Guo, Yuxia; Peng, Shaolong Liouville theorems for nonnegative solutions to weighted Schrödinger equations with logarithmic nonlinearities. (English) Zbl 07764845 Dyn. Partial Differ. Equ. 21, No. 1, 31-60 (2024). MSC: 35B53 35J30 35R10 35R11 PDF BibTeX XML Cite \textit{Y. Guo} and \textit{S. Peng}, Dyn. Partial Differ. Equ. 21, No. 1, 31--60 (2024; Zbl 07764845) Full Text: DOI
Yang, Xujun; Wu, Xiang; Song, Qiankun Caputo-Wirtinger integral inequality and its application to stability analysis of fractional-order systems with mixed time-varying delays. (English) Zbl 07748312 Appl. Math. Comput. 460, Article ID 128303, 12 p. (2024). MSC: 93Cxx 93Dxx 34Axx PDF BibTeX XML Cite \textit{X. Yang} et al., Appl. Math. Comput. 460, Article ID 128303, 12 p. (2024; Zbl 07748312) Full Text: DOI
Yao, Zichen; Yang, Zhanwen; Fu, Yongqiang Long time decay analysis of complex-valued fractional abstract evolution equations with delay. (English) Zbl 07748304 Appl. Math. Comput. 460, Article ID 128292, 17 p. (2024). MSC: 34Kxx 35Qxx 35Rxx PDF BibTeX XML Cite \textit{Z. Yao} et al., Appl. Math. Comput. 460, Article ID 128292, 17 p. (2024; Zbl 07748304) Full Text: DOI
Alghanmi, Madeaha; Agarwal, Ravi P.; Ahmad, Bashir Existence of solutions for a coupled system of nonlinear implicit differential equations involving \(\varrho\)-fractional derivative with anti periodic boundary conditions. (English) Zbl 07746179 Qual. Theory Dyn. Syst. 23, No. 1, Paper No. 6, 17 p. (2024). MSC: 26A33 34K05 PDF BibTeX XML Cite \textit{M. Alghanmi} et al., Qual. Theory Dyn. Syst. 23, No. 1, Paper No. 6, 17 p. (2024; Zbl 07746179) Full Text: DOI
Abbas, Saïd; Ahmad, Bashir; Benchohra, Mouffak; Salim, Abdelkrim Fractional difference, differential equations, and inclusions. Analysis and stability (to appear). (English) Zbl 07707421 Amsterdam: Elsevier/Morgan Kaufmann (ISBN 978-0-443-23601-3/pbk). 300 p. (2024). MSC: 26-01 39-01 34-01 35-01 26A33 34A08 35R11 PDF BibTeX XML Cite \textit{S. Abbas} et al., Fractional difference, differential equations, and inclusions. Analysis and stability (to appear). Amsterdam: Elsevier/Morgan Kaufmann (2024; Zbl 07707421)
Liu, Yarong; Wang, Yejuan Asymptotic behaviour of time fractional stochastic delay evolution equations with tempered fractional noise. (English) Zbl 07765948 Discrete Contin. Dyn. Syst., Ser. S 16, No. 10, 2483-2510 (2023). MSC: 34K50 60G22 34K20 34K37 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{Y. Wang}, Discrete Contin. Dyn. Syst., Ser. S 16, No. 10, 2483--2510 (2023; Zbl 07765948) Full Text: DOI
Loh, Jian Rong; Phang, Chang; Isah, Abdulnasir Numerical solution for arbitrary domain of fractional integro-differential equation via the general shifted Genocchi polynomials. (English) Zbl 07764938 J. Funct. Spaces 2023, Article ID 5921425, 12 p. (2023). MSC: 65L03 65R20 34A08 PDF BibTeX XML Cite \textit{J. R. Loh} et al., J. Funct. Spaces 2023, Article ID 5921425, 12 p. (2023; Zbl 07764938) Full Text: DOI
Amundsen, David; Moameni, Abbas; Temgoua, Remi Yvant Mixed local and nonlocal supercritical Dirichlet problems. (English) Zbl 07764455 Commun. Pure Appl. Anal. 22, No. 10, 3139-3164 (2023). MSC: 35R11 35A15 35B06 35B09 35J25 35J61 PDF BibTeX XML Cite \textit{D. Amundsen} et al., Commun. Pure Appl. Anal. 22, No. 10, 3139--3164 (2023; Zbl 07764455) Full Text: DOI arXiv
Talaei, Y.; Noeiaghdam, Samad; Hosseinzadeh, H. Numerical solution of fractional order Fredholm integro-differential equations by spectral method with fractional basis functions. (English) Zbl 07762884 Izv. Irkutsk. Gos. Univ., Ser. Mat. 45, 89-103 (2023). MSC: 65R30 34K37 45J05 45B05 PDF BibTeX XML Cite \textit{Y. Talaei} et al., Izv. Irkutsk. Gos. Univ., Ser. Mat. 45, 89--103 (2023; Zbl 07762884) Full Text: DOI arXiv Link
Paroni, Roberto; Podio-Guidugli, Paolo; Seguin, Brian On a notion of nonlocal curvature tensor. (English) Zbl 07762823 J. Elasticity 154, No. 1-4, 61-79 (2023). MSC: 35R11 49Q05 53A05 PDF BibTeX XML Cite \textit{R. Paroni} et al., J. Elasticity 154, No. 1--4, 61--79 (2023; Zbl 07762823) Full Text: DOI arXiv
Gadzova, L. Kh. Naimark problem for a fractional ordinary differential equation. (English. Russian original) Zbl 07761815 Math. Notes 114, No. 2, 159-164 (2023); translation from Mat. Zametki 114, No. 2, 195-202 (2023). MSC: 26Axx 34Axx 26-XX PDF BibTeX XML Cite \textit{L. Kh. Gadzova}, Math. Notes 114, No. 2, 159--164 (2023; Zbl 07761815); translation from Mat. Zametki 114, No. 2, 195--202 (2023) Full Text: DOI
Gu, Qiling; Chen, Yanping; Zhou, Jianwei; Huang, Yunqing A two-grid virtual element method for nonlinear variable-order time-fractional diffusion equation on polygonal meshes. (English) Zbl 07761285 Int. J. Comput. Math. 100, No. 11, 2124-2139 (2023). MSC: 65M60 65N30 34K37 65M15 65M55 PDF BibTeX XML Cite \textit{Q. Gu} et al., Int. J. Comput. Math. 100, No. 11, 2124--2139 (2023; Zbl 07761285) Full Text: DOI
Lenka, Bichitra Kumar; Bora, Swaroop Nandan New criteria for asymptotic stability of a class of nonlinear real-order time-delay systems. (English) Zbl 07760295 Nonlinear Dyn. 111, No. 5, 4469-4484 (2023). MSC: 34K37 34K20 34K35 93C10 93D20 PDF BibTeX XML Cite \textit{B. K. Lenka} and \textit{S. N. Bora}, Nonlinear Dyn. 111, No. 5, 4469--4484 (2023; Zbl 07760295) Full Text: DOI
Ponosov, Arcady; Idels, Lev; Kadiev, Ramazan I. A novel algorithm for asymptotic stability analysis of some classes of stochastic time-fractional Volterra equations. (English) Zbl 07758932 Commun. Nonlinear Sci. Numer. Simul. 126, Article ID 107491, 10 p. (2023). MSC: 93E15 93D20 93D25 60H30 34K50 34D20 PDF BibTeX XML Cite \textit{A. Ponosov} et al., Commun. Nonlinear Sci. Numer. Simul. 126, Article ID 107491, 10 p. (2023; Zbl 07758932) Full Text: DOI
Xu, Yao; Li, Wenbo; Zhang, Chunmei; Li, Wenxue Global bipartite synchronization of fractional-order time-varying coupled signed networks with proportional delays. (English) Zbl 07758904 Commun. Nonlinear Sci. Numer. Simul. 126, Article ID 107452, 12 p. (2023). MSC: 34K24 34K37 92B20 05C90 34K20 PDF BibTeX XML Cite \textit{Y. Xu} et al., Commun. Nonlinear Sci. Numer. Simul. 126, Article ID 107452, 12 p. (2023; Zbl 07758904) Full Text: DOI
Guo, Yuling; Wang, Zhongqing A fast time-stepping method based on the \(hp\)-version spectral collocation method for the nonlinear fractional delay differential equation. (English) Zbl 07758876 Commun. Nonlinear Sci. Numer. Simul. 126, Article ID 107424, 15 p. (2023). MSC: 65L60 34K37 45D05 65L70 PDF BibTeX XML Cite \textit{Y. Guo} and \textit{Z. Wang}, Commun. Nonlinear Sci. Numer. Simul. 126, Article ID 107424, 15 p. (2023; Zbl 07758876) Full Text: DOI
Mokkedem, Fatima Zahra Approximate controllability for weighted semilinear Riemann-Liouville fractional differential systems with infinite delay. (English) Zbl 07757186 Differ. Equ. Dyn. Syst. 31, No. 4, 709-727 (2023). MSC: 34K30 34K37 34K35 93B05 PDF BibTeX XML Cite \textit{F. Z. Mokkedem}, Differ. Equ. Dyn. Syst. 31, No. 4, 709--727 (2023; Zbl 07757186) Full Text: DOI
Pathak, Vijai Kumar; Mishra, Lakshmi Narayan Investigating the existence of solution for nonlinear Hadamard fractional functional integral equations via measure of noncompactness and its application. (English) Zbl 07756035 Mishra, Ratnesh Kumar (ed.) et al., Advances in pure and applied algebra. Proceedings of the CONIAPS XXVII international conference 2021. Berlin: De Gruyter. De Gruyter Proc. Math., 129-147 (2023). MSC: 45G10 47N20 26A33 PDF BibTeX XML Cite \textit{V. K. Pathak} and \textit{L. N. Mishra}, in: Advances in pure and applied algebra. Proceedings of the CONIAPS XXVII international conference 2021. Berlin: De Gruyter. 129--147 (2023; Zbl 07756035) Full Text: DOI
Ashurov, Ravshan; Kadirkulov, Baxtiyar; Jalilov, Muhammadali On an inverse problem of the Bitsadze-Samarskii type for a parabolic equation of fractional order. (English) Zbl 07754910 Bol. Soc. Mat. Mex., III. Ser. 29, No. 3, Paper No. 70, 21 p. (2023). MSC: 35R30 35K65 35R11 34K37 PDF BibTeX XML Cite \textit{R. Ashurov} et al., Bol. Soc. Mat. Mex., III. Ser. 29, No. 3, Paper No. 70, 21 p. (2023; Zbl 07754910) Full Text: DOI
Methi, Giriraj; Kumar, Anil; Aggarwal, Rupal; Tikare, Sanket Applications of differential transform and Bell polynomials to various types of differential equations. (English) Zbl 07752908 J. Nonlinear Convex Anal. 24, No. 9, 1967-1976 (2023). MSC: 65L03 34K07 34K37 65L70 PDF BibTeX XML Cite \textit{G. Methi} et al., J. Nonlinear Convex Anal. 24, No. 9, 1967--1976 (2023; Zbl 07752908) Full Text: Link
Wang, Jingjing; Zhu, Song; Liu, Xiaoyang; Wen, Shiping Mittag-Leffler stability of fractional-order quaternion-valued memristive neural networks with generalized piecewise constant argument. (English) Zbl 07752142 Neural Netw. 162, 175-185 (2023). MSC: 34K37 34K39 34K20 92B20 46S10 PDF BibTeX XML Cite \textit{J. Wang} et al., Neural Netw. 162, 175--185 (2023; Zbl 07752142) Full Text: DOI
Wu, Zhongwen; Nie, Xiaobing; Cao, Boqiang Coexistence and local stability of multiple equilibrium points for fractional-order state-dependent switched competitive neural networks with time-varying delays. (English) Zbl 07752114 Neural Netw. 160, 132-147 (2023). MSC: 34K37 34K21 34K20 34K39 92B20 PDF BibTeX XML Cite \textit{Z. Wu} et al., Neural Netw. 160, 132--147 (2023; Zbl 07752114) Full Text: DOI
Jolić, Maja; Konjik, Sanja Controllability and observability of linear time-varying fractional systems. (English) Zbl 07748683 Fract. Calc. Appl. Anal. 26, No. 4, 1709-1739 (2023). MSC: 93B05 34H05 34K37 PDF BibTeX XML Cite \textit{M. Jolić} and \textit{S. Konjik}, Fract. Calc. Appl. Anal. 26, No. 4, 1709--1739 (2023; Zbl 07748683) Full Text: DOI
Mahata, Shibendu; Herencsar, Norbert; Maione, Guido Optimal approximation of analog PID controllers of complex fractional-order. (English) Zbl 07748678 Fract. Calc. Appl. Anal. 26, No. 4, 1566-1593 (2023). MSC: 93B51 93C15 93B50 34A08 34K37 PDF BibTeX XML Cite \textit{S. Mahata} et al., Fract. Calc. Appl. Anal. 26, No. 4, 1566--1593 (2023; Zbl 07748678) Full Text: DOI OA License
Čermák, Jan; Kisela, Tomáš; Nechvátal, Luděk The Lambert function method in qualitative analysis of fractional delay differential equations. (English) Zbl 07748677 Fract. Calc. Appl. Anal. 26, No. 4, 1545-1565 (2023). MSC: 34K37 34K20 34K25 PDF BibTeX XML Cite \textit{J. Čermák} et al., Fract. Calc. Appl. Anal. 26, No. 4, 1545--1565 (2023; Zbl 07748677) Full Text: DOI
Ding, Yonghong; Li, Yongxiang Finite-approximate controllability of impulsive \(\psi\)-Caputo fractional evolution equations with nonlocal conditions. (English) Zbl 07748671 Fract. Calc. Appl. Anal. 26, No. 3, 1326-1358 (2023). MSC: 93B05 34K37 93D40 PDF BibTeX XML Cite \textit{Y. Ding} and \textit{Y. Li}, Fract. Calc. Appl. Anal. 26, No. 3, 1326--1358 (2023; Zbl 07748671) Full Text: DOI
Gou, Haide; Li, Yongxiang Extremal mild solutions to Hilfer evolution equations with non-instantaneous impulses and nonlocal conditions. (English) Zbl 07748665 Fract. Calc. Appl. Anal. 26, No. 3, 1145-1185 (2023). MSC: 34G20 34K37 47N20 PDF BibTeX XML Cite \textit{H. Gou} and \textit{Y. Li}, Fract. Calc. Appl. Anal. 26, No. 3, 1145--1185 (2023; Zbl 07748665) Full Text: DOI
Dineshkumar, Chendrayan; Vijayakumar, Velusamy; Udhayakumar, Ramalingam; Shukla, Anurag; Nisar, Kottakkaran Sooppy Controllability discussion for fractional stochastic Volterra-Fredholm integro-differential systems of order \(1<r<2\). (English) Zbl 07748415 Int. J. Nonlinear Sci. Numer. Simul. 24, No. 5, 1947-1979 (2023). MSC: 26A33 34A08 34K30 47D09 45D05 93E03 PDF BibTeX XML Cite \textit{C. Dineshkumar} et al., Int. J. Nonlinear Sci. Numer. Simul. 24, No. 5, 1947--1979 (2023; Zbl 07748415) Full Text: DOI
Kavitha, Krishnan; Vijayakumar, Velusamy Discussion on controllability of non-densely defined Hilfer fractional neutral differential equations with finite delay. (English) Zbl 07748405 Int. J. Nonlinear Sci. Numer. Simul. 24, No. 5, 1751-1767 (2023). MSC: 26A33 34A08 34K35 34K37 35R11 60H10 93E03 PDF BibTeX XML Cite \textit{K. Kavitha} and \textit{V. Vijayakumar}, Int. J. Nonlinear Sci. Numer. Simul. 24, No. 5, 1751--1767 (2023; Zbl 07748405) Full Text: DOI
Jia, Mei; Li, Tingle; Liu, Xiping A class of piecewise fractional functional differential equations with impulsive. (English) Zbl 07748402 Int. J. Nonlinear Sci. Numer. Simul. 24, No. 5, 1683-1704 (2023). MSC: 34A08 34B10 34K37 PDF BibTeX XML Cite \textit{M. Jia} et al., Int. J. Nonlinear Sci. Numer. Simul. 24, No. 5, 1683--1704 (2023; Zbl 07748402) Full Text: DOI
Biagi, Stefano; Calamai, Alessandro; Infante, Gennaro Nonzero positive solutions of fractional Laplacian systems with functional terms. (English) Zbl 07747184 Math. Nachr. 296, No. 1, 102-121 (2023). MSC: 35R11 35B09 35A16 35J25 35R11 47H10 PDF BibTeX XML Cite \textit{S. Biagi} et al., Math. Nachr. 296, No. 1, 102--121 (2023; Zbl 07747184) Full Text: DOI arXiv OA License
Xu, Gen Qi Resolvent family for the evolution process with memory. (English) Zbl 07747130 Math. Nachr. 296, No. 6, 2626-2656 (2023). Reviewer: Sotiris K. Ntouyas (Ioannina) MSC: 34K05 26A33 34K30 PDF BibTeX XML Cite \textit{G. Q. Xu}, Math. Nachr. 296, No. 6, 2626--2656 (2023; Zbl 07747130) Full Text: DOI
Mu, Xinyue; Yang, Jiabao; Yao, Huanmin A binary Caputo-Fabrizio fractional reproducing kernel method for the time-fractional Cattaneo equation. (English) Zbl 07746773 J. Appl. Math. Comput. 69, No. 5, 3755-3791 (2023). MSC: 35R11 35K20 34K37 PDF BibTeX XML Cite \textit{X. Mu} et al., J. Appl. Math. Comput. 69, No. 5, 3755--3791 (2023; Zbl 07746773) Full Text: DOI
Balakrishnan, Ganesh Priya; Chinnathambi, Rajivganthi; Rihan, Fathalla A. A fractional-order control model for diabetes with restraining and time-delay. (English) Zbl 07746758 J. Appl. Math. Comput. 69, No. 4, 3403-3420 (2023). MSC: 92C32 34A08 34K37 PDF BibTeX XML Cite \textit{G. P. Balakrishnan} et al., J. Appl. Math. Comput. 69, No. 4, 3403--3420 (2023; Zbl 07746758) Full Text: DOI
Mazhgikhova, Madina Gumarovna The Cauchy problem for the delay differential equation with Dzhrbashyan-Nersesyan fractional derivative. (Russian. English summary) Zbl 07746598 Vestn. KRAUNTS, Fiz.-Mat. Nauki 42, No. 1, 98-107 (2023). MSC: 34A12 34K09 PDF BibTeX XML Cite \textit{M. G. Mazhgikhova}, Vestn. KRAUNTS, Fiz.-Mat. Nauki 42, No. 1, 98--107 (2023; Zbl 07746598) Full Text: DOI MNR
Abduragimov, Gusen Èl’derkhanovich On the existence of a positive solution to a boundary value problem for one nonlinear functional-differential equation of fractional order. (Russian. English summary) Zbl 07746264 Vestn. Ross. Univ., Mat. 28, No. 142, 101-110 (2023). MSC: 34-XX 35-XX PDF BibTeX XML Cite \textit{G. È. Abduragimov}, Vestn. Ross. Univ., Mat. 28, No. 142, 101--110 (2023; Zbl 07746264) Full Text: DOI MNR
Dhanalakshmi, K.; Balasubramaniam, P. Exponential stability of impulsive fractional neutral stochastic integro-differential equations with nonlocal conditions. (English) Zbl 07745496 Stochastics 95, No. 7, 1260-1293 (2023). MSC: 26A33 34A08 34K50 47H10 60J65 60H10 PDF BibTeX XML Cite \textit{K. Dhanalakshmi} and \textit{P. Balasubramaniam}, Stochastics 95, No. 7, 1260--1293 (2023; Zbl 07745496) Full Text: DOI
Basti, Bilal; Djemiat, Rabah; Benhamidouche, Noureddine Theoretical studies on the existence and uniqueness of solutions for a multidimensional nonlinear time and space-fractional reaction-diffusion/wave equation. (English) Zbl 07745110 Mem. Differ. Equ. Math. Phys. 89, 1-16 (2023). MSC: 35R11 35A01 35C06 34A08 34K37 PDF BibTeX XML Cite \textit{B. Basti} et al., Mem. Differ. Equ. Math. Phys. 89, 1--16 (2023; Zbl 07745110) Full Text: Link
Lenka, Bichitra Kumar; Bora, Swaroop Nandan Limiting behaviour of non-autonomous Caputo-type time-delay systems and initial-time on the real number line. (English) Zbl 07745076 Comput. Appl. Math. 42, No. 7, Paper No. 313, 16 p. (2023). MSC: 26A33 34A08 34D06 34K20 34K24 34K37 93D20 PDF BibTeX XML Cite \textit{B. K. Lenka} and \textit{S. N. Bora}, Comput. Appl. Math. 42, No. 7, Paper No. 313, 16 p. (2023; Zbl 07745076) Full Text: DOI
Wang, Dongling; Stynes, Martin Optimal long-time decay rate of numerical solutions for nonlinear time-fractional evolutionary equations. (English) Zbl 07744117 SIAM J. Numer. Anal. 61, No. 5, 2011-2034 (2023). MSC: 65L03 65L12 65M06 PDF BibTeX XML Cite \textit{D. Wang} and \textit{M. Stynes}, SIAM J. Numer. Anal. 61, No. 5, 2011--2034 (2023; Zbl 07744117) Full Text: DOI
Aghayan, Zahra Sadat; Alfi, Alireza; Mousavi, Yashar; Fekih, Afef Stability analysis of a class of variable fractional-order uncertain neutral-type systems with time-varying delay. (English) Zbl 1521.93133 J. Franklin Inst. 360, No. 14, 10517-10535 (2023). MSC: 93D09 93C23 34K37 93B52 93C43 PDF BibTeX XML Cite \textit{Z. S. Aghayan} et al., J. Franklin Inst. 360, No. 14, 10517--10535 (2023; Zbl 1521.93133) Full Text: DOI
Huang, Hai; Fu, Xianlong Optimal feedback control results for a second-order evolution system with finite delay. (English) Zbl 1520.34071 Evol. Equ. Control Theory 12, No. 6, 1577-1601 (2023). MSC: 34K30 49J20 93B52 93C43 PDF BibTeX XML Cite \textit{H. Huang} and \textit{X. Fu}, Evol. Equ. Control Theory 12, No. 6, 1577--1601 (2023; Zbl 1520.34071) Full Text: DOI
Kerboua, Mourad; Bouacida, Ichrak; Segni, Sami Null controllability of \(\psi\)-Hilfer implicit fractional integro-differential equations with \(\psi\)-Hilfer fractional nonlocal conditions. (English) Zbl 07742542 Evol. Equ. Control Theory 12, No. 6, 1473-1491 (2023). MSC: 93B05 34K37 45K05 26A33 PDF BibTeX XML Cite \textit{M. Kerboua} et al., Evol. Equ. Control Theory 12, No. 6, 1473--1491 (2023; Zbl 07742542) Full Text: DOI
Huang, Jizhao; Luo, Danfeng Relatively exact controllability for higher-order fractional stochastic delay differential equations. (English) Zbl 07741684 Inf. Sci. 648, Article ID 119631, 17 p. (2023). MSC: 93B50 93C23 34K37 34K50 PDF BibTeX XML Cite \textit{J. Huang} and \textit{D. Luo}, Inf. Sci. 648, Article ID 119631, 17 p. (2023; Zbl 07741684) Full Text: DOI
Malek, Sayyed Alireza; Shahrokhi, Mohamad Adaptive observer-based control of arbitrarily switched fractional-order uncertain nonlinear system subject to input nonlinearities and asymmetric output constraints. (English) Zbl 07741209 Nonlinear Anal., Hybrid Syst. 50, Article ID 101405, 19 p. (2023). MSC: 93C40 93B53 93C30 93C41 93C42 93C10 26A33 PDF BibTeX XML Cite \textit{S. A. Malek} and \textit{M. Shahrokhi}, Nonlinear Anal., Hybrid Syst. 50, Article ID 101405, 19 p. (2023; Zbl 07741209) Full Text: DOI
Yan, Jiayuan; Hu, Bin; Guan, Zhi-Hong; Li, Tao; Zhang, Ding-Xue On controllability and observability of a class of fractional-order switched systems with impulse. (English) Zbl 07741188 Nonlinear Anal., Hybrid Syst. 50, Article ID 101378, 17 p. (2023). MSC: 93B05 93B07 93C30 93C27 26A33 PDF BibTeX XML Cite \textit{J. Yan} et al., Nonlinear Anal., Hybrid Syst. 50, Article ID 101378, 17 p. (2023; Zbl 07741188) Full Text: DOI
Zeng, Shengda D.; Migórski, Stanisław; Han, Weimin A new class of fractional differential hemivariational inequalities with application to an incompressible Navier-Stokes system coupled with a fractional diffusion equation. (English. Russian original) Zbl 07739848 Izv. Math. 87, No. 2, 326-361 (2023); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 87, No. 2, 133-167 (2023). MSC: 76D05 35K87 35R11 49J52 46N10 PDF BibTeX XML Cite \textit{S. D. Zeng} et al., Izv. Math. 87, No. 2, 326--361 (2023; Zbl 07739848); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 87, No. 2, 133--167 (2023) Full Text: DOI MNR
Karthikeyan, K.; Murugapandian, G. S.; Hammouch, Z. On mild solutions of fractional impulsive differential systems of Sobolev type with fractional nonlocal conditions. (English) Zbl 07739761 Math. Sci., Springer 17, No. 3, 285-295 (2023). MSC: 26A33 34A08 34A12 34A37 34K40 35R11 35R12 PDF BibTeX XML Cite \textit{K. Karthikeyan} et al., Math. Sci., Springer 17, No. 3, 285--295 (2023; Zbl 07739761) Full Text: DOI
Izadi, Mohammad; Yüzbaşı, Şuayip; Adel, Waleed A new Chelyshkov matrix method to solve linear and nonlinear fractional delay differential equations with error analysis. (English) Zbl 07739760 Math. Sci., Springer 17, No. 3, 267-284 (2023). MSC: 65Lxx 34Kxx 34Axx PDF BibTeX XML Cite \textit{M. Izadi} et al., Math. Sci., Springer 17, No. 3, 267--284 (2023; Zbl 07739760) Full Text: DOI
Aliyeva, S. T. First- and second-order necessary optimality conditions for a control problem described by nonlinear fractional difference equations. (English. Russian original) Zbl 1521.93086 Autom. Remote Control 84, No. 3, 187-195 (2023); translation from Avtom. Telemekh. 2023, No. 2, 54-65 (2023). MSC: 93C23 39A99 26A33 49K21 PDF BibTeX XML Cite \textit{S. T. Aliyeva}, Autom. Remote Control 84, No. 3, 187--195 (2023; Zbl 1521.93086); translation from Avtom. Telemekh. 2023, No. 2, 54--65 (2023) Full Text: DOI
Tuan, Hoang The; Thinh, La Van Qualitative analysis of solutions to mixed-order positive linear coupled systems with bounded or unbounded delays. (English) Zbl 07734438 ESAIM, Control Optim. Calc. Var. 29, Paper No. 66, 35 p. (2023). MSC: 34K37 34K06 34K25 PDF BibTeX XML Cite \textit{H. T. Tuan} and \textit{L. Van Thinh}, ESAIM, Control Optim. Calc. Var. 29, Paper No. 66, 35 p. (2023; Zbl 07734438) Full Text: DOI arXiv
Khatoon, A.; Raheem, A.; Afreen, A. Approximate solutions for neutral stochastic fractional differential equations. (English) Zbl 1518.34083 Commun. Nonlinear Sci. Numer. Simul. 125, Article ID 107414, 18 p. (2023). MSC: 34K37 46C15 60H15 47N20 35R11 PDF BibTeX XML Cite \textit{A. Khatoon} et al., Commun. Nonlinear Sci. Numer. Simul. 125, Article ID 107414, 18 p. (2023; Zbl 1518.34083) Full Text: DOI
Zeng, Shengda; Haddad, Tahar; Bouach, Abderrahim Well-posedness of fractional Moreau’s sweeping processes of Caputo type. (English) Zbl 07733030 Commun. Nonlinear Sci. Numer. Simul. 125, Article ID 107361, 20 p. (2023). MSC: 47J22 34G25 26A33 34K38 34K32 PDF BibTeX XML Cite \textit{S. Zeng} et al., Commun. Nonlinear Sci. Numer. Simul. 125, Article ID 107361, 20 p. (2023; Zbl 07733030) Full Text: DOI
Kaddoura, I. H.; Al-Issa, Sh. M.; Rifai, N. J. Existence and Hyers-Ulam stability of the solutions to the implicit second-order differential equation. (English) Zbl 07731236 Poincare J. Anal. Appl. 10, No. 1, 175-192 (2023). MSC: 34A08 26A33 34K45 47G10 PDF BibTeX XML Cite \textit{I. H. Kaddoura} et al., Poincare J. Anal. Appl. 10, No. 1, 175--192 (2023; Zbl 07731236) Full Text: Link
Yang, He Existence and approximate controllability of Riemann-Liouville fractional evolution equations of order \(1<\mu<2\) with weighted time delay. (English) Zbl 07731032 Bull. Sci. Math. 187, Article ID 103303, 22 p. (2023). MSC: 34K37 34K30 34K35 93B05 PDF BibTeX XML Cite \textit{H. Yang}, Bull. Sci. Math. 187, Article ID 103303, 22 p. (2023; Zbl 07731032) Full Text: DOI
Gou, Haide A study on \(S\)-asymptotically \(\omega\)-periodic positive mild solutions for damped elastic systems. (English) Zbl 07731028 Bull. Sci. Math. 187, Article ID 103292, 38 p. (2023). MSC: 34G20 34K20 34A08 35B35 47H08 PDF BibTeX XML Cite \textit{H. Gou}, Bull. Sci. Math. 187, Article ID 103292, 38 p. (2023; Zbl 07731028) Full Text: DOI
Benzenati, Djilali; Bouriah, Soufyane; Salim, Abdelkrim; Benchohra, Mouffak On periodic solutions for some nonlinear fractional pantograph problems with \(\Psi \)-Hilfer derivative. (English) Zbl 07730173 Lobachevskii J. Math. 44, No. 4, 1264-1279 (2023). Reviewer: Jiří Šremr (Brno) MSC: 34K37 34K13 26A33 47H11 PDF BibTeX XML Cite \textit{D. Benzenati} et al., Lobachevskii J. Math. 44, No. 4, 1264--1279 (2023; Zbl 07730173) Full Text: DOI
Fečkan, Michal Travelling waves in nonlinear lattices. (English) Zbl 07729449 Dutta, Hemen (ed.), Mathematical modelling. Theory and application. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 787, 1-25 (2023). MSC: 34A33 34K16 PDF BibTeX XML Cite \textit{M. Fečkan}, Contemp. Math. 787, 1--25 (2023; Zbl 07729449) Full Text: DOI
Gou, Haide; Jia, Yongwei A study on mild solutions for multi-term time fractional measure differential equations. (English) Zbl 07727813 Int. J. Comput. Math. 100, No. 9, 1896-1917 (2023). MSC: 26A33 34G20 34K37 39A99 46G99 PDF BibTeX XML Cite \textit{H. Gou} and \textit{Y. Jia}, Int. J. Comput. Math. 100, No. 9, 1896--1917 (2023; Zbl 07727813) Full Text: DOI
Bekkouche, Mohammed Moumen; Ahmed, Abdelaziz Azeb; Yazid, Fares; Djeradi, Fatima Siham Analytical and numerical study of a nonlinear Volterra integro-differential equation with the Caputo-Fabrizio fractional derivative. (English) Zbl 07727703 Discrete Contin. Dyn. Syst., Ser. S 16, No. 8, 2177-2193 (2023). MSC: 26A33 45D05 65L03 47G20 47Gxx PDF BibTeX XML Cite \textit{M. M. Bekkouche} et al., Discrete Contin. Dyn. Syst., Ser. S 16, No. 8, 2177--2193 (2023; Zbl 07727703) Full Text: DOI
Sreedhar, Ch. V.; Dhaigude, D. B.; Vasundhara Devi, J. Generalized monotone method for Caputo fractional integro differential equations with nonlinear boundary condition. (English) Zbl 1517.34107 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 30, No. 4, 287-299 (2023). MSC: 34K37 34K07 34K10 45J05 PDF BibTeX XML Cite \textit{Ch. V. Sreedhar} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 30, No. 4, 287--299 (2023; Zbl 1517.34107) Full Text: Link Link
Wang, Jungang; Si, Qingyang; Chen, Jia; Zhang, You Simultaneous identification of time-delay parameter and fractional order in nonlinear fractional delay differential equation. (English) Zbl 07727114 Appl. Math. Lett. 145, Article ID 108740, 7 p. (2023). MSC: 34K37 93B30 34K27 PDF BibTeX XML Cite \textit{J. Wang} et al., Appl. Math. Lett. 145, Article ID 108740, 7 p. (2023; Zbl 07727114) Full Text: DOI
Li, Peiluan; Gao, Rong; Xu, Changjin; Lu, Yuejing; Shang, Youlin Dynamics in a fractional order predator-prey model Involving Michaelis-Menten-type functional response and both unequal delays. (English) Zbl 07726772 Fractals 31, No. 4, Article ID 2340070, 30 p. (2023). MSC: 34K60 34K37 92D25 34K21 34K20 34K18 34K13 PDF BibTeX XML Cite \textit{P. Li} et al., Fractals 31, No. 4, Article ID 2340070, 30 p. (2023; Zbl 07726772) Full Text: DOI
Sawangtong, Panumart; Logeswari, K.; Ravichandran, C.; Nisar, Kottakkaran Sooppy; Vijayaraj, V. Fractional order geminivirus impression in Capsicum Annuum model with Mittag-Leffler kernal. (English) Zbl 07726752 Fractals 31, No. 4, Article ID 2340049, 12 p. (2023). MSC: 26Axx 34Axx 34Kxx PDF BibTeX XML Cite \textit{P. Sawangtong} et al., Fractals 31, No. 4, Article ID 2340049, 12 p. (2023; Zbl 07726752) Full Text: DOI
Kumar, Pushpendra; Erturk, Vedat Suat; Murillo-Arcila, Marina; Govindaraj, V. A new form of L1-predictor-corrector scheme to solve multiple delay-type fractional order systems with the example of a neural network model. (English) Zbl 07726747 Fractals 31, No. 4, Article ID 2340043, 13 p. (2023). MSC: 65L03 68T07 PDF BibTeX XML Cite \textit{P. Kumar} et al., Fractals 31, No. 4, Article ID 2340043, 13 p. (2023; Zbl 07726747) Full Text: DOI
Mohebalizadeh, Hamed; Fasshauer, Gregory E.; Adibi, Hojatollah Reproducing kernels of Sobolev-Slobodecki\u{j} spaces via Green’s kernel approach: theory and applications. (English) Zbl 07721453 Anal. Appl., Singap. 21, No. 4, 1067-1103 (2023). MSC: 41A30 65D05 82M22 26A33 35R11 58C40 46E22 PDF BibTeX XML Cite \textit{H. Mohebalizadeh} et al., Anal. Appl., Singap. 21, No. 4, 1067--1103 (2023; Zbl 07721453) Full Text: DOI
Helal, Mohamed Existence results for functional perturbed differential equations of fractional order with state-dependent delay in Banach spaces. (English) Zbl 07720913 Vladikavkaz. Mat. Zh. 25, No. 1, 112-130 (2023). MSC: 26A33 34K30 34K37 35R11 PDF BibTeX XML Cite \textit{M. Helal}, Vladikavkaz. Mat. Zh. 25, No. 1, 112--130 (2023; Zbl 07720913) Full Text: DOI MNR
Abdelhamid, Ouaddah; Graef, John R.; Ouahab, Abdelghani Existence and uniqueness of solutions of nonlinear fractional stochastic differential systems with nonlocal functional boundary conditions. (English) Zbl 1521.34005 Stochastic Anal. Appl. 41, No. 4, 713-733 (2023). MSC: 34A08 34G20 34F05 60H10 60G22 47H10 47H11 34B10 PDF BibTeX XML Cite \textit{O. Abdelhamid} et al., Stochastic Anal. Appl. 41, No. 4, 713--733 (2023; Zbl 1521.34005) Full Text: DOI
Kirane, Mokhtar; Alsaedi, Ahmed; Ahmad, Bashir Blowing-up solutions of differential equations with shifts: a survey. (English) Zbl 1518.34084 Discrete Contin. Dyn. Syst., Ser. S 16, No. 6, 1537-1556 (2023). MSC: 34K37 35B44 35R10 35R11 34-02 35-02 PDF BibTeX XML Cite \textit{M. Kirane} et al., Discrete Contin. Dyn. Syst., Ser. S 16, No. 6, 1537--1556 (2023; Zbl 1518.34084) Full Text: DOI
Doudi, Nadjat; Boulaaras, Salah; Mezouar, Nadia; Jan, Rashid Global existence, general decay and blow-up for a nonlinear wave equation with logarithmic source term and fractional boundary dissipation. (English) Zbl 1518.35089 Discrete Contin. Dyn. Syst., Ser. S 16, No. 6, 1323-1345 (2023). MSC: 35B40 35B44 35L20 35L71 35R11 PDF BibTeX XML Cite \textit{N. Doudi} et al., Discrete Contin. Dyn. Syst., Ser. S 16, No. 6, 1323--1345 (2023; Zbl 1518.35089) Full Text: DOI
Sahijwani, Lavina; Sukavanam, N. Total approximate controllability of non-instantaneous impulsive fractional differential systems involving Riemann-Liouville derivatives of order \(\beta \in (1,2)\). (English) Zbl 1520.93054 Evol. Equ. Control Theory 12, No. 5, 1410-1432 (2023). MSC: 93B05 93C27 93C10 34K37 PDF BibTeX XML Cite \textit{L. Sahijwani} and \textit{N. Sukavanam}, Evol. Equ. Control Theory 12, No. 5, 1410--1432 (2023; Zbl 1520.93054) Full Text: DOI
Shah, Kamal; Ali, Gauhar; Ansari, Khursheed J.; Abdeljawad, Thabet; Meganathan, M.; Abdalla, Bahaaeldin On qualitative analysis of boundary value problem of variable order fractional delay differential equations. (English) Zbl 07716417 Bound. Value Probl. 2023, Paper No. 55, 15 p. (2023). Reviewer: Xiping Liu (Shanghai) MSC: 34K10 34K37 34K27 47H10 PDF BibTeX XML Cite \textit{K. Shah} et al., Bound. Value Probl. 2023, Paper No. 55, 15 p. (2023; Zbl 07716417) Full Text: DOI
Choudhary, Renu; Kumar, Devendra Numerical solution of linear time-fractional Kuramoto-Sivashinsky equation via quintic \(B\)-splines. (English) Zbl 07716406 Int. J. Comput. Math. 100, No. 7, 1512-1531 (2023). MSC: 35R11 34K37 PDF BibTeX XML Cite \textit{R. Choudhary} and \textit{D. Kumar}, Int. J. Comput. Math. 100, No. 7, 1512--1531 (2023; Zbl 07716406) Full Text: DOI
Yüzbaşı, Şuayip; Yıldırım, Gamze Numerical solutions of the Bagley-Torvik equation by using generalized functions with fractional powers of Laguerre polynomials. (English) Zbl 07715013 Int. J. Nonlinear Sci. Numer. Simul. 24, No. 3, 1003-1021 (2023). MSC: 34B05 34K37 65G99 65L60 65L80 PDF BibTeX XML Cite \textit{Ş. Yüzbaşı} and \textit{G. Yıldırım}, Int. J. Nonlinear Sci. Numer. Simul. 24, No. 3, 1003--1021 (2023; Zbl 07715013) Full Text: DOI
Tellab, Brahim; Boulfoul, Ali; Ghezal, Abderrezak Existence and uniqueness results for nonlocal problem with fractional integro-differential equation in Banach space. (English) Zbl 07714842 Thai J. Math. 21, No. 1, 53-65 (2023). MSC: 34K37 26A33 34A12 34B15 47H10 PDF BibTeX XML Cite \textit{B. Tellab} et al., Thai J. Math. 21, No. 1, 53--65 (2023; Zbl 07714842) Full Text: Link
Wu, Hao; Wang, Qiubao; Zhang, Congqing; Han, Zikun; Tian, Ruilan Stochastic bifurcations of nonlinear vibroimpact system with time delay and fractional derivative excited by Gaussian white noise. (English) Zbl 1521.34075 Commun. Nonlinear Sci. Numer. Simul. 124, Article ID 107304, 15 p. (2023). MSC: 34K60 70E99 34K37 34K50 34K33 34K18 PDF BibTeX XML Cite \textit{H. Wu} et al., Commun. Nonlinear Sci. Numer. Simul. 124, Article ID 107304, 15 p. (2023; Zbl 1521.34075) Full Text: DOI
Bohner, Martin; Domoshnitsky, Alexander; Padhi, Seshadev; Srivastava, Satyam Narayan Vallée-Poussin theorem for equations with Caputo fractional derivative. (English) Zbl 1516.34098 Math. Slovaca 73, No. 3, 713-728 (2023). MSC: 34K10 34K37 34K38 PDF BibTeX XML Cite \textit{M. Bohner} et al., Math. Slovaca 73, No. 3, 713--728 (2023; Zbl 1516.34098) Full Text: DOI
Lu, Zhenzhen; Ren, Guojian; Chen, Yangquan; Meng, Xiangyun; Yu, Yongguang A class of anomalous diffusion epidemic models based on CTRW and distributed delay. (English) Zbl 1519.92280 Int. J. Biomath. 16, No. 7, Article ID 2250130, 33 p. (2023). MSC: 92D30 92C60 35R11 35K57 35R10 60G50 PDF BibTeX XML Cite \textit{Z. Lu} et al., Int. J. Biomath. 16, No. 7, Article ID 2250130, 33 p. (2023; Zbl 1519.92280) Full Text: DOI
Yığıt, Abdullah; Tunç, Cemil Asymptotical stability of nonlinear fractional neutral systems with unbounded delay. (English) Zbl 1516.34106 Appl. Anal. Optim. 7, No. 1, 63-77 (2023). MSC: 34K20 34K37 34K40 PDF BibTeX XML Cite \textit{A. Yığıt} and \textit{C. Tunç}, Appl. Anal. Optim. 7, No. 1, 63--77 (2023; Zbl 1516.34106) Full Text: Link
Büyükadali, Cemil On stability of conformable Lasota Wazewska fractional model with piecewise constant argument. (English) Zbl 1516.34009 Appl. Anal. Optim. 7, No. 1, 17-25 (2023). MSC: 34A08 26A33 34K20 39A30 92B05 PDF BibTeX XML Cite \textit{C. Büyükadali}, Appl. Anal. Optim. 7, No. 1, 17--25 (2023; Zbl 1516.34009) Full Text: Link
Salim, Abdelkrim; Krim, Salim; Benchohra, Mouffak On implicit boundary value problems with deformable fractional derivative and delay in \(b\)-metric spaces. (English) Zbl 1521.34073 Appl. Anal. Optim. 7, No. 1, 1-16 (2023). MSC: 34K32 34K37 34K10 47H10 26A33 PDF BibTeX XML Cite \textit{A. Salim} et al., Appl. Anal. Optim. 7, No. 1, 1--16 (2023; Zbl 1521.34073) Full Text: Link
Fenizri, Fatima; Guezane-Lakoud, Assia; Khaldi, Rabah Stability of solutions to fractional differential equations with time-delays. (English) Zbl 1516.34116 Proyecciones 42, No. 2, 261-272 (2023). MSC: 34K37 34K10 34A12 34B40 PDF BibTeX XML Cite \textit{F. Fenizri} et al., Proyecciones 42, No. 2, 261--272 (2023; Zbl 1516.34116) Full Text: DOI
Ndambomve, Patrice; Kpoumie, Moussa El-Khalil; Ezzinbi, Khalil Approximate controllability results in \(\alpha \)-norm for some partial functional integrodifferential equations with nonlocal initial conditions in Banach spaces. (English) Zbl 1521.93017 J. Appl. Anal. 29, No. 1, 127-142 (2023). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 93B05 93C20 35R10 45K05 93B28 47H10 47D06 PDF BibTeX XML Cite \textit{P. Ndambomve} et al., J. Appl. Anal. 29, No. 1, 127--142 (2023; Zbl 1521.93017) Full Text: DOI
Bekbolat, Bayan; Serikbaev, Daurenbek; Tokmagambetov, Niyaz Direct and inverse problems for time-fractional heat equation generated by Dunkl operator. (English) Zbl 1518.35618 J. Inverse Ill-Posed Probl. 31, No. 3, 393-408 (2023). MSC: 35R11 35R30 35S05 47G30 42B37 47A60 42C40 PDF BibTeX XML Cite \textit{B. Bekbolat} et al., J. Inverse Ill-Posed Probl. 31, No. 3, 393--408 (2023; Zbl 1518.35618) Full Text: DOI
Arora, Sumit; Mohan, Manil T.; Dabas, Jaydev Finite-approximate controllability of impulsive fractional functional evolution equations of order \(1<\alpha <2\). (English) Zbl 1520.34072 J. Optim. Theory Appl. 197, No. 3, 855-890 (2023). MSC: 34K35 34K30 34K37 34K45 93B05 PDF BibTeX XML Cite \textit{S. Arora} et al., J. Optim. Theory Appl. 197, No. 3, 855--890 (2023; Zbl 1520.34072) Full Text: DOI
Gomoyunov, Mikhail Sensitivity analysis of value functional of fractional optimal control problem with application to feedback construction of near optimal controls. (English) Zbl 1519.49028 Appl. Math. Optim. 88, No. 2, Paper No. 41, 49 p. (2023). Reviewer: Alain Brillard (Riedisheim) MSC: 49Q12 49N35 34A08 49L12 49J52 PDF BibTeX XML Cite \textit{M. Gomoyunov}, Appl. Math. Optim. 88, No. 2, Paper No. 41, 49 p. (2023; Zbl 1519.49028) Full Text: DOI arXiv
Salim, Abdelkrim; Krim, Salim; Abbas, Said; Benchohra, Mouffak On deformable implicit fractional differential equations in \(b\)-metric spaces. (English) Zbl 07707342 J. Math. Ext. 17, No. 1, Paper No. 8, 17 p. (2023). MSC: 34K37 26A33 34A08 PDF BibTeX XML Cite \textit{A. Salim} et al., J. Math. Ext. 17, No. 1, Paper No. 8, 17 p. (2023; Zbl 07707342) Full Text: DOI
Soots, Hanna Britt; Lätt, Kaido; Pedas, Arvet Collocation based approximations for a class of fractional boundary value problems. (English) Zbl 1514.65204 Math. Model. Anal. 28, No. 2, 218-236 (2023). MSC: 65R20 34K37 45J05 PDF BibTeX XML Cite \textit{H. B. Soots} et al., Math. Model. Anal. 28, No. 2, 218--236 (2023; Zbl 1514.65204) Full Text: DOI
Gou, Haide Study on Sobolev type Hilfer evolution equations with non-instantaneous impulses. (English) Zbl 07705614 Int. J. Comput. Math. 100, No. 5, 1153-1170 (2023). MSC: 34K30 26A33 34K45 47G10 47D06 PDF BibTeX XML Cite \textit{H. Gou}, Int. J. Comput. Math. 100, No. 5, 1153--1170 (2023; Zbl 07705614) Full Text: DOI
Johnson, Murugesan; Raja, Marimuthu Mohan; Vijayakumar, Velusamy; Shukla, Anurag; Nisar, Kottakkaran Sooppy; Jahanshahi, Hadi Optimal control results for impulsive fractional delay integrodifferential equations of order \(1 < r < 2\) via sectorial operator. (English) Zbl 1519.45002 Nonlinear Anal., Model. Control 28, No. 3, 468-490 (2023). MSC: 45J05 34K37 34K45 49N25 26A33 PDF BibTeX XML Cite \textit{M. Johnson} et al., Nonlinear Anal., Model. Control 28, No. 3, 468--490 (2023; Zbl 1519.45002) Full Text: DOI
He, Jin-Man; Pei, Li-Jun Function matrix projection synchronization for the multi-time delayed fractional order memristor-based neural networks with parameter uncertainty. (English) Zbl 07704190 Appl. Math. Comput. 454, Article ID 128110, 20 p. (2023). MSC: 34Axx 34Kxx 34Dxx PDF BibTeX XML Cite \textit{J.-M. He} and \textit{L.-J. Pei}, Appl. Math. Comput. 454, Article ID 128110, 20 p. (2023; Zbl 07704190) Full Text: DOI
Xia, Xue; Bai, Jing; Li, Xiaohe; Wen, Guoguang Containment control for fractional order MASs with nonlinearity and time delay via pull-based event-triggered mechanism. (English) Zbl 07704184 Appl. Math. Comput. 454, Article ID 128094, 15 p. (2023). MSC: 93Dxx 93Axx 34Kxx PDF BibTeX XML Cite \textit{X. Xia} et al., Appl. Math. Comput. 454, Article ID 128094, 15 p. (2023; Zbl 07704184) Full Text: DOI
Duong Thi Hong; Nguyen Huu Sau; Nguyen Thi Thanh Huyen; Mai Viet Thuan Robust observer-based dissipative control designs for fractional-order one-sided Lipschitz nonlinear systems. (English) Zbl 07703385 Rend. Circ. Mat. Palermo (2) 72, No. 4, 2789-2809 (2023). Reviewer: Petko Hr. Petkov (Sofia) MSC: 93D09 93D20 93C10 93C15 34A08 93B53 PDF BibTeX XML Cite \textit{Duong Thi Hong} et al., Rend. Circ. Mat. Palermo (2) 72, No. 4, 2789--2809 (2023; Zbl 07703385) Full Text: DOI
Krim, Salim; Salim, Abdelkrim; Abbas, Saïd; Benchohra, Mouffak On implicit impulsive conformable fractional differential equations with infinite delay in \(b\)-metric spaces. (English) Zbl 1521.34072 Rend. Circ. Mat. Palermo (2) 72, No. 4, 2579-2592 (2023). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 34K30 34K45 34K32 34K37 47N20 PDF BibTeX XML Cite \textit{S. Krim} et al., Rend. Circ. Mat. Palermo (2) 72, No. 4, 2579--2592 (2023; Zbl 1521.34072) Full Text: DOI
Chang, Yong-Kui; Zhao, Jianguo Weighted pseudo asymptotically Bloch periodic solutions to nonlocal Cauchy problems of integrodifferential equations in Banach spaces. (English) Zbl 07702455 Int. J. Nonlinear Sci. Numer. Simul. 24, No. 2, 581-598 (2023). MSC: 34K13 58D25 34K37 PDF BibTeX XML Cite \textit{Y.-K. Chang} and \textit{J. Zhao}, Int. J. Nonlinear Sci. Numer. Simul. 24, No. 2, 581--598 (2023; Zbl 07702455) Full Text: DOI
Mi, Heilong; Zhang, Wen; Liao, Fangfang On nonlinear fractional Schrödinger equations with indefinite and Hardy potentials. (English) Zbl 07702098 Asymptotic Anal. 132, No. 3-4, 305-330 (2023). MSC: 35Q55 35B40 35A01 35A02 26A33 35R11 35R10 35R02 PDF BibTeX XML Cite \textit{H. Mi} et al., Asymptotic Anal. 132, No. 3--4, 305--330 (2023; Zbl 07702098) Full Text: DOI
Djebara, Lamia; Abdelmalek, Salem; Bendoukha, Samir Asymptotic stability of an epidemiological fractional reaction-diffusion model. (English) Zbl 1518.35087 Demonstr. Math. 56, Article ID 20220224, 27 p. (2023). MSC: 35B40 35K51 35K57 35R11 PDF BibTeX XML Cite \textit{L. Djebara} et al., Demonstr. Math. 56, Article ID 20220224, 27 p. (2023; Zbl 1518.35087) Full Text: DOI
Khan, Aziz; Naz, Hafsa; Sarwar, Muhammad; Shah, Kamal; Alqudah, Manar A.; Abdeljawad, Thabet Numerical analysis of some fractional order differential equations via Legendre spectral method. (English) Zbl 1520.65051 Fractals 31, No. 2, Article ID 2340036, 13 p. (2023). Reviewer: Abdallah Bradji (Annaba) MSC: 65L05 34A08 34K37 PDF BibTeX XML Cite \textit{A. Khan} et al., Fractals 31, No. 2, Article ID 2340036, 13 p. (2023; Zbl 1520.65051) Full Text: DOI
Abbas, Ahsan; Mehmood, Nayyar; Akgül, Ali; Abdeljawad, Thabet; Alqudah, Manar A. Existence results for multi-term fractional differential equations with nonlocal boundary conditions involving atangana-baleanu derivative. (English) Zbl 07700472 Fractals 31, No. 2, Article ID 2340024, 19 p. (2023). MSC: 26Axx 34Axx 34Kxx PDF BibTeX XML Cite \textit{A. Abbas} et al., Fractals 31, No. 2, Article ID 2340024, 19 p. (2023; Zbl 07700472) Full Text: DOI
Wang, Kangle Construction of fractal soliton solutions for the fractional evolution equations with conformable derivative. (English) Zbl 1521.35162 Fractals 31, No. 1, Article ID 2350014, 10 p. (2023). MSC: 35Q53 35C08 26A33 35R11 28A80 PDF BibTeX XML Cite \textit{K. Wang}, Fractals 31, No. 1, Article ID 2350014, 10 p. (2023; Zbl 1521.35162) Full Text: DOI