Singh, P. K.; Saha Ray, S. Shifted Chebyshev spectral Galerkin method to solve stochastic Itô-Volterra integral equations driven by fractional Brownian motion appearing in mathematical physics. (English) Zbl 07671212 Comput. Appl. Math. 42, No. 3, Paper No. 120, 23 p. (2023). MSC: 45A05 60H05 60H30 60H20 60H35 PDF BibTeX XML Cite \textit{P. K. Singh} and \textit{S. Saha Ray}, Comput. Appl. Math. 42, No. 3, Paper No. 120, 23 p. (2023; Zbl 07671212) Full Text: DOI OpenURL
Berra, Fabio; Pradolini, Gladis; Ramos, Wilfredo Optimal parameters related with continuity properties of the multilinear fractional integral operator between Lebesgue and Lipschitz spaces. (English) Zbl 07671008 Positivity 27, No. 2, Paper No. 22, 35 p. (2023). MSC: 26A33 26D10 PDF BibTeX XML Cite \textit{F. Berra} et al., Positivity 27, No. 2, Paper No. 22, 35 p. (2023; Zbl 07671008) Full Text: DOI arXiv OpenURL
Rholam, Oualid; Barmaki, Mohammed; Gretet, Driss Fractional integral inequalities of Hermite-Hadamard type for P-convex and quasi-convex stochastic process. (English) Zbl 07670355 Aust. J. Math. Anal. Appl. 20, No. 1, Paper No. 10, 17 p. (2023). MSC: 60G05 60G07 60G99 60K99 60H99 26D15 26A51 60G99 PDF BibTeX XML Cite \textit{O. Rholam} et al., Aust. J. Math. Anal. Appl. 20, No. 1, Paper No. 10, 17 p. (2023; Zbl 07670355) Full Text: Link OpenURL
Pu, Tianyi; Fasondini, Marco The numerical solution of fractional integral equations via orthogonal polynomials in fractional powers. (English) Zbl 07667223 Adv. Comput. Math. 49, No. 1, Paper No. 7, 40 p. (2023). MSC: 62R20 26A33 33E12 45A05 PDF BibTeX XML Cite \textit{T. Pu} and \textit{M. Fasondini}, Adv. Comput. Math. 49, No. 1, Paper No. 7, 40 p. (2023; Zbl 07667223) Full Text: DOI arXiv OpenURL
Priyanka, T. M. C.; Agathiyan, A.; Gowrisankar, A. Weyl-Marchaud fractional derivative of a vector valued fractal interpolation function with function contractivity factors. (English) Zbl 07667030 J. Anal. 31, No. 1, 657-689 (2023). MSC: 28A80 26A33 41A05 PDF BibTeX XML Cite \textit{T. M. C. Priyanka} et al., J. Anal. 31, No. 1, 657--689 (2023; Zbl 07667030) Full Text: DOI OpenURL
Navish, A. A.; Priya, M.; Uthayakumar, R. The relationship between the order of \((k, s)\)-Riemann-Liouville fractional integral and the fractal dimensions of a fractal function. (English) Zbl 07667007 J. Anal. 31, No. 1, 261-277 (2023). MSC: 26A33 26B30 28A78 28A80 PDF BibTeX XML Cite \textit{A. A. Navish} et al., J. Anal. 31, No. 1, 261--277 (2023; Zbl 07667007) Full Text: DOI OpenURL
Khuddush, Mahammad; Prasad, K. Rajendra Existence, uniqueness and stability analysis of a tempered fractional order thermistor boundary value problems. (English) Zbl 07666998 J. Anal. 31, No. 1, 85-107 (2023). MSC: 34-XX 26A33 47H08 47H10 PDF BibTeX XML Cite \textit{M. Khuddush} and \textit{K. R. Prasad}, J. Anal. 31, No. 1, 85--107 (2023; Zbl 07666998) Full Text: DOI OpenURL
Karthikeyan, K.; Senthil Raja, D.; Sundararajan, P. Existence results for abstract fractional integro differential equations. (English) Zbl 07666899 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 30, No. 2, 109-119 (2023). MSC: 34A08 45J05 26A33 47B25 PDF BibTeX XML Cite \textit{K. Karthikeyan} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 30, No. 2, 109--119 (2023; Zbl 07666899) Full Text: Link OpenURL
Hamoud, Ahmed A.; Mohammed, Nedal M. Existence and uniqueness results for fractional Volterra-Fredholm integro differential equations with integral boundary conditions 75-86. (English) Zbl 07666897 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 30, No. 1, 75-86 (2023). MSC: 34-XX 26A33 34A08 34B15 PDF BibTeX XML Cite \textit{A. A. Hamoud} and \textit{N. M. Mohammed}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 30, No. 1, 75--86 (2023; Zbl 07666897) Full Text: Link OpenURL
Tarate, Shivaji Ashok; Bhadane, Ashok P.; Gaikwad, Shrikisan B.; Kshirsagar, Kishor Ashok Solution of time-fractional equations via Sumudu-Adomian decomposition method. (English) Zbl 07665315 Comput. Methods Differ. Equ. 11, No. 2, 345-356 (2023). MSC: 26A33 35R11 33E12 PDF BibTeX XML Cite \textit{S. A. Tarate} et al., Comput. Methods Differ. Equ. 11, No. 2, 345--356 (2023; Zbl 07665315) Full Text: DOI OpenURL
Fazli, Hossein; Bahrami, Fariba; Shahmorad, Sedaghat Extremal solutions for multi-term nonlinear fractional differential equations with nonlinear boundary conditions. (English) Zbl 07665292 Comput. Methods Differ. Equ. 11, No. 1, 32-41 (2023). MSC: 26A33 34A08 34A12 PDF BibTeX XML Cite \textit{H. Fazli} et al., Comput. Methods Differ. Equ. 11, No. 1, 32--41 (2023; Zbl 07665292) Full Text: DOI OpenURL
Kara, Hasan; Erden, Samet; Budak, Huseyin Hermite-Hadamard, trapezoid and midpoint type inequalities involving generalized fractional integrals for convex functions. (English) Zbl 07665263 Sahand Commun. Math. Anal. 20, No. 2, 85-107 (2023). MSC: 26D07 26D10 26D15 26A33 PDF BibTeX XML Cite \textit{H. Kara} et al., Sahand Commun. Math. Anal. 20, No. 2, 85--107 (2023; Zbl 07665263) Full Text: DOI OpenURL
Jahanshahi, Mohammad; Danaei, Reza Analytical-numerical solution for a third order space-time conformable fractional PDE with mixed derivative by spectral and asymptotic methods. (English) Zbl 07665235 Sahand Commun. Math. Anal. 20, No. 1, 81-93 (2023). MSC: 34E05 26A33 PDF BibTeX XML Cite \textit{M. Jahanshahi} and \textit{R. Danaei}, Sahand Commun. Math. Anal. 20, No. 1, 81--93 (2023; Zbl 07665235) Full Text: DOI OpenURL
Jiao, Caiyu; Li, Changpin Monte Carlo method for parabolic equations involving fractional Laplacian. (English) Zbl 07664804 Monte Carlo Methods Appl. 29, No. 1, 33-53 (2023). MSC: 26A33 35R11 65C05 PDF BibTeX XML Cite \textit{C. Jiao} and \textit{C. Li}, Monte Carlo Methods Appl. 29, No. 1, 33--53 (2023; Zbl 07664804) Full Text: DOI arXiv OpenURL
Kadankova, Tetyana; Ng, Wing Chun Vincent Risk process with mixture of tempered stable inverse subordinators: analysis and synthesis. (English) Zbl 07664771 Random Oper. Stoch. Equ. 31, No. 1, 47-63 (2023). MSC: 60G22 26A33 82C31 60G05 60H30 91B30 PDF BibTeX XML Cite \textit{T. Kadankova} and \textit{W. C. V. Ng}, Random Oper. Stoch. Equ. 31, No. 1, 47--63 (2023; Zbl 07664771) Full Text: DOI OpenURL
Su, Yu Fractional \(p\)-Laplacian problem with critical Stein-Weiss type term. (English) Zbl 07664059 J. Geom. Anal. 33, No. 5, Paper No. 160, 22 p. (2023). MSC: 35R11 35A15 35A23 46B50 PDF BibTeX XML Cite \textit{Y. Su}, J. Geom. Anal. 33, No. 5, Paper No. 160, 22 p. (2023; Zbl 07664059) Full Text: DOI OpenURL
Zhu, Xiaolin; Fang, Xiang; Guo, Feng; Hou, Shengzhao Fractional integration on mixed norm spaces. II. (English) Zbl 07664057 J. Geom. Anal. 33, No. 5, Paper No. 158, 37 p. (2023). MSC: 47B38 26A33 PDF BibTeX XML Cite \textit{X. Zhu} et al., J. Geom. Anal. 33, No. 5, Paper No. 158, 37 p. (2023; Zbl 07664057) Full Text: DOI OpenURL
Kaplan, Ayse G. Applications of Laplace transform method to the fractional linear Integro differential equations. (English) Zbl 07663828 J. Contemp. Appl. Math. 13, No. 1, 25-32 (2023). MSC: 26A33 44A10 PDF BibTeX XML Cite \textit{A. G. Kaplan}, J. Contemp. Appl. Math. 13, No. 1, 25--32 (2023; Zbl 07663828) Full Text: Link OpenURL
Rieder, Alexander Double exponential quadrature for fractional diffusion. (English) Zbl 07663714 Numer. Math. 153, No. 2-3, 359-410 (2023). Reviewer: Xiaodi Zhang (Zhengzhou) MSC: 65N30 65D30 65N15 65M12 33E12 26A33 35R11 47A60 47A10 PDF BibTeX XML Cite \textit{A. Rieder}, Numer. Math. 153, No. 2--3, 359--410 (2023; Zbl 07663714) Full Text: DOI arXiv OpenURL
Liu, Wenkai; Liu, Yang; Li, Hong Time difference physics-informed neural network for fractional water wave models. (English) Zbl 07663292 Results Appl. Math. 17, Article ID 100347, 14 p. (2023). MSC: 65M06 68T07 26A33 35R11 76B15 35Q35 PDF BibTeX XML Cite \textit{W. Liu} et al., Results Appl. Math. 17, Article ID 100347, 14 p. (2023; Zbl 07663292) Full Text: DOI OpenURL
Yalçinkaya, Yüksel Some fractional Dirac systems. (English) Zbl 07662837 Turk. J. Math. 47, No. 1, 110-122 (2023). MSC: 34A08 26A42 26D15 26A33 34L40 34B40 PDF BibTeX XML Cite \textit{Y. Yalçinkaya}, Turk. J. Math. 47, No. 1, 110--122 (2023; Zbl 07662837) Full Text: DOI OpenURL
Leaci, Antonio; Tomarelli, Franco Symmetrized fractional total variation for signal and image analysis. (English) Zbl 07661851 Adv. Contin. Discrete Models 2023, Paper No. 14, 17 p. (2023). MSC: 26A33 26A45 49J45 PDF BibTeX XML Cite \textit{A. Leaci} and \textit{F. Tomarelli}, Adv. Contin. Discrete Models 2023, Paper No. 14, 17 p. (2023; Zbl 07661851) Full Text: DOI OpenURL
Abbas, Hafida; Azzouz, Abdelhalim; Zahaf, Mohammed Brahim; Belmekki, Mohammed Generalized extended Riemann-Liouville type fractional derivative operator. (English) Zbl 07661762 Kragujevac J. Math. 47, No. 1, 57-80 (2023). MSC: 26A33 33B15 33B20 33C20 33C65 PDF BibTeX XML Cite \textit{H. Abbas} et al., Kragujevac J. Math. 47, No. 1, 57--80 (2023; Zbl 07661762) Full Text: DOI OpenURL
Lu, Wenna; Zhou, Jiang Some estimates of multi-sublinear operators and commutators on mixed \(\lambda\)-central Morrey spaces. (English) Zbl 07661355 Ann. Funct. Anal. 14, No. 2, Paper No. 39, 36 p. (2023). MSC: 42B20 42B25 26A33 PDF BibTeX XML Cite \textit{W. Lu} and \textit{J. Zhou}, Ann. Funct. Anal. 14, No. 2, Paper No. 39, 36 p. (2023; Zbl 07661355) Full Text: DOI OpenURL
Lapin, Alexander V.; Shaydurov, Vladimir V.; Yanbarisov, Ruslan M. Finite difference scheme for a non-linear subdiffusion problem with a fractional derivative along the trajectory of motion. (English) Zbl 07661229 Russ. J. Numer. Anal. Math. Model. 38, No. 1, 23-35 (2023). Reviewer: Bülent Karasözen (Ankara) MSC: 65M06 65M12 65M15 76R50 26A33 35R11 PDF BibTeX XML Cite \textit{A. V. Lapin} et al., Russ. J. Numer. Anal. Math. Model. 38, No. 1, 23--35 (2023; Zbl 07661229) Full Text: DOI OpenURL
Ghanmi, Abdeljabbar; Kratou, Mouna; Saoudi, Kamel; Repovš, Dušan D. Nonlocal \(p\)-Kirchhoff equations with singular and critical nonlinearity terms. (English) Zbl 07661141 Asymptotic Anal. 131, No. 1, 125-143 (2023). MSC: 35Q74 74D10 35A15 35B25 35A01 35R09 26A33 35R11 PDF BibTeX XML Cite \textit{A. Ghanmi} et al., Asymptotic Anal. 131, No. 1, 125--143 (2023; Zbl 07661141) Full Text: DOI arXiv OpenURL
Li, Li An inverse problem for the fractional porous medium equation. (English) Zbl 07661129 Asymptotic Anal. 131, No. 3, 583-594 (2023). MSC: 35Q35 76S05 76N15 74F10 26A33 35R30 35R11 PDF BibTeX XML Cite \textit{L. Li}, Asymptotic Anal. 131, No. 3, 583--594 (2023; Zbl 07661129) Full Text: DOI arXiv OpenURL
Li, Rui; Tao, Shuangping Two-weighted conditions and characterizations for a class of multilinear fractional new maximal operators. (English) Zbl 07661113 J. Korean Math. Soc. 60, No. 1, 195-212 (2023). MSC: 42B25 47G10 26A33 PDF BibTeX XML Cite \textit{R. Li} and \textit{S. Tao}, J. Korean Math. Soc. 60, No. 1, 195--212 (2023; Zbl 07661113) Full Text: DOI OpenURL
Lai, Baishun; Li, Jingyue; Zheng, Xiaoxin Local \(L^2\) theory of the fractional Navier-Stokes equations and the self-similar solution. (English) Zbl 07661027 Sci. China, Math. 66, No. 3, 503-570 (2023). MSC: 35Q30 76D05 35B40 35B65 35C06 35D30 35A01 26A33 35R11 PDF BibTeX XML Cite \textit{B. Lai} et al., Sci. China, Math. 66, No. 3, 503--570 (2023; Zbl 07661027) Full Text: DOI OpenURL
Beghin, Luisa; Caputo, Michele Stochastic applications of Caputo-type convolution operators with nonsingular kernels. (English) Zbl 07661021 Stochastic Anal. Appl. 41, No. 2, 377-393 (2023). MSC: 26A33 47G20 60G51 33B20 PDF BibTeX XML Cite \textit{L. Beghin} and \textit{M. Caputo}, Stochastic Anal. Appl. 41, No. 2, 377--393 (2023; Zbl 07661021) Full Text: DOI arXiv OpenURL
Antil, Harbir; Wachsmuth, Daniel Sparse optimization problems in fractional order Sobolev spaces. (English) Zbl 07660811 Inverse Probl. 39, No. 4, Article ID 044001, 17 p. (2023). MSC: 35Q93 49K20 49J30 26A33 35R11 PDF BibTeX XML Cite \textit{H. Antil} and \textit{D. Wachsmuth}, Inverse Probl. 39, No. 4, Article ID 044001, 17 p. (2023; Zbl 07660811) Full Text: DOI arXiv OpenURL
Lizama, Carlos; Murillo-Arcila, Marina The semidiscrete damped wave equation with a fractional Laplacian. (English) Zbl 07660708 Proc. Am. Math. Soc. 151, No. 5, 1987-1999 (2023). MSC: 35R11 39A06 26A33 44A10 PDF BibTeX XML Cite \textit{C. Lizama} and \textit{M. Murillo-Arcila}, Proc. Am. Math. Soc. 151, No. 5, 1987--1999 (2023; Zbl 07660708) Full Text: DOI OpenURL
Zhao, Mingfang; Li, Hong-Li; Zhang, Long; Hu, Cheng; Jiang, Haijun Quasi-projective synchronization of discrete-time fractional-order quaternion-valued neural networks. (English) Zbl 07660601 J. Franklin Inst. 360, No. 4, 3263-3279 (2023). MSC: 93D99 93C55 26A33 11R52 93B70 PDF BibTeX XML Cite \textit{M. Zhao} et al., J. Franklin Inst. 360, No. 4, 3263--3279 (2023; Zbl 07660601) Full Text: DOI OpenURL
Houas, Mohamed; Samei, Mohammad Esmael Existence and stability of solutions for linear and nonlinear damping of \(q\)-fractional Duffing-Rayleigh problem. (English) Zbl 07660430 Mediterr. J. Math. 20, No. 3, Paper No. 148, 28 p. (2023). MSC: 26A33 39B72 34C45 PDF BibTeX XML Cite \textit{M. Houas} and \textit{M. E. Samei}, Mediterr. J. Math. 20, No. 3, Paper No. 148, 28 p. (2023; Zbl 07660430) Full Text: DOI OpenURL
Rahou, Wafaa; Salim, Abdelkrim; Lazreg, Jamal Eddine; Benchohra, Mouffak Existence and stability results for impulsive implicit fractional differential equations with delay and Riesz-Caputo derivative. (English) Zbl 07660383 Mediterr. J. Math. 20, No. 3, Paper No. 143, 28 p. (2023). MSC: 26A33 34A08 34A37 PDF BibTeX XML Cite \textit{W. Rahou} et al., Mediterr. J. Math. 20, No. 3, Paper No. 143, 28 p. (2023; Zbl 07660383) Full Text: DOI OpenURL
Khan, Aziz; Ain, Qura Tul; Abdeljawad, Thabet; Sooppy Nisar, Kottakkaran Exact controllability of Hilfer fractional differential system with non-instantaneous impluleses and state dependent delay. (English) Zbl 07659895 Qual. Theory Dyn. Syst. 22, No. 2, Paper No. 62, 19 p. (2023). MSC: 26A33 34A08 34B10 PDF BibTeX XML Cite \textit{A. Khan} et al., Qual. Theory Dyn. Syst. 22, No. 2, Paper No. 62, 19 p. (2023; Zbl 07659895) Full Text: DOI OpenURL
Pan, Junren; Sun, Wenchang Bloom type inequality: the off-diagonal case. (English) Zbl 07659785 Result. Math. 78, No. 2, Paper No. 56, 30 p. (2023). MSC: 26A33 42B20 42B30 PDF BibTeX XML Cite \textit{J. Pan} and \textit{W. Sun}, Result. Math. 78, No. 2, Paper No. 56, 30 p. (2023; Zbl 07659785) Full Text: DOI arXiv OpenURL
Fernandez, Arran Mikusiński’s operational calculus for general conjugated fractional derivatives. (English) Zbl 07659730 Bol. Soc. Mat. Mex., III. Ser. 29, No. 1, Paper No. 25, 24 p. (2023). MSC: 26A33 34A08 44A40 47B33 PDF BibTeX XML Cite \textit{A. Fernandez}, Bol. Soc. Mat. Mex., III. Ser. 29, No. 1, Paper No. 25, 24 p. (2023; Zbl 07659730) Full Text: DOI OpenURL
Prakash, P.; Thomas, Reetha; Bakkyaraj, T. Invariant subspaces and exact solutions: \((1+1)\) and \((2+1)\)-dimensional generalized time-fractional thin-film equations. (English) Zbl 07658822 Comput. Appl. Math. 42, No. 2, Paper No. 97, 28 p. (2023). MSC: 26A33 35R11 33E12 34A08 PDF BibTeX XML Cite \textit{P. Prakash} et al., Comput. Appl. Math. 42, No. 2, Paper No. 97, 28 p. (2023; Zbl 07658822) Full Text: DOI OpenURL
Hezenci, Fatih Fractional inequalities of corrected Euler-Maclaurin-type for twice-differentiable functions. (English) Zbl 07658817 Comput. Appl. Math. 42, No. 2, Paper No. 92, 15 p. (2023). MSC: 26D07 26D10 26D15 65D32 PDF BibTeX XML Cite \textit{F. Hezenci}, Comput. Appl. Math. 42, No. 2, Paper No. 92, 15 p. (2023; Zbl 07658817) Full Text: DOI OpenURL
Bohaienko, Vsevolod; Lytvynenko, Anton Computational aspects of cyclic voltammetry simulation for the case of porous electrodes of fractal structure. (English) Zbl 07658811 Comput. Appl. Math. 42, No. 2, Paper No. 100, 19 p. (2023). MSC: 65M32 65M06 65M15 65Y10 78A57 78M20 90C59 93B30 26A33 35R11 35Q60 35R30 35R60 PDF BibTeX XML Cite \textit{V. Bohaienko} and \textit{A. Lytvynenko}, Comput. Appl. Math. 42, No. 2, Paper No. 100, 19 p. (2023; Zbl 07658811) Full Text: DOI OpenURL
Ledesma, César T.; Rodríguez, Jesús A.; da C. Sousa, J. Vanterler Differential equations with fractional derivatives with fixed memory length. (English) Zbl 07658717 Rend. Circ. Mat. Palermo (2) 72, No. 1, 635-653 (2023). MSC: 26A33 34A12 PDF BibTeX XML Cite \textit{C. T. Ledesma} et al., Rend. Circ. Mat. Palermo (2) 72, No. 1, 635--653 (2023; Zbl 07658717) Full Text: DOI OpenURL
Matsuoka, Katsuo \(d\)-modified fractional integrals on \(B_\sigma\)-Morrey spaces. (English) Zbl 07658705 Rend. Circ. Mat. Palermo (2) 72, No. 1, 433-447 (2023). MSC: 42B35 26A33 46E30 46E35 PDF BibTeX XML Cite \textit{K. Matsuoka}, Rend. Circ. Mat. Palermo (2) 72, No. 1, 433--447 (2023; Zbl 07658705) Full Text: DOI OpenURL
Salah Derradji, Lylia; Hamidane, Nacira; Aouchal, Sofiane A fractional SEIRS model with disease resistance and nonlinear generalized incidence rate in Caputo-Fabrizio sense. (English) Zbl 07658686 Rend. Circ. Mat. Palermo (2) 72, No. 1, 81-98 (2023). MSC: 26A33 47H10 PDF BibTeX XML Cite \textit{L. Salah Derradji} et al., Rend. Circ. Mat. Palermo (2) 72, No. 1, 81--98 (2023; Zbl 07658686) Full Text: DOI OpenURL
Alharthi, Nadiyah Hussain; Atangana, Abdon; Alkahtani, Badr S. Analysis of Cauchy problem with fractal-fractional differential operators. (English) Zbl 07658567 Demonstr. Math. 56, Article ID 20220181, 15 p. (2023). MSC: 26A33 34A08 26D10 PDF BibTeX XML Cite \textit{N. H. Alharthi} et al., Demonstr. Math. 56, Article ID 20220181, 15 p. (2023; Zbl 07658567) Full Text: DOI OpenURL
Vanterler da C. Sousa, J.; Gala, Sadek; de Oliveira, E. Capelas On the uniqueness of mild solutions to the time-fractional Navier-Stokes equations in \(L^N(\mathbb{R}^N)^N\). (English) Zbl 07657513 Comput. Appl. Math. 42, No. 1, Paper No. 41, 11 p. (2023). MSC: 26A33 34G25 34A12 PDF BibTeX XML Cite \textit{J. Vanterler da C. Sousa} et al., Comput. Appl. Math. 42, No. 1, Paper No. 41, 11 p. (2023; Zbl 07657513) Full Text: DOI OpenURL
Afiatdoust, F.; Heydari, M. H.; Hosseini, M. M. A block-by-block method for nonlinear variable-order fractional quadratic integral equations. (English) Zbl 07657510 Comput. Appl. Math. 42, No. 1, Paper No. 38, 29 p. (2023). MSC: 26A33 PDF BibTeX XML Cite \textit{F. Afiatdoust} et al., Comput. Appl. Math. 42, No. 1, Paper No. 38, 29 p. (2023; Zbl 07657510) Full Text: DOI OpenURL
Alkhazzan, Abdulwasea; Wang, Jungang; Tunç, Cemil; Ding, Xiaoli; Yuan, Zhanbin; Nie, Yufeng On existence and continuity results of solution for multi-time scale fractional stochastic differential equation. (English) Zbl 07657320 Qual. Theory Dyn. Syst. 22, No. 2, Paper No. 49, 23 p. (2023). MSC: 34A08 34F05 60H10 34D10 26A33 PDF BibTeX XML Cite \textit{A. Alkhazzan} et al., Qual. Theory Dyn. Syst. 22, No. 2, Paper No. 49, 23 p. (2023; Zbl 07657320) Full Text: DOI OpenURL
Albarracin, Carolina; Rodriguez-Blanco, Guillermo The IVP for a periodic generalized ZK equation. (English) Zbl 07657069 J. Differ. Equations 352, 1-22 (2023). MSC: 35Q53 35A01 35A02 26A33 35R11 35B65 PDF BibTeX XML Cite \textit{C. Albarracin} and \textit{G. Rodriguez-Blanco}, J. Differ. Equations 352, 1--22 (2023; Zbl 07657069) Full Text: DOI OpenURL
Hao, Zhaopeng Optimal error estimates of spectral Galerkin method for mixed diffusion equations. (English) Zbl 07656915 Calcolo 60, No. 1, Paper No. 10, 28 p. (2023). MSC: 65N35 65N30 65N12 35B65 41A25 26A33 35R11 PDF BibTeX XML Cite \textit{Z. Hao}, Calcolo 60, No. 1, Paper No. 10, 28 p. (2023; Zbl 07656915) Full Text: DOI OpenURL
Chen, Hao; Qiu, Wenlin; Zaky, Mahmoud A.; Hendy, Ahmed S. A two-grid temporal second-order scheme for the two-dimensional nonlinear Volterra integro-differential equation with weakly singular kernel. (English) Zbl 07656896 Calcolo 60, No. 1, Paper No. 13, 30 p. (2023). MSC: 65M06 65N06 65M55 65M12 65M15 65M22 45K05 35R09 26A33 35R11 PDF BibTeX XML Cite \textit{H. Chen} et al., Calcolo 60, No. 1, Paper No. 13, 30 p. (2023; Zbl 07656896) Full Text: DOI arXiv OpenURL
Bueno-Orovio, Alfonso; Burrage, Kevin Complex-order fractional diffusion in reaction-diffusion systems. (English) Zbl 07656617 Commun. Nonlinear Sci. Numer. Simul. 119, Article ID 107120, 19 p. (2023). MSC: 35R11 26A33 35K57 65T50 PDF BibTeX XML Cite \textit{A. Bueno-Orovio} and \textit{K. Burrage}, Commun. Nonlinear Sci. Numer. Simul. 119, Article ID 107120, 19 p. (2023; Zbl 07656617) Full Text: DOI OpenURL
Alqhtani, Manal; Owolabi, Kolade M.; Saad, Khaled M.; Pindza, Edson Spatiotemporal chaos in spatially extended fractional dynamical systems. (English) Zbl 07656615 Commun. Nonlinear Sci. Numer. Simul. 119, Article ID 107118, 25 p. (2023). MSC: 92D25 37D45 26A33 35K57 65M06 PDF BibTeX XML Cite \textit{M. Alqhtani} et al., Commun. Nonlinear Sci. Numer. Simul. 119, Article ID 107118, 25 p. (2023; Zbl 07656615) Full Text: DOI OpenURL
Ma, Tingting; Zheng, Qianqian; Fu, Yayun Optimal error estimation of two fast structure-preserving algorithms for the Riesz fractional sine-Gordon equation. (English) Zbl 07656575 Commun. Nonlinear Sci. Numer. Simul. 119, Article ID 107067, 15 p. (2023). MSC: 65M06 65N06 65M12 15B05 35C08 26A33 35R11 35Q53 PDF BibTeX XML Cite \textit{T. Ma} et al., Commun. Nonlinear Sci. Numer. Simul. 119, Article ID 107067, 15 p. (2023; Zbl 07656575) Full Text: DOI OpenURL
De Nápoli, Pablo; Picon, Tiago Stein-Weiss inequality in \(L^1\) norm for vector fields. (English) Zbl 07655895 Proc. Am. Math. Soc. 151, No. 4, 1663-1679 (2023). MSC: 35A23 26D10 31B10 35R11 PDF BibTeX XML Cite \textit{P. De Nápoli} and \textit{T. Picon}, Proc. Am. Math. Soc. 151, No. 4, 1663--1679 (2023; Zbl 07655895) Full Text: DOI arXiv OpenURL
Admon, Mohd Rashid; Senu, Norazak; Ahmadian, Ali; Majid, Zanariah Abdul; Salahshour, Soheil A new accurate method for solving fractional relaxation-oscillation with Hilfer derivatives. (English) Zbl 07655419 Comput. Appl. Math. 42, No. 1, Paper No. 10, 33 p. (2023). MSC: 34A08 65M70 26A33 PDF BibTeX XML Cite \textit{M. R. Admon} et al., Comput. Appl. Math. 42, No. 1, Paper No. 10, 33 p. (2023; Zbl 07655419) Full Text: DOI OpenURL
Azarnavid, Babak The Bernoulli polynomials reproducing kernel method for nonlinear Volterra integro-differential equations of fractional order with convergence analysis. (English) Zbl 07655417 Comput. Appl. Math. 42, No. 1, Paper No. 8, 17 p. (2023). MSC: 45J05 26A33 11B68 46E22 PDF BibTeX XML Cite \textit{B. Azarnavid}, Comput. Appl. Math. 42, No. 1, Paper No. 8, 17 p. (2023; Zbl 07655417) Full Text: DOI OpenURL
Roncal, Luz; Stan, Diana; Vega, Luis Carleman type inequalities for fractional relativistic operators. (English) Zbl 07655268 Rev. Mat. Complut. 36, No. 1, 301-332 (2023). MSC: 35R11 35A23 35B40 35K05 PDF BibTeX XML Cite \textit{L. Roncal} et al., Rev. Mat. Complut. 36, No. 1, 301--332 (2023; Zbl 07655268) Full Text: DOI arXiv OpenURL
Hernández, S. I.; del Castillo, L. F.; del Castillo, Roxana M.; García-Bernabé, Abel; Compañ, V. Memory kernel formalism with fractional exponents and its application to dielectric relaxation. (English) Zbl 07655209 Physica A 612, Article ID 128486, 13 p. (2023). MSC: 82C31 82C44 82D30 35Q84 26A33 35R11 PDF BibTeX XML Cite \textit{S. I. Hernández} et al., Physica A 612, Article ID 128486, 13 p. (2023; Zbl 07655209) Full Text: DOI OpenURL
Alazard, Thomas; Nguyen, Quoc-Hung Endpoint Sobolev theory for the Muskat equation. (English) Zbl 07654964 Commun. Math. Phys. 397, No. 3, 1043-1102 (2023). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q35 76S05 76T06 76D27 35B65 35A01 35A02 26A33 35R11 PDF BibTeX XML Cite \textit{T. Alazard} and \textit{Q.-H. Nguyen}, Commun. Math. Phys. 397, No. 3, 1043--1102 (2023; Zbl 07654964) Full Text: DOI arXiv OpenURL
Kokilashvili, Vakhtang; Meskhi, Alexander Boundedness of operators of harmonic analysis in grand variable exponent Morrey spaces. (English) Zbl 07654939 Mediterr. J. Math. 20, No. 2, Paper No. 71, 25 p. (2023). Reviewer: Ferit Gürbüz (Hakkari) MSC: 42B35 26A33 42B20 42B25 46E30 PDF BibTeX XML Cite \textit{V. Kokilashvili} and \textit{A. Meskhi}, Mediterr. J. Math. 20, No. 2, Paper No. 71, 25 p. (2023; Zbl 07654939) Full Text: DOI OpenURL
Cheng, Yuhong; Zhang, Hai; Stamova, Ivanka; Cao, Jinde Estimate scheme for fractional order-dependent fixed-time synchronization on Caputo quaternion-valued BAM network systems with time-varying delays. (English) Zbl 07654658 J. Franklin Inst. 360, No. 3, 2379-2403 (2023). MSC: 93D40 93B70 93C43 93B52 26A33 PDF BibTeX XML Cite \textit{Y. Cheng} et al., J. Franklin Inst. 360, No. 3, 2379--2403 (2023; Zbl 07654658) Full Text: DOI OpenURL
Jacobs, Byron A.; Laurén, Fredrik; Nordström, Jan On the order reduction of approximations of fractional derivatives: an explanation and a cure. (English) Zbl 07654453 BIT 63, No. 1, Paper No. 17, 14 p. (2023). MSC: 65-XX 26A33 65B99 65G40 65R20 PDF BibTeX XML Cite \textit{B. A. Jacobs} et al., BIT 63, No. 1, Paper No. 17, 14 p. (2023; Zbl 07654453) Full Text: DOI OpenURL
Ahmed, Hoda F.; Hashem, W. A. Novel and accurate Gegenbauer spectral tau algorithms for distributed order nonlinear time-fractional telegraph models in multi-dimensions. (English) Zbl 07654096 Commun. Nonlinear Sci. Numer. Simul. 118, Article ID 107062, 16 p. (2023). Reviewer: Marius Ghergu (Dublin) MSC: 65M70 33C45 26A33 35R11 PDF BibTeX XML Cite \textit{H. F. Ahmed} and \textit{W. A. Hashem}, Commun. Nonlinear Sci. Numer. Simul. 118, Article ID 107062, 16 p. (2023; Zbl 07654096) Full Text: DOI OpenURL
Chen, Liping; Guo, Wenliang; Lopes, António M.; Wu, Ranchao; Li, Penghua; Yin, Lisheng State-of-charge estimation for lithium-ion batteries based on incommensurate fractional-order observer. (English) Zbl 07654093 Commun. Nonlinear Sci. Numer. Simul. 118, Article ID 107059, 21 p. (2023). MSC: 93E10 93B53 26A33 PDF BibTeX XML Cite \textit{L. Chen} et al., Commun. Nonlinear Sci. Numer. Simul. 118, Article ID 107059, 21 p. (2023; Zbl 07654093) Full Text: DOI OpenURL
Rawani, Mukesh Kumar; Verma, Amit Kumar; Cattani, Carlo A novel hybrid approach for computing numerical solution of the time-fractional nonlinear one and two-dimensional partial integro-differential equation. (English) Zbl 07654029 Commun. Nonlinear Sci. Numer. Simul. 118, Article ID 106986, 20 p. (2023). Reviewer: Kanakadurga Sivakumar (Chennai) MSC: 65M06 65N35 65D32 65M12 65M15 65T60 35R09 26A33 35R11 PDF BibTeX XML Cite \textit{M. K. Rawani} et al., Commun. Nonlinear Sci. Numer. Simul. 118, Article ID 106986, 20 p. (2023; Zbl 07654029) Full Text: DOI OpenURL
Kavitha Williams, W.; Vijayakumar, V. Existence of Atangana-Baleanu fractional neutral Volterra integro-differential equations with non-instantaneous impulses. (English) Zbl 07653554 Bull. Sci. Math. 182, Article ID 103211, 30 p. (2023). MSC: 26A33 34A08 34K35 34K37 35R11 PDF BibTeX XML Cite \textit{W. Kavitha Williams} and \textit{V. Vijayakumar}, Bull. Sci. Math. 182, Article ID 103211, 30 p. (2023; Zbl 07653554) Full Text: DOI OpenURL
Chen, Yiqun; Jia, Hongchao; Yang, Dachun Boundedness of fractional integrals on ball Campanato-type function spaces. (English) Zbl 07653553 Bull. Sci. Math. 182, Article ID 103210, 59 p. (2023). MSC: 47G40 42B20 47A30 42B30 46E35 42B25 42B35 PDF BibTeX XML Cite \textit{Y. Chen} et al., Bull. Sci. Math. 182, Article ID 103210, 59 p. (2023; Zbl 07653553) Full Text: DOI arXiv OpenURL
Derbazi, Choukri; Hammouche, Hadda; Salim, Abdelkrim; Benchohra, Mouffak Weak solutions for fractional Langevin equations involving two fractional orders in Banach spaces. (English) Zbl 07652924 Afr. Mat. 34, No. 1, Paper No. 1, 10 p. (2023). MSC: 26A33 34B15 34G20 PDF BibTeX XML Cite \textit{C. Derbazi} et al., Afr. Mat. 34, No. 1, Paper No. 1, 10 p. (2023; Zbl 07652924) Full Text: DOI OpenURL
Cardone, Angelamaria; De Luca, Pasquale; Galletti, Ardelio; Marcellino, Livia Solving time-fractional reaction-diffusion systems through a tensor-based parallel algorithm. (English) Zbl 07652863 Physica A 611, Article ID 128472, 10 p. (2023). MSC: 65M70 65N06 65Y05 65Y10 68Q32 26A33 35R11 PDF BibTeX XML Cite \textit{A. Cardone} et al., Physica A 611, Article ID 128472, 10 p. (2023; Zbl 07652863) Full Text: DOI OpenURL
Cao, Jian; Srivastava, H. M. A class of iterated fractional \(q\)-integrals and their applications. (English) Zbl 1504.26013 J. Nonlinear Convex Anal. 24, No. 1, 119-138 (2023). MSC: 26A33 33D15 33D45 11B65 33D60 39A13 39B32 PDF BibTeX XML Cite \textit{J. Cao} and \textit{H. M. Srivastava}, J. Nonlinear Convex Anal. 24, No. 1, 119--138 (2023; Zbl 1504.26013) Full Text: Link OpenURL
Liu, Ruoyuan On the probabilistic well-posedness of the two-dimensional periodic nonlinear Schrödinger equation with the quadratic nonlinearity \(|u|^2\). (English. French summary) Zbl 07652614 J. Math. Pures Appl. (9) 171, 75-101 (2023). MSC: 35Q55 35Q41 35A01 35A02 26A33 35R11 35R25 35R60 PDF BibTeX XML Cite \textit{R. Liu}, J. Math. Pures Appl. (9) 171, 75--101 (2023; Zbl 07652614) Full Text: DOI arXiv OpenURL
Li, Jingna; Wang, Haozhen; Zheng, Dahao Stability and sharp decay for 3D incompressible MHD system with fractional horizontal dissipation and magnetic diffusion. (English) Zbl 07651347 Z. Angew. Math. Phys. 74, No. 2, Paper No. 44, 21 p. (2023). MSC: 35Q35 35B35 35B40 76D03 76W05 26A33 35R11 PDF BibTeX XML Cite \textit{J. Li} et al., Z. Angew. Math. Phys. 74, No. 2, Paper No. 44, 21 p. (2023; Zbl 07651347) Full Text: DOI OpenURL
Vivek, Devaraj; Elsayed, Elsayed M.; Kanagarajan, Kuppusamy Attractivity of implicit differential equations with composite fractional derivative. (English) Zbl 07650711 Georgian Math. J. 30, No. 1, 151-158 (2023). MSC: 26A33 34A08 34A40 PDF BibTeX XML Cite \textit{D. Vivek} et al., Georgian Math. J. 30, No. 1, 151--158 (2023; Zbl 07650711) Full Text: DOI OpenURL
Chowdhury, Indranil; Roy, Prosenjit On fractional Poincaré inequality for unbounded domains with finite ball conditions: counter example. (English) Zbl 07649231 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 228, Article ID 113189, 16 p. (2023). MSC: 35A23 26D10 35P15 35P20 35R09 35R11 46E35 PDF BibTeX XML Cite \textit{I. Chowdhury} and \textit{P. Roy}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 228, Article ID 113189, 16 p. (2023; Zbl 07649231) Full Text: DOI arXiv OpenURL
Kumar, Yashveer; Srivastava, Nikhil; Singh, Aman; Singh, Vineet Kumar Wavelets based computational algorithms for multidimensional distributed order fractional differential equations with nonlinear source term. (English) Zbl 07648417 Comput. Math. Appl. 132, 73-103 (2023). MSC: 26A33 34A08 65T60 65L60 65L05 PDF BibTeX XML Cite \textit{Y. Kumar} et al., Comput. Math. Appl. 132, 73--103 (2023; Zbl 07648417) Full Text: DOI OpenURL
Torres Ledesma, César E.; Nyamoradi, Nemat \((k, \psi)\)-Hilfer impulsive variational problem. (English) Zbl 07647307 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 1, Paper No. 42, 34 p. (2023). MSC: 26A33 34A12 PDF BibTeX XML Cite \textit{C. E. Torres Ledesma} and \textit{N. Nyamoradi}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 1, Paper No. 42, 34 p. (2023; Zbl 07647307) Full Text: DOI OpenURL
Anastassiou, George A.; Karateke, Seda Richards’s curve induced Banach space valued ordinary and fractional neural network approximation. (English) Zbl 07647280 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 1, Paper No. 14, 33 p. (2023). MSC: 26A33 41A17 41A25 41A30 46B25 PDF BibTeX XML Cite \textit{G. A. Anastassiou} and \textit{S. Karateke}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 1, Paper No. 14, 33 p. (2023; Zbl 07647280) Full Text: DOI OpenURL
Popa, Călin-Adrian Mittag-Leffler stability and synchronization of neutral-type fractional-order neural networks with leakage delay and mixed delays. (English) Zbl 07647083 J. Franklin Inst. 360, No. 1, 327-355 (2023). MSC: 93D99 93B70 26A33 PDF BibTeX XML Cite \textit{C.-A. Popa}, J. Franklin Inst. 360, No. 1, 327--355 (2023; Zbl 07647083) Full Text: DOI OpenURL
Nghia, Bui Dai; Nguyen, Van Tien; Long, Le Dinh On Cauchy problem for pseudo-parabolic equation with Caputo-Fabrizio operator. (English) Zbl 07646180 Demonstr. Math. 56, Article ID 20220180, 20 p. (2023). MSC: 35R11 26A33 35B65 35K20 35K70 PDF BibTeX XML Cite \textit{B. D. Nghia} et al., Demonstr. Math. 56, Article ID 20220180, 20 p. (2023; Zbl 07646180) Full Text: DOI OpenURL
Liu, Jianfeng; Wang, Tingchun; Zhang, Teng A second-order finite difference scheme for the multi-dimensional nonlinear time-fractional Schrödinger equation. (English) Zbl 07646072 Numer. Algorithms 92, No. 2, 1153-1182 (2023). MSC: 65M06 65N06 65M12 65M12 26A33 35R11 35Q41 35Q55 PDF BibTeX XML Cite \textit{J. Liu} et al., Numer. Algorithms 92, No. 2, 1153--1182 (2023; Zbl 07646072) Full Text: DOI OpenURL
Fareed, Aisha F.; Elbarawy, Menna T. M.; Semary, Mourad S. Fractional discrete Temimi-Ansari method with singular and nonsingular operators: applications to electrical circuits. (English) Zbl 07644553 Adv. Contin. Discrete Models 2023, Paper No. 5, 17 p. (2023). MSC: 65C30 65L12 26A33 35R11 PDF BibTeX XML Cite \textit{A. F. Fareed} et al., Adv. Contin. Discrete Models 2023, Paper No. 5, 17 p. (2023; Zbl 07644553) Full Text: DOI OpenURL
Alzabut, J.; Grace, S. R.; Jonnalagadda, J. M.; Thandapani, E. Bounded non-oscillatory solutions of nabla forced fractional difference equations with positive and negative terms. (English) Zbl 07644521 Qual. Theory Dyn. Syst. 22, No. 1, Paper No. 28, 16 p. (2023). MSC: 26A33 39A12 39A21 PDF BibTeX XML Cite \textit{J. Alzabut} et al., Qual. Theory Dyn. Syst. 22, No. 1, Paper No. 28, 16 p. (2023; Zbl 07644521) Full Text: DOI OpenURL
Singh, Abhishek Kumar; Mehra, Mani Difference methods for stochastic space fractional diffusion equation driven by additive space-time white noise via Wong-Zakai approximation. (English) Zbl 07643850 J. Math. Chem. 61, No. 1, 47-74 (2023). MSC: 65M06 65N06 65M12 60H40 35R60 26A33 35R11 PDF BibTeX XML Cite \textit{A. K. Singh} and \textit{M. Mehra}, J. Math. Chem. 61, No. 1, 47--74 (2023; Zbl 07643850) Full Text: DOI OpenURL
Choudhary, Renu; Kumar, Devendra; Singh, Satpal Second-order convergent scheme for time-fractional partial differential equations with a delay in time. (English) Zbl 07643849 J. Math. Chem. 61, No. 1, 21-46 (2023). MSC: 26A33 65D07 34K37 65M12 65M70 35R11 PDF BibTeX XML Cite \textit{R. Choudhary} et al., J. Math. Chem. 61, No. 1, 21--46 (2023; Zbl 07643849) Full Text: DOI OpenURL
Banjai, Lehel; Melenk, Jens M.; Schwab, Christoph Exponential convergence of hp FEM for spectral fractional diffusion in polygons. (English) Zbl 07643514 Numer. Math. 153, No. 1, 1-47 (2023). MSC: 65Nxx 26A33 65N12 65N30 PDF BibTeX XML Cite \textit{L. Banjai} et al., Numer. Math. 153, No. 1, 1--47 (2023; Zbl 07643514) Full Text: DOI arXiv OpenURL
Fernandez, Arran; Restrepo, Joel E.; Suragan, Durvudkhan A new representation for the solutions of fractional differential equations with variable coefficients. (English) Zbl 07643235 Mediterr. J. Math. 20, No. 1, Paper No. 27, 20 p. (2023). MSC: 26A33 34A08 35R11 PDF BibTeX XML Cite \textit{A. Fernandez} et al., Mediterr. J. Math. 20, No. 1, Paper No. 27, 20 p. (2023; Zbl 07643235) Full Text: DOI arXiv OpenURL
Liu, Jitao; Zhao, Yunxiao Hölder regularity of helicity for the incompressible flows. (English) Zbl 07643197 J. Math. Fluid Mech. 25, No. 1, Paper No. 16, 10 p. (2023). MSC: 35Q30 35Q35 76D03 76D05 35B65 26A33 35R11 PDF BibTeX XML Cite \textit{J. Liu} and \textit{Y. Zhao}, J. Math. Fluid Mech. 25, No. 1, Paper No. 16, 10 p. (2023; Zbl 07643197) Full Text: DOI OpenURL
Tarasov, Vasily E. Nonlocal statistical mechanics: general fractional Liouville equations and their solutions. (English) Zbl 07642800 Physica A 609, Article ID 128366, 40 p. (2023). MSC: 82-XX PDF BibTeX XML Cite \textit{V. E. Tarasov}, Physica A 609, Article ID 128366, 40 p. (2023; Zbl 07642800) Full Text: DOI OpenURL
Ogawa, Shigeyoshi Correction to: “Mean value theorems for the noncausal stochastic integral”. (English) Zbl 1503.60064 Japan J. Ind. Appl. Math. 40, No. 1, 755-756 (2023). MSC: 60H05 60H99 60J65 26A33 PDF BibTeX XML Cite \textit{S. Ogawa}, Japan J. Ind. Appl. Math. 40, No. 1, 755--756 (2023; Zbl 1503.60064) Full Text: DOI OpenURL
Herrera-Hernández, E. C.; Aguilar-Madera, C. G.; Espinosa-Paredes, G.; Hernández, D. Modeling single-phase fluid flow in porous media through non-local fractal continuum equation. (English) Zbl 07642135 J. Eng. Math. 138, Paper No. 8, 18 p. (2023). MSC: 76S05 76-10 28A80 26A33 PDF BibTeX XML Cite \textit{E. C. Herrera-Hernández} et al., J. Eng. Math. 138, Paper No. 8, 18 p. (2023; Zbl 07642135) Full Text: DOI OpenURL
Li, Dong; Sire, Yannick Remarks on the Bernstein inequality for higher order operators and related results. (English) Zbl 07641741 Trans. Am. Math. Soc. 376, No. 2, 945-967 (2023). MSC: 35Q35 35Q86 86A05 35B53 35B65 35B09 42B25 42B35 31A30 26A33 35R11 PDF BibTeX XML Cite \textit{D. Li} and \textit{Y. Sire}, Trans. Am. Math. Soc. 376, No. 2, 945--967 (2023; Zbl 07641741) Full Text: DOI arXiv OpenURL
Abdelkawy, M. A.; Soluma, E. M.; Al-Dayel, Ibrahim; Baleanu, Dumitru Spectral solutions for a class of nonlinear wave equations with Riesz fractional based on Legendre collocation technique. (English) Zbl 07640827 J. Comput. Appl. Math. 423, Article ID 114970, 15 p. (2023). MSC: 65M70 65D32 42C10 74D10 74J30 35Q74 26A33 35R11 PDF BibTeX XML Cite \textit{M. A. Abdelkawy} et al., J. Comput. Appl. Math. 423, Article ID 114970, 15 p. (2023; Zbl 07640827) Full Text: DOI OpenURL
Hao, Yajuan; Zhang, Meihua; Cui, Yuhuan; Cheng, Gang; Xie, Jiaquan; Chen, Yiming Dynamic analysis of variable fractional order cantilever beam based on shifted Legendre polynomials algorithm. (English) Zbl 07640813 J. Comput. Appl. Math. 423, Article ID 114952, 13 p. (2023). MSC: 65M70 42C10 65K10 65M12 74K10 74B20 74D10 74H45 35Q74 26A33 35R11 PDF BibTeX XML Cite \textit{Y. Hao} et al., J. Comput. Appl. Math. 423, Article ID 114952, 13 p. (2023; Zbl 07640813) Full Text: DOI OpenURL
Hioual, Amel; Ouannas, Adel; Grassi, Giuseppe; Oussaeif, Taki-Eddine Nonlinear nabla variable-order fractional discrete systems: asymptotic stability and application to neural networks. (English) Zbl 07640805 J. Comput. Appl. Math. 423, Article ID 114939, 9 p. (2023). MSC: 39A13 39A30 26A33 PDF BibTeX XML Cite \textit{A. Hioual} et al., J. Comput. Appl. Math. 423, Article ID 114939, 9 p. (2023; Zbl 07640805) Full Text: DOI OpenURL
Gan, Di; Zhang, Guo-Feng Efficient ADI schemes and preconditioning for a class of high-dimensional spatial fractional diffusion equations with variable diffusion coefficients. (English) Zbl 07640804 J. Comput. Appl. Math. 423, Article ID 114938, 15 p. (2023). MSC: 65N06 65M06 65F08 65F10 65F55 65M12 65N12 15B05 65T50 26A33 35R11 PDF BibTeX XML Cite \textit{D. Gan} and \textit{G.-F. Zhang}, J. Comput. Appl. Math. 423, Article ID 114938, 15 p. (2023; Zbl 07640804) Full Text: DOI OpenURL
Saffarian, Marziyeh; Mohebbi, Akbar Solution of space-time tempered fractional diffusion-wave equation using a high-order numerical method. (English) Zbl 07640802 J. Comput. Appl. Math. 423, Article ID 114935, 18 p. (2023). MSC: 65M70 65M60 65M06 65N35 65N30 65M12 65M15 26A33 35R11 PDF BibTeX XML Cite \textit{M. Saffarian} and \textit{A. Mohebbi}, J. Comput. Appl. Math. 423, Article ID 114935, 18 p. (2023; Zbl 07640802) Full Text: DOI OpenURL
Lan, Kunquan Linear higher-order fractional differential and integral equations. (English) Zbl 1502.34010 Electron. J. Differ. Equ. 2023, Paper No. 01, 20 p. (2023). MSC: 34A08 26A33 34A12 45D05 PDF BibTeX XML Cite \textit{K. Lan}, Electron. J. Differ. Equ. 2023, Paper No. 01, 20 p. (2023; Zbl 1502.34010) Full Text: Link OpenURL
Boutiara, A.; Alzabut, J.; Selvam, A. G. M.; Vignesh, D. Analysis and applications of sequential hybrid \(\psi\)-Hilfer fractional differential equations and inclusions in Banach algebra. (English) Zbl 07639075 Qual. Theory Dyn. Syst. 22, No. 1, Paper No. 12, 32 p. (2023). MSC: 34A08 26A33 34A38 34B15 47N20 PDF BibTeX XML Cite \textit{A. Boutiara} et al., Qual. Theory Dyn. Syst. 22, No. 1, Paper No. 12, 32 p. (2023; Zbl 07639075) Full Text: DOI OpenURL
Cacace, Simone; Lai, Anna Chiara; Loreti, Paola A dynamic programming approach for controlled fractional SIS models. (English) Zbl 07639050 NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 2, Paper No. 20, 36 p. (2023). MSC: 65-XX 26A33 92D30 49J20 49L25 65M22 PDF BibTeX XML Cite \textit{S. Cacace} et al., NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 2, Paper No. 20, 36 p. (2023; Zbl 07639050) Full Text: DOI arXiv OpenURL