Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 6, Article ID 2250077, 30 p. (2022). MSC: 34Axx 92Dxx 34Kxx PDF BibTeX XML Cite \textit{A. Lahrouz} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 6, Article ID 2250077, 30 p. (2022; Zbl 07546045) Full Text: DOI OpenURL
Aoun, Abdellatif Ghendir; Djebali, Smaïl Multiple solutions for a nonlocal fractional boundary value problem with fractional integral conditions on infinite interval. (English) Zbl 07545970 Asian-Eur. J. Math. 15, No. 6, Article ID 2250118, 23 p. (2022). MSC: 34B08 34B10 34B40 PDF BibTeX XML Cite \textit{A. G. Aoun} and \textit{S. Djebali}, Asian-Eur. J. Math. 15, No. 6, Article ID 2250118, 23 p. (2022; Zbl 07545970) Full Text: DOI OpenURL
Biranvand, Nader; Salari, Amjad; Sababe, Saeed Hashemi BVPs with the nonlinearity depending on the fractional derivative. (English) Zbl 07545959 Asian-Eur. J. Math. 15, No. 6, Article ID 2250107, 15 p. (2022). MSC: 34A08 26A33 35A15 46N20 PDF BibTeX XML Cite \textit{N. Biranvand} et al., Asian-Eur. J. Math. 15, No. 6, Article ID 2250107, 15 p. (2022; Zbl 07545959) Full Text: DOI OpenURL
Benhamida, Ghania; Moussaoui, Toufik Existence of infinitely many solutions for fractional \(p\)-Laplacian Schrödinger-Kirchhof-type equations with general potentials. (English) Zbl 07545947 Asian-Eur. J. Math. 15, No. 5, Article ID 2250095, 15 p. (2022). MSC: 35R11 35A15 35B38 35J62 35J92 35R09 34A08 PDF BibTeX XML Cite \textit{G. Benhamida} and \textit{T. Moussaoui}, Asian-Eur. J. Math. 15, No. 5, Article ID 2250095, 15 p. (2022; Zbl 07545947) Full Text: DOI OpenURL
Safari, Z.; Loghmani, G. B.; Ahmadinia, M. Convergence analysis of a LDG method for time-space tempered fractional diffusion equations with weakly singular solutions. (English) Zbl 07545429 J. Sci. Comput. 91, No. 2, Paper No. 68, 29 p. (2022). MSC: 65-XX 35R11 65M60 65M12 PDF BibTeX XML Cite \textit{Z. Safari} et al., J. Sci. Comput. 91, No. 2, Paper No. 68, 29 p. (2022; Zbl 07545429) Full Text: DOI OpenURL
Zheng, Xiangcheng; Wang, Hong Discretization and analysis of an optimal control of a variable-order time-fractional diffusion equation with pointwise constraints. (English) Zbl 07545417 J. Sci. Comput. 91, No. 2, Paper No. 56, 22 p. (2022). MSC: 65Mxx 49Mxx 35Kxx PDF BibTeX XML Cite \textit{X. Zheng} and \textit{H. Wang}, J. Sci. Comput. 91, No. 2, Paper No. 56, 22 p. (2022; Zbl 07545417) Full Text: DOI OpenURL
Jia, Jinhong; Wang, Hong; Zheng, Xiangcheng Numerical analysis of a fast finite element method for a hidden-memory variable-order time-fractional diffusion equation. (English) Zbl 07545415 J. Sci. Comput. 91, No. 2, Paper No. 54, 17 p. (2022). MSC: 65-XX 35R11 65M15 65M60 PDF BibTeX XML Cite \textit{J. Jia} et al., J. Sci. Comput. 91, No. 2, Paper No. 54, 17 p. (2022; Zbl 07545415) Full Text: DOI OpenURL
Zheng, Bibo; Wang, Zhanshan Mittag-Leffler synchronization of fractional-order coupled neural networks with mixed delays. (English) Zbl 07545343 Appl. Math. Comput. 430, Article ID 127303, 12 p. (2022). MSC: 34Kxx 34Dxx 92Bxx PDF BibTeX XML Cite \textit{B. Zheng} and \textit{Z. Wang}, Appl. Math. Comput. 430, Article ID 127303, 12 p. (2022; Zbl 07545343) Full Text: DOI OpenURL
Zhang, Jiali; Fang, Zhi-Wei; Sun, Hai-Wei Robust fast method for variable-order time-fractional diffusion equations without regularity assumptions of the true solutions. (English) Zbl 07545323 Appl. Math. Comput. 430, Article ID 127273, 14 p. (2022). MSC: 65Mxx 35Kxx 65Nxx PDF BibTeX XML Cite \textit{J. Zhang} et al., Appl. Math. Comput. 430, Article ID 127273, 14 p. (2022; Zbl 07545323) Full Text: DOI OpenURL
Zhang, Zhi-Yong; Liu, Cheng-Bao Leibniz-type rule of variable-order fractional derivative and application to build Lie symmetry framework. (English) Zbl 07545318 Appl. Math. Comput. 430, Article ID 127268, 14 p. (2022). MSC: 26Axx 34Axx 35Rxx PDF BibTeX XML Cite \textit{Z.-Y. Zhang} and \textit{C.-B. Liu}, Appl. Math. Comput. 430, Article ID 127268, 14 p. (2022; Zbl 07545318) Full Text: DOI OpenURL
Liu, Yi; Chi, Xiaoqing; Xu, Huanying; Jiang, Xiaoyun Fast method and convergence analysis for the magnetohydrodynamic flow and heat transfer of fractional Maxwell fluid. (English) Zbl 07545313 Appl. Math. Comput. 430, Article ID 127255, 25 p. (2022). MSC: 65Mxx 26Axx 76Wxx PDF BibTeX XML Cite \textit{Y. Liu} et al., Appl. Math. Comput. 430, Article ID 127255, 25 p. (2022; Zbl 07545313) Full Text: DOI OpenURL
Wang, Zhi-Bo; Liu, Da-Yan; Boutat, Driss Algebraic estimation for fractional integrals of noisy acceleration based on the behaviour of fractional derivatives at zero. (English) Zbl 07545312 Appl. Math. Comput. 430, Article ID 127254, 16 p. (2022). MSC: 93Bxx 93Cxx 34Axx PDF BibTeX XML Cite \textit{Z.-B. Wang} et al., Appl. Math. Comput. 430, Article ID 127254, 16 p. (2022; Zbl 07545312) Full Text: DOI OpenURL
Benkhettou, Nadia; Aissani, Khalida; Salim, Abdelkrim; Benchohra, Mouffak; Tunç, Cemil Controllability of fractional integro-differential equations with infinite delay and non-instantaneous impulses. (English) Zbl 07545192 Appl. Anal. Optim. 6, No. 1, 79-94 (2022). MSC: 34-XX 26A33 34A12 34A37 34G20 PDF BibTeX XML Cite \textit{N. Benkhettou} et al., Appl. Anal. Optim. 6, No. 1, 79--94 (2022; Zbl 07545192) Full Text: Link OpenURL
Alkhazzan, Abdulwasea; Khan, Hasib; Tunç, Osman Existence and stability for a system of high order nonlinear boundary value problem with nonlinear \(\phi_p\) operator. (English) Zbl 07545191 Appl. Anal. Optim. 6, No. 1, 61-78 (2022). MSC: 34A08 34A12 39B82 PDF BibTeX XML Cite \textit{A. Alkhazzan} et al., Appl. Anal. Optim. 6, No. 1, 61--78 (2022; Zbl 07545191) Full Text: Link OpenURL
Salim, Abdelkrim; Benchohra, Mouffak; Lazreg, Jamal Eddine Nonlocal \(k\)-generalized \(\psi\)-Hilfer impulsive initial value problem with retarded and advanced arguments. (English) Zbl 07545189 Appl. Anal. Optim. 6, No. 1, 21-47 (2022). MSC: 34Kxx 34A08 26A33 34A12 PDF BibTeX XML Cite \textit{A. Salim} et al., Appl. Anal. Optim. 6, No. 1, 21--47 (2022; Zbl 07545189) Full Text: Link OpenURL
Ahmed, Rana Talha; Sohail, Ayesha Approximating the solution of the differential equations with fractional operators. (English) Zbl 07545188 Appl. Anal. Optim. 6, No. 1, 1-19 (2022). MSC: 65-XX 26A33 35R11 65M12 65M60 PDF BibTeX XML Cite \textit{R. T. Ahmed} and \textit{A. Sohail}, Appl. Anal. Optim. 6, No. 1, 1--19 (2022; Zbl 07545188) Full Text: Link OpenURL
Balaadich, Farah; Azroul, Elhoussine Existence results for fractional \(p\)-Laplacian systems via Young measures. (English) Zbl 07545152 Math. Model. Anal. 27, No. 2, 232-241 (2022). MSC: 35J92 35R11 35D30 35A01 PDF BibTeX XML Cite \textit{F. Balaadich} and \textit{E. Azroul}, Math. Model. Anal. 27, No. 2, 232--241 (2022; Zbl 07545152) Full Text: DOI OpenURL
Raghavan, Divya; Nagarajan, Sukavanam Extremal mild solutions of fractional evolution equation with mixed monotone impulsive conditions. (English) Zbl 07544755 Bull. Malays. Math. Sci. Soc. (2) 45, No. 4, 1427-1452 (2022). MSC: 34-XX 26A33 34K30 34K45 47D06 PDF BibTeX XML Cite \textit{D. Raghavan} and \textit{S. Nagarajan}, Bull. Malays. Math. Sci. Soc. (2) 45, No. 4, 1427--1452 (2022; Zbl 07544755) Full Text: DOI OpenURL
Huang, Chaobao; Stynes, Martin A sharp \(\alpha\)-robust \(L^\infty (H^1)\) error bound for a time-fractional Allen-Cahn problem discretised by the Alikhanov \(L2-1_\sigma\) scheme and a standard FEM. (English) Zbl 07544565 J. Sci. Comput. 91, No. 2, Paper No. 43, 19 p. (2022). MSC: 65M60 65M12 35R11 PDF BibTeX XML Cite \textit{C. Huang} and \textit{M. Stynes}, J. Sci. Comput. 91, No. 2, Paper No. 43, 19 p. (2022; Zbl 07544565) Full Text: DOI OpenURL
Kaltenbacher, Barbara; Nikolić, Vanja Time-fractional Moore-Gibson-Thompson equations. (English) Zbl 07544560 Math. Models Methods Appl. Sci. 32, No. 5, 965-1013 (2022). MSC: 35R11 35L72 76Q05 PDF BibTeX XML Cite \textit{B. Kaltenbacher} and \textit{V. Nikolić}, Math. Models Methods Appl. Sci. 32, No. 5, 965--1013 (2022; Zbl 07544560) Full Text: DOI OpenURL
Shen, Guangjun; Wu, Jiang-Lun; Xiao, Ruidong; Yin, Xiuwei An averaging principle for neutral stochastic fractional order differential equations with variable delays driven by Lévy noise. (English) Zbl 07544528 Stoch. Dyn. 22, No. 4, Article ID 2250009, 20 p. (2022). MSC: 41A60 60H15 PDF BibTeX XML Cite \textit{G. Shen} et al., Stoch. Dyn. 22, No. 4, Article ID 2250009, 20 p. (2022; Zbl 07544528) Full Text: DOI OpenURL
Li, Yumeng Talagrand’s quadratic transportation cost inequalities for SPDEs driven by fractional noises with two reflection walls. (English) Zbl 07544524 Stoch. Dyn. 22, No. 4, Article ID 2250004, 15 p. (2022). MSC: 60H15 60E15 PDF BibTeX XML Cite \textit{Y. Li}, Stoch. Dyn. 22, No. 4, Article ID 2250004, 15 p. (2022; Zbl 07544524) Full Text: DOI OpenURL
Hesse, Robert Local zero-stability of rough evolution equations. (English) Zbl 07544517 Stoch. Dyn. 22, No. 3, Article ID 2240015, 16 p. (2022). MSC: 60H15 37H30 60G22 60H10 PDF BibTeX XML Cite \textit{R. Hesse}, Stoch. Dyn. 22, No. 3, Article ID 2240015, 16 p. (2022; Zbl 07544517) Full Text: DOI OpenURL
Blömker, Dirk; Neamţu, Alexandra Amplitude equations for SPDEs driven by fractional additive noise with small Hurst parameter. (English) Zbl 07544516 Stoch. Dyn. 22, No. 3, Article ID 2240013, 33 p. (2022). MSC: 60G22 60H05 60H15 PDF BibTeX XML Cite \textit{D. Blömker} and \textit{A. Neamţu}, Stoch. Dyn. 22, No. 3, Article ID 2240013, 33 p. (2022; Zbl 07544516) Full Text: DOI OpenURL
Duc, Luu Hoang Exponential stability of stochastic systems: a pathwise approach. (English) Zbl 07544515 Stoch. Dyn. 22, No. 3, Article ID 2240012, 21 p. (2022). MSC: 37H30 60G22 60G40 60H10 PDF BibTeX XML Cite \textit{L. H. Duc}, Stoch. Dyn. 22, No. 3, Article ID 2240012, 21 p. (2022; Zbl 07544515) Full Text: DOI OpenURL
Xu, Jie An averaging principle for slow-fast fractional stochastic parabolic equations on unbounded domains. (English) Zbl 07544384 Stochastic Processes Appl. 150, 358-396 (2022). MSC: 60H15 35R11 70K65 70K70 PDF BibTeX XML Cite \textit{J. Xu}, Stochastic Processes Appl. 150, 358--396 (2022; Zbl 07544384) Full Text: DOI OpenURL
Deya, Aurélien On ill-posedness of nonlinear stochastic wave equations driven by rough noise. (English) Zbl 07544380 Stochastic Processes Appl. 150, 215-249 (2022). MSC: 60H15 60G22 35L05 35R25 35R60 PDF BibTeX XML Cite \textit{A. Deya}, Stochastic Processes Appl. 150, 215--249 (2022; Zbl 07544380) Full Text: DOI OpenURL
Piccinini, Mirco The obstacle problem and the Perron method for nonlinear fractional equations in the Heisenberg group. (English) Zbl 07544215 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 112966, 31 p. (2022). MSC: 35R11 35J87 35R03 35R09 35B45 47G20 47J20 PDF BibTeX XML Cite \textit{M. Piccinini}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 112966, 31 p. (2022; Zbl 07544215) Full Text: DOI OpenURL
Suzuki, Masamitsu Local existence and nonexistence for fractional in time reaction-diffusion equations and systems with rapidly growing nonlinear terms. (English) Zbl 07544198 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 112909, 17 p. (2022). MSC: 35R11 35A01 35K15 35K58 26A33 46E30 PDF BibTeX XML Cite \textit{M. Suzuki}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 112909, 17 p. (2022; Zbl 07544198) Full Text: DOI OpenURL
Zhang, Peng; Han, Zhiqing Existence of nontrivial solutions for a class of nonlinear fractional Schrödinger-Poisson system. (English) Zbl 07544002 J. Math. Res. Appl. 42, No. 2, 162-172 (2022). MSC: 35A15 35R11 35J60 PDF BibTeX XML Cite \textit{P. Zhang} and \textit{Z. Han}, J. Math. Res. Appl. 42, No. 2, 162--172 (2022; Zbl 07544002) Full Text: DOI OpenURL
Bezerra, F. D. M. A second-order evolution equation and logarithmic operators. (English) Zbl 07543745 Bull. Braz. Math. Soc. (N.S.) 53, No. 2, 571-593 (2022). MSC: 35L20 26A33 34A08 35L05 35R11 47D06 PDF BibTeX XML Cite \textit{F. D. M. Bezerra}, Bull. Braz. Math. Soc. (N.S.) 53, No. 2, 571--593 (2022; Zbl 07543745) Full Text: DOI OpenURL
Kian, Yavar Simultaneous determination of different class of parameters for a diffusion equation from a single measurement. (English) Zbl 07543698 Inverse Probl. 38, No. 7, Article ID 075008, 29 p. (2022). MSC: 35R30 35K20 35L20 35R11 PDF BibTeX XML Cite \textit{Y. Kian}, Inverse Probl. 38, No. 7, Article ID 075008, 29 p. (2022; Zbl 07543698) Full Text: DOI OpenURL
Kaltenbacher, Barbara; Rundell, William Determining damping terms in fractional wave equations. (English) Zbl 07543694 Inverse Probl. 38, No. 7, Article ID 075004, 35 p. (2022). MSC: 35R30 35L20 35R11 PDF BibTeX XML Cite \textit{B. Kaltenbacher} and \textit{W. Rundell}, Inverse Probl. 38, No. 7, Article ID 075004, 35 p. (2022; Zbl 07543694) Full Text: DOI OpenURL
Khirani, Moustafa; Tellab, Brahim; Haouam, Kamel; Zennir, Khaled Global nonexistence of solutions for Caputo fractional differential inequality with singular potential term. (English) Zbl 07543553 Quaest. Math. 45, No. 5, 723-732 (2022). MSC: 26A33 35B33 35R11 PDF BibTeX XML Cite \textit{M. Khirani} et al., Quaest. Math. 45, No. 5, 723--732 (2022; Zbl 07543553) Full Text: DOI OpenURL
Kien, B. T.; Fedorov, V. E.; Phuong, T. D. Optimal control problems governed by fractional differential equations with control constraints. (English) Zbl 07543538 SIAM J. Control Optim. 60, No. 3, 1732-1762 (2022). MSC: 49-02 49K15 90C29 34A08 PDF BibTeX XML Cite \textit{B. T. Kien} et al., SIAM J. Control Optim. 60, No. 3, 1732--1762 (2022; Zbl 07543538) Full Text: DOI OpenURL
Ghaffour, Lilia; Laleg-Kirati, Taous-Meriem Reference tracking and observer design for space fractional partial differential equation modeling gas pressures in fractured media. (English) Zbl 07543533 SIAM J. Control Optim. 60, No. 3, 1613-1641 (2022). MSC: 35R11 35A08 35K20 93C20 93C40 PDF BibTeX XML Cite \textit{L. Ghaffour} and \textit{T.-M. Laleg-Kirati}, SIAM J. Control Optim. 60, No. 3, 1613--1641 (2022; Zbl 07543533) Full Text: DOI OpenURL
Faghih, A.; Mokhtary, P. Non-linear system of multi-order fractional differential equations: theoretical analysis and a robust fractional Galerkin implementation. (English) Zbl 07543423 J. Sci. Comput. 91, No. 2, Paper No. 35, 30 p. (2022). MSC: 34A09 65L05 65L20 65L60 65L80 PDF BibTeX XML Cite \textit{A. Faghih} and \textit{P. Mokhtary}, J. Sci. Comput. 91, No. 2, Paper No. 35, 30 p. (2022; Zbl 07543423) Full Text: DOI OpenURL
Sun, Jing; Deng, Weihua; Nie, Daxin Numerical approximations for the fractional Fokker-Planck equation with two-scale diffusion. (English) Zbl 07543422 J. Sci. Comput. 91, No. 2, Paper No. 34, 25 p. (2022). MSC: 65Mxx 35Rxx 65Nxx PDF BibTeX XML Cite \textit{J. Sun} et al., J. Sci. Comput. 91, No. 2, Paper No. 34, 25 p. (2022; Zbl 07543422) Full Text: DOI OpenURL
Li, Dongfang; She, Mianfu; Sun, Hai-wei; Yan, Xiaoqiang A novel discrete fractional Grönwall-type inequality and its application in pointwise-in-time error estimates. (English) Zbl 07543415 J. Sci. Comput. 91, No. 1, Paper No. 27, 26 p. (2022). MSC: 65M70 65M06 65N35 65M12 65M15 35B65 26A33 35R11 PDF BibTeX XML Cite \textit{D. Li} et al., J. Sci. Comput. 91, No. 1, Paper No. 27, 26 p. (2022; Zbl 07543415) Full Text: DOI OpenURL
Herzallah, Mohamed A. E.; Radwan, Ashraf H. A. Mild solution to hybrid fractional differential equations with state-dependent nonlocal conditions. (English) Zbl 07543128 J. Integral Equations Appl. 34, No. 1, 93-102 (2022). MSC: 12H20 26A33 34A08 45N05 PDF BibTeX XML Cite \textit{M. A. E. Herzallah} and \textit{A. H. A. Radwan}, J. Integral Equations Appl. 34, No. 1, 93--102 (2022; Zbl 07543128) Full Text: DOI OpenURL
Azroul, Elhoussine; Benkirane, Abdelmoujib; Shimi, Mohammed; Srati, Mohammed Multiple solutions for a binonlocal fractional \(p(x,\cdot)\)-Kirchhoff type problem. (English) Zbl 07543123 J. Integral Equations Appl. 34, No. 1, 1-17 (2022). MSC: 35R11 35D30 35J35 35J92 47G20 PDF BibTeX XML Cite \textit{E. Azroul} et al., J. Integral Equations Appl. 34, No. 1, 1--17 (2022; Zbl 07543123) Full Text: DOI OpenURL
Shi, Shaoguang; Zhang, Lei; Wang, Guanglan Fractional non-linear regularity, potential and balayage. (English) Zbl 07542704 J. Geom. Anal. 32, No. 8, Paper No. 221, 29 p. (2022). MSC: 31B15 31C05 31B35 35R11 35D30 PDF BibTeX XML Cite \textit{S. Shi} et al., J. Geom. Anal. 32, No. 8, Paper No. 221, 29 p. (2022; Zbl 07542704) Full Text: DOI OpenURL
Rashid, Saima; Kubra, Khadija Tul; Sultana, Sobia; Agarwal, Praveen; Osman, M. S. An approximate analytical view of physical and biological models in the setting of Caputo operator via Elzaki transform decomposition method. (English) Zbl 07542694 J. Comput. Appl. Math. 413, Article ID 114378, 23 p. (2022). MSC: 26A51 26A33 26D07 26D10 26D15 PDF BibTeX XML Cite \textit{S. Rashid} et al., J. Comput. Appl. Math. 413, Article ID 114378, 23 p. (2022; Zbl 07542694) Full Text: DOI OpenURL
Su, Lingde; Huang, Jian; Vasil’ev, V. I.; Li, Ao; Kardashevsky, A. M. A numerical method for solving retrospective inverse problem of fractional parabolic equation. (English) Zbl 07542688 J. Comput. Appl. Math. 413, Article ID 114366, 11 p. (2022). MSC: 65M30 35R11 65M32 PDF BibTeX XML Cite \textit{L. Su} et al., J. Comput. Appl. Math. 413, Article ID 114366, 11 p. (2022; Zbl 07542688) Full Text: DOI OpenURL
Chen, Yanping; Lin, Xiuxiu; Huang, Yunqing Error analysis of spectral approximation for space-time fractional optimal control problems with control and state constraints. (English) Zbl 07542678 J. Comput. Appl. Math. 413, Article ID 114293, 15 p. (2022). MSC: 65Mxx 65Nxx 49Mxx PDF BibTeX XML Cite \textit{Y. Chen} et al., J. Comput. Appl. Math. 413, Article ID 114293, 15 p. (2022; Zbl 07542678) Full Text: DOI OpenURL
Roncal, Luz; Thangavelu, Sundaram Corrigendum to: “An extension problem and trace Hardy inequality for the sub-Laplacian on \(H\)-type groups”. (Corrigendum to: “An extension problem and trace Hardy inequality for the sublaplacian on \(H\)-type groups”.) (English) Zbl 07542597 Int. Math. Res. Not. 2022, No. 12, 9598-9602 (2022). MSC: 35A23 35H20 35R03 35R11 PDF BibTeX XML Cite \textit{L. Roncal} and \textit{S. Thangavelu}, Int. Math. Res. Not. 2022, No. 12, 9598--9602 (2022; Zbl 07542597) Full Text: DOI OpenURL
Fedorov, V. E.; Nagumanova, A. V. Inverse linear problems for a certain class of degenerate fractional evolution equations. (English. Russian original) Zbl 07542516 J. Math. Sci., New York 260, No. 3, 371-386 (2022); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 167, 97-111 (2019). MSC: 35R30 35R11 34K29 PDF BibTeX XML Cite \textit{V. E. Fedorov} and \textit{A. V. Nagumanova}, J. Math. Sci., New York 260, No. 3, 371--386 (2022; Zbl 07542516); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 167, 97--111 (2019) Full Text: DOI OpenURL
Pskhu, A. V. Green function of the first boundary-value problem for the fractional diffusion-wave equation in a multidimensional rectangular domain. (English. Russian original) Zbl 07542514 J. Math. Sci., New York 260, No. 3, 325-334 (2022); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 167, 52-61 (2019). MSC: 35R11 35K20 35L20 PDF BibTeX XML Cite \textit{A. V. Pskhu}, J. Math. Sci., New York 260, No. 3, 325--334 (2022; Zbl 07542514); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 167, 52--61 (2019) Full Text: DOI OpenURL
Plekhanova, M. V. Strong solution and optimal control problems for a class of fractional linear equations. (English. Russian original) Zbl 07542513 J. Math. Sci., New York 260, No. 3, 315-324 (2022); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 167, 42-51 (2019). MSC: 49J20 35R11 34G10 PDF BibTeX XML Cite \textit{M. V. Plekhanova}, J. Math. Sci., New York 260, No. 3, 315--324 (2022; Zbl 07542513); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 167, 42--51 (2019) Full Text: DOI OpenURL
Gekkieva, S. Kh.; Kerefov, M. A. Boundary-value problem for the Aller-Lykov nonlocal moisture transfer equation. (English. Russian original) Zbl 07542511 J. Math. Sci., New York 260, No. 3, 300-306 (2022); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 167, 27-33 (2019). MSC: 35R11 35B45 35C10 PDF BibTeX XML Cite \textit{S. Kh. Gekkieva} and \textit{M. A. Kerefov}, J. Math. Sci., New York 260, No. 3, 300--306 (2022; Zbl 07542511); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 167, 27--33 (2019) Full Text: DOI OpenURL
Banjai, Lehel; Makridakis, Charalambos G. A posteriori error analysis for approximations of time-fractional subdiffusion problems. (English) Zbl 07541889 Math. Comput. 91, No. 336, 1711-1737 (2022). MSC: 65-XX 35R11 65M06 65M15 PDF BibTeX XML Cite \textit{L. Banjai} and \textit{C. G. Makridakis}, Math. Comput. 91, No. 336, 1711--1737 (2022; Zbl 07541889) Full Text: DOI OpenURL
Sin, Chung-Sik Cauchy problem for nonlocal diffusion equations modelling Lévy flights. (English) Zbl 07541803 Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 18, 22 p. (2022). MSC: 35R11 35A08 35B40 35C15 45K05 47G20 PDF BibTeX XML Cite \textit{C.-S. Sin}, Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 18, 22 p. (2022; Zbl 07541803) Full Text: DOI OpenURL
Wu, Guo-Cheng; Gu, Chuan-Yun; Huang, Lan-Lan; Baleanu, Dumitru Fractional differential equations of variable order: existence results, numerical method and asymptotic stability conditions. (English) Zbl 07541782 Miskolc Math. Notes 23, No. 1, 485-493 (2022). MSC: 34A08 PDF BibTeX XML Cite \textit{G.-C. Wu} et al., Miskolc Math. Notes 23, No. 1, 485--493 (2022; Zbl 07541782) Full Text: DOI OpenURL
Li, Xiuwen; Zeng, Biao General history-dependent operators with applications to differential equations. (English) Zbl 07541771 Miskolc Math. Notes 23, No. 1, 327-337 (2022). MSC: 34A08 34A40 37C25 47G10 35R11 PDF BibTeX XML Cite \textit{X. Li} and \textit{B. Zeng}, Miskolc Math. Notes 23, No. 1, 327--337 (2022; Zbl 07541771) Full Text: DOI OpenURL
Batik, Songul; Deren, Fulya Yoruk Semipositone fractional boundary value problems with n point fractional integral boundary conditions. (English) Zbl 07541756 Miskolc Math. Notes 23, No. 1, 93-104 (2022). MSC: 34B10 34B18 39A10 PDF BibTeX XML Cite \textit{S. Batik} and \textit{F. Y. Deren}, Miskolc Math. Notes 23, No. 1, 93--104 (2022; Zbl 07541756) Full Text: DOI OpenURL
Zada, Akbar; Shaleena, Shaleena; Ahmad, Manzoor Analysis of solutions of the integro-differential equations with generalized Liouville-Caputo fractional derivative by \(\rho\)-Laplace transform. (English) Zbl 07541726 Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 116, 19 p. (2022). MSC: 26A33 35A22 44A10 PDF BibTeX XML Cite \textit{A. Zada} et al., Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 116, 19 p. (2022; Zbl 07541726) Full Text: DOI OpenURL
Mahatekar, Yogita; Deshpande, Amey S. A generalized NPCM for solving multi-term fractional differential equations. (English) Zbl 07541725 Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 115, 17 p. (2022). MSC: 65-XX 34-XX PDF BibTeX XML Cite \textit{Y. Mahatekar} and \textit{A. S. Deshpande}, Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 115, 17 p. (2022; Zbl 07541725) Full Text: DOI OpenURL
Karaman, Bahar On fractional Fitzhugh-Nagumo equation as a transmission of nerve impulses design. (English) Zbl 07541705 Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 95, 13 p. (2022). MSC: 35C05 35K58 35R11 PDF BibTeX XML Cite \textit{B. Karaman}, Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 95, 13 p. (2022; Zbl 07541705) Full Text: DOI OpenURL
Zafar, Husna; Ali, Amir; Khan, Khalid; Sadiq, Muhammad Noveel Analytical solution of time fractional Kawahara and modified Kawahara equations by homotopy analysis method. (English) Zbl 07541704 Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 94, 18 p. (2022). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{H. Zafar} et al., Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 94, 18 p. (2022; Zbl 07541704) Full Text: DOI OpenURL
Partohaghighi, Mohammad; Yusuf, Abdullahi; Bayram, Mustafa New fractional modelling, analysis and control of the three coupled multiscale non-linear buffering system. (English) Zbl 07541696 Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 86, 15 p. (2022). MSC: 34-XX 35-XX PDF BibTeX XML Cite \textit{M. Partohaghighi} et al., Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 86, 15 p. (2022; Zbl 07541696) Full Text: DOI OpenURL
Bhardwaj, Akanksha; Kumar, Alpesh; Tiwari, Awanish Kumar An RBF based finite difference method for the numerical approximation of multi-term nonlinear time fractional two dimensional diffusion-wave equation. (English) Zbl 07541694 Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 84, 25 p. (2022). MSC: 65Mxx 76-XX PDF BibTeX XML Cite \textit{A. Bhardwaj} et al., Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 84, 25 p. (2022; Zbl 07541694) Full Text: DOI OpenURL
Ünal, Sevil Çulha Approximate solutions of time fractional Kawahara equation by utilizing the residual power series method. (English) Zbl 07541688 Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 78, 12 p. (2022). MSC: 26A33 35C10 35R11 PDF BibTeX XML Cite \textit{S. Ç. Ünal}, Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 78, 12 p. (2022; Zbl 07541688) Full Text: DOI OpenURL
Kumar, Manoj A hybrid method to solve time-space fractional PDEs with proportional delay. (English) Zbl 07541682 Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 72, 15 p. (2022). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{M. Kumar}, Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 72, 15 p. (2022; Zbl 07541682) Full Text: DOI OpenURL
Kavitha, K.; Vijayakumar, V. An analysis regarding to approximate controllability for Hilfer fractional neutral evolution hemivariational inequality. (English) Zbl 07541652 Qual. Theory Dyn. Syst. 21, No. 3, Paper No. 80, 22 p. (2022). MSC: 26A33 34K40 34G10 34G25 93B05 PDF BibTeX XML Cite \textit{K. Kavitha} and \textit{V. Vijayakumar}, Qual. Theory Dyn. Syst. 21, No. 3, Paper No. 80, 22 p. (2022; Zbl 07541652) Full Text: DOI OpenURL
Vallipriyatharsini, S.; Bazeera, A. Z.; Chinnathambi, V.; Rajasekar, S. Homoclinic transition to chaos in the Duffing oscillator driven by periodic piecewise linear forces. (English) Zbl 07541409 J. Nonlinear Anal. Optim. 13, No. 1, 25-38 (2022). MSC: 37D45 34C37 34D10 34A08 37J20 37C29 PDF BibTeX XML Cite \textit{S. Vallipriyatharsini} et al., J. Nonlinear Anal. Optim. 13, No. 1, 25--38 (2022; Zbl 07541409) Full Text: Link OpenURL
Shiri, Babak; Kong, Hua; Wu, Guo-Cheng; Luo, Cheng Adaptive learning neural network method for solving time-fractional diffusion equations. (English) Zbl 07541166 Neural Comput. 34, No. 4, 971-990 (2022). MSC: 35R11 68T05 PDF BibTeX XML Cite \textit{B. Shiri} et al., Neural Comput. 34, No. 4, 971--990 (2022; Zbl 07541166) Full Text: DOI OpenURL
Hamoud, Ahmed A.; Ghadle, Kirtiwant P. Some new uniqueness results of solutions for fractional Volterra-Fredholm integro-differential equations. (English) Zbl 07541069 Iran. J. Math. Sci. Inform. 17, No. 1, 135-144 (2022). MSC: 26A33 34A12 26D10 PDF BibTeX XML Cite \textit{A. A. Hamoud} and \textit{K. P. Ghadle}, Iran. J. Math. Sci. Inform. 17, No. 1, 135--144 (2022; Zbl 07541069) Full Text: Link OpenURL
Kopteva, Natalia Maximum principle for time-fractional parabolic equations with a reaction coefficient of arbitrary sign. (English) Zbl 07540983 Appl. Math. Lett. 132, Article ID 108209, 7 p. (2022). MSC: 35B50 35D30 35K10 35R11 PDF BibTeX XML Cite \textit{N. Kopteva}, Appl. Math. Lett. 132, Article ID 108209, 7 p. (2022; Zbl 07540983) Full Text: DOI OpenURL
Xu, Ruijin; Tian, Rushun Infinitely many vector solutions of a fractional nonlinear Schrödinger system with strong competition. (English) Zbl 07540972 Appl. Math. Lett. 132, Article ID 108187, 6 p. (2022). MSC: 35R11 35J50 35J57 PDF BibTeX XML Cite \textit{R. Xu} and \textit{R. Tian}, Appl. Math. Lett. 132, Article ID 108187, 6 p. (2022; Zbl 07540972) Full Text: DOI OpenURL
Biagi, Stefano; Mugnai, Dimitri; Vecchi, Eugenio Necessary condition in a Brezis-Oswald-type problem for mixed local and nonlocal operators. (English) Zbl 07540968 Appl. Math. Lett. 132, Article ID 108177, 9 p. (2022). MSC: 35J92 35R11 35J67 35A01 35A02 PDF BibTeX XML Cite \textit{S. Biagi} et al., Appl. Math. Lett. 132, Article ID 108177, 9 p. (2022; Zbl 07540968) Full Text: DOI OpenURL
Zuo, Jiabin; Choudhuri, Debajyoti; Repovš, Dušan D. On critical variable-order Kirchhoff type problems with variable singular exponent. (English) Zbl 07540682 J. Math. Anal. Appl. 514, No. 1, Article ID 126264, 18 p. (2022). MSC: 35J62 35R11 35A01 PDF BibTeX XML Cite \textit{J. Zuo} et al., J. Math. Anal. Appl. 514, No. 1, Article ID 126264, 18 p. (2022; Zbl 07540682) Full Text: DOI OpenURL