Tuan, Nguyen Huy; Huynh, Le Nhat; Zhou, Yong Regularization of a backward problem for 2-D time-fractional diffusion equations with discrete random noise. (English) Zbl 07305249 Appl. Anal. 100, No. 2, 335-360 (2021). MSC: 35R25 35R11 35K20 47J06 47H10 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Appl. Anal. 100, No. 2, 335--360 (2021; Zbl 07305249) Full Text: DOI
Prakasa Rao, B. L. S. Nonparametric estimation of trend for stochastic differential equations driven by fractional Levy process. (English) Zbl 07302995 J. Stat. Theory Pract. 15, No. 1, Paper No. 7, 12 p. (2021). MSC: 62G07 62M09 60G15 60G22 60G65 60H15 PDF BibTeX XML Cite \textit{B. L. S. Prakasa Rao}, J. Stat. Theory Pract. 15, No. 1, Paper No. 7, 12 p. (2021; Zbl 07302995) Full Text: DOI
Li, Linyan; Shu, Ji; Bai, Qianqian; Li, Hui Asymptotic behavior of fractional stochastic heat equations in materials with memory. (English) Zbl 07291038 Appl. Anal. 100, No. 1, 145-166 (2021). MSC: 37L55 37L30 35R60 60H15 PDF BibTeX XML Cite \textit{L. Li} et al., Appl. Anal. 100, No. 1, 145--166 (2021; Zbl 07291038) Full Text: DOI
Foondun, Mohammud; Nualart, Eulalia The Osgood condition for stochastic partial differential equations. (English) Zbl 07282852 Bernoulli 27, No. 1, 295-311 (2021). MSC: 60 62 PDF BibTeX XML Cite \textit{M. Foondun} and \textit{E. Nualart}, Bernoulli 27, No. 1, 295--311 (2021; Zbl 07282852) Full Text: DOI Euclid
Giordano, Luca M.; Jolis, Maria; Quer-Sardanyons, Lluís SPDEs with linear multiplicative fractional noise: continuity in law with respect to the Hurst index. (English) Zbl 07312460 Stochastic Processes Appl. 130, No. 12, 7396-7430 (2020). MSC: 60B10 60H07 60H15 60G22 PDF BibTeX XML Cite \textit{L. M. Giordano} et al., Stochastic Processes Appl. 130, No. 12, 7396--7430 (2020; Zbl 07312460) Full Text: DOI
He, Guitian; Liu, Heng; Tang, Guoji; Cao, Jinde Resonance behavior for a generalized Mittag-Leffler fractional Langevin equation with hydrodynamic interactions. (English) Zbl 07312241 Int. J. Mod. Phys. B 34, No. 32, Article ID 2050310, 23 p. (2020). MSC: 34F05 34F15 34A08 76A10 PDF BibTeX XML Cite \textit{G. He} et al., Int. J. Mod. Phys. B 34, No. 32, Article ID 2050310, 23 p. (2020; Zbl 07312241) Full Text: DOI
Lototsky, S. V.; Rozovsky, B. L. Classical and generalized solutions of fractional stochastic differential equations. (English) Zbl 07298957 Stoch. Partial Differ. Equ., Anal. Comput. 8, No. 4, 761-786 (2020). MSC: 60H15 60H10 60H40 34A08 35R15 35R11 35R60 PDF BibTeX XML Cite \textit{S. V. Lototsky} and \textit{B. L. Rozovsky}, Stoch. Partial Differ. Equ., Anal. Comput. 8, No. 4, 761--786 (2020; Zbl 07298957) Full Text: DOI
Kleptsyna, M. L.; Marushkevych, D. A.; Chigansky, P. Yu. Asymptotic accuracy in estimation of a fractional signal in a small white noise. (English. Russian original) Zbl 07294379 Autom. Remote Control 81, No. 3, 411-429 (2020); translation from Avtom. Telemekh. 2020, No. 3, 44-66 (2020). MSC: 93E11 93C05 60G22 60H40 PDF BibTeX XML Cite \textit{M. L. Kleptsyna} et al., Autom. Remote Control 81, No. 3, 411--429 (2020; Zbl 07294379); translation from Avtom. Telemekh. 2020, No. 3, 44--66 (2020) Full Text: DOI
Chowdhury, Mujibur Rahman; Qin, Jing; Lou, Yifei Non-blind and blind deconvolution under Poisson noise using fractional-order total variation. (English) Zbl 07289212 J. Math. Imaging Vis. 62, No. 9, 1238-1255 (2020). MSC: 68 94 65F22 68U10 52A41 49N45 PDF BibTeX XML Cite \textit{M. R. Chowdhury} et al., J. Math. Imaging Vis. 62, No. 9, 1238--1255 (2020; Zbl 07289212) Full Text: DOI
Lv, Guangying; Wei, Jinlong Blowup solutions for stochastic parabolic equations. (English) Zbl 07287571 Stat. Probab. Lett. 166, Article ID 108876, 6 p. (2020). MSC: 35R60 35B44 35K20 60H15 60H40 35B51 PDF BibTeX XML Cite \textit{G. Lv} and \textit{J. Wei}, Stat. Probab. Lett. 166, Article ID 108876, 6 p. (2020; Zbl 07287571) Full Text: DOI
Shu, Ji; Huang, Xin; Zhang, Jian Asymptotic behavior for non-autonomous fractional stochastic Ginzburg-Landau equations on unbounded domains. (English) Zbl 07287171 J. Math. Phys. 61, No. 7, 072704, 18 p. (2020). MSC: 35Q56 35R60 35R11 35B40 35B41 35A01 35A02 PDF BibTeX XML Cite \textit{J. Shu} et al., J. Math. Phys. 61, No. 7, 072704, 18 p. (2020; Zbl 07287171) Full Text: DOI
Brouste, Alexandre; Soltane, Marius; Votsi, Irene One-step estimation for the fractional Gaussian noise at high-frequency. (English) Zbl 07285916 ESAIM, Probab. Stat. 24, 827-841 (2020). MSC: 62F12 62M09 PDF BibTeX XML Cite \textit{A. Brouste} et al., ESAIM, Probab. Stat. 24, 827--841 (2020; Zbl 07285916) Full Text: DOI
Fa, Kwok Sau Fractional oscillator noise and its applications. (English) Zbl 1451.34008 Int. J. Mod. Phys. B 34, No. 26, Article ID 2050234, 12 p. (2020). MSC: 34A08 34C15 34F05 PDF BibTeX XML Cite \textit{K. S. Fa}, Int. J. Mod. Phys. B 34, No. 26, Article ID 2050234, 12 p. (2020; Zbl 1451.34008) Full Text: DOI
Grecksch, Wilfried; Lisei, Hannelore Stochastic Schrödinger equations. (English) Zbl 1453.49009 Grecksch, Wilfried (ed.) et al., Infinite dimensional and finite dimensional stochastic equations and applications in physics. Hackensack, NJ: World Scientific. 115-160 (2020). MSC: 49J55 60H15 35R60 60H30 60G22 PDF BibTeX XML Cite \textit{W. Grecksch} and \textit{H. Lisei}, in: Infinite dimensional and finite dimensional stochastic equations and applications in physics. Hackensack, NJ: World Scientific. 115--160 (2020; Zbl 1453.49009) Full Text: DOI
Dunlap, Alexander The continuum parabolic Anderson model with a half-Laplacian and periodic noise. (English) Zbl 1448.60135 Electron. Commun. Probab. 25, Paper No. 64, 14 p. (2020). MSC: 60H15 35R11 60H40 PDF BibTeX XML Cite \textit{A. Dunlap}, Electron. Commun. Probab. 25, Paper No. 64, 14 p. (2020; Zbl 1448.60135) Full Text: DOI Euclid
Douissi, Soukaina; Agram, Nacira; Hilbert, Astrid Mean-field optimal control problem of SDDEs driven by fractional Brownian motion. (English) Zbl 1453.60086 Probab. Math. Stat. 40, No. 1, 139-158 (2020). MSC: 60G22 60H07 60H40 93E20 91G80 PDF BibTeX XML Cite \textit{S. Douissi} et al., Probab. Math. Stat. 40, No. 1, 139--158 (2020; Zbl 1453.60086) Full Text: DOI
Guerngar, Ngartelbaye; Nane, Erkan Moment bounds of a class of stochastic heat equations driven by space-time colored noise in bounded domains. (English) Zbl 07243120 Stochastic Processes Appl. 130, No. 10, 6246-6270 (2020). MSC: 60H15 35R11 35R60 60G22 PDF BibTeX XML Cite \textit{N. Guerngar} and \textit{E. Nane}, Stochastic Processes Appl. 130, No. 10, 6246--6270 (2020; Zbl 07243120) Full Text: DOI
Brouste, Alexandre; Cai, Chunhao; Soltane, Marius; Wang, Longmin Testing for the change of the mean-reverting parameter of an autoregressive model with stationary Gaussian noise. (English) Zbl 1451.62097 Stat. Inference Stoch. Process. 23, No. 2, 301-318 (2020). Reviewer: Kévin Allan Sales Rodrigues (São Paulo) MSC: 62M10 62F03 60H40 62E20 PDF BibTeX XML Cite \textit{A. Brouste} et al., Stat. Inference Stoch. Process. 23, No. 2, 301--318 (2020; Zbl 1451.62097) Full Text: DOI
Tuan, Nguyen Huy; Tuan, Nguyen Hoang; Baleanu, Dumitru; Thach, Tran Ngoc On a backward problem for fractional diffusion equation with Riemann-Liouville derivative. (English) Zbl 1445.35318 Math. Methods Appl. Sci. 43, No. 3, 1292-1312 (2020). MSC: 35R25 35R11 35K15 35R60 47A52 62G08 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Math. Methods Appl. Sci. 43, No. 3, 1292--1312 (2020; Zbl 1445.35318) Full Text: DOI
Du, Wei; Tong, Le Introducing robust evolutionary optimization in noisy fractional-order systems. (English) Zbl 1447.37088 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 8, Article ID 2050119, 15 p. (2020). MSC: 37N40 34A08 26A33 PDF BibTeX XML Cite \textit{W. Du} and \textit{L. Tong}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 8, Article ID 2050119, 15 p. (2020; Zbl 1447.37088) Full Text: DOI
Wu, Xiaolei; Yan, Yuyuan; Yan, Yubin An analysis of the L1 scheme for stochastic subdiffusion problem driven by integrated space-time white noise. (English) Zbl 1446.65120 Appl. Numer. Math. 157, 69-87 (2020). MSC: 65M60 65N30 65M06 65D32 65M15 35R11 26A33 60H15 60H40 60H35 44A10 35R60 PDF BibTeX XML Cite \textit{X. Wu} et al., Appl. Numer. Math. 157, 69--87 (2020; Zbl 1446.65120) Full Text: DOI
Liu, Xing; Deng, Weihua Numerical approximation for fractional diffusion equation forced by a tempered fractional Gaussian noise. (English) Zbl 07229474 J. Sci. Comput. 84, No. 1, Paper No. 21, 28 p. (2020). MSC: 65C30 60H15 65M60 65N30 35R11 PDF BibTeX XML Cite \textit{X. Liu} and \textit{W. Deng}, J. Sci. Comput. 84, No. 1, Paper No. 21, 28 p. (2020; Zbl 07229474) Full Text: DOI
Lu, Hong; Zhang, Mingji Dynamics of non-autonomous fractional Ginzburg-Landau equations driven by colored noise. (English) Zbl 1445.35066 Discrete Contin. Dyn. Syst., Ser. B 25, No. 9, 3553-3576 (2020). MSC: 35B40 35B41 37L30 35Q56 35R11 35R60 PDF BibTeX XML Cite \textit{H. Lu} and \textit{M. Zhang}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 9, 3553--3576 (2020; Zbl 1445.35066) Full Text: DOI
Herrell, Randall; Song, Renming; Wu, Dongsheng; Xiao, Yimin Sharp space-time regularity of the solution to stochastic heat equation driven by fractional-colored noise. (English) Zbl 1447.60064 Stochastic Anal. Appl. 38, No. 4, 747-768 (2020). MSC: 60G15 60J55 60G18 60F25 PDF BibTeX XML Cite \textit{R. Herrell} et al., Stochastic Anal. Appl. 38, No. 4, 747--768 (2020; Zbl 1447.60064) Full Text: DOI
Asogwa, Sunday A.; Mijena, Jebessa B.; Nane, Erkan Blow-up results for space-time fractional stochastic partial differential equations. (English) Zbl 1453.60113 Potential Anal. 53, No. 2, 357-386 (2020). MSC: 60H15 35B44 35R11 35R60 35K57 PDF BibTeX XML Cite \textit{S. A. Asogwa} et al., Potential Anal. 53, No. 2, 357--386 (2020; Zbl 1453.60113) Full Text: DOI
Eichinger, Katharina; Kuehn, Christian; Neamţu, Alexandra Sample paths estimates for stochastic fast-slow systems driven by fractional Brownian motion. (English) Zbl 1447.60098 J. Stat. Phys. 179, No. 5-6, 1222-1266 (2020). MSC: 60H15 34E15 34F05 37H10 60H10 PDF BibTeX XML Cite \textit{K. Eichinger} et al., J. Stat. Phys. 179, No. 5--6, 1222--1266 (2020; Zbl 1447.60098) Full Text: DOI
Bock, Wolfgang; da Silva, Jose Luis; Suryawan, Herry Pribawanto Self-intersection local times for multifractional Brownian motion in higher dimensions: a white noise approach. (English) Zbl 07220119 Infin. Dimens. Anal. Quantum Probab. Relat. Top. 23, No. 1, Article ID 2050007, 18 p. (2020). MSC: 60H40 60G22 60G18 PDF BibTeX XML Cite \textit{W. Bock} et al., Infin. Dimens. Anal. Quantum Probab. Relat. Top. 23, No. 1, Article ID 2050007, 18 p. (2020; Zbl 07220119) Full Text: DOI
Rao, B. L. S. Prakasa Nonparametric estimation of trend for stochastic differential equations driven by sub-fractional Brownian motion. (English) Zbl 1443.62237 Random Oper. Stoch. Equ. 28, No. 2, 113-122 (2020). MSC: 62M09 62G07 60G22 60G15 60H15 35R60 PDF BibTeX XML Cite \textit{B. L. S. P. Rao}, Random Oper. Stoch. Equ. 28, No. 2, 113--122 (2020; Zbl 1443.62237) Full Text: DOI
Zhao, Wenqiang; Zhang, Yijin Tempered random attractors of a non-autonomous non-local fractional equation driven by multiplicative white noise. (English) Zbl 1444.35169 Stochastic Anal. Appl. 38, No. 3, 460-489 (2020). Reviewer: Raffaella Servadei (Arcavata di Rende) MSC: 35R60 35B40 35B41 35B65 35R11 PDF BibTeX XML Cite \textit{W. Zhao} and \textit{Y. Zhang}, Stochastic Anal. Appl. 38, No. 3, 460--489 (2020; Zbl 1444.35169) Full Text: DOI
Zheng, Xiangcheng; Zhang, Zhongqiang; Wang, Hong Analysis of a nonlinear variable-order fractional stochastic differential equation. (English) Zbl 1441.60051 Appl. Math. Lett. 107, Article ID 106461, 6 p. (2020). MSC: 60H15 35R11 60H40 PDF BibTeX XML Cite \textit{X. Zheng} et al., Appl. Math. Lett. 107, Article ID 106461, 6 p. (2020; Zbl 1441.60051) Full Text: DOI
Lê, Khoa A stochastic sewing lemma and applications. (English) Zbl 07206375 Electron. J. Probab. 25, Paper No. 38, 55 p. (2020). MSC: 60H10 60H05 60L20 PDF BibTeX XML Cite \textit{K. Lê}, Electron. J. Probab. 25, Paper No. 38, 55 p. (2020; Zbl 07206375) Full Text: DOI Euclid
Nilssen, Torstein Rough linear PDE’s with discontinuous coefficients – existence of solutions via regularization by fractional Brownian motion. (English) Zbl 1441.60048 Electron. J. Probab. 25, Paper No. 34, 33 p. (2020). MSC: 60H15 60H10 60G22 60H05 60J55 PDF BibTeX XML Cite \textit{T. Nilssen}, Electron. J. Probab. 25, Paper No. 34, 33 p. (2020; Zbl 1441.60048) Full Text: DOI Euclid
Basse-O’Connor, Andreas; Podolskij, Mark; Thäle, Christoph A Berry-Esseén theorem for partial sums of functionals of heavy-tailed moving averages. (English) Zbl 07206368 Electron. J. Probab. 25, Paper No. 31, 31 p. (2020). MSC: 60E07 60F05 60G52 60G57 PDF BibTeX XML Cite \textit{A. Basse-O'Connor} et al., Electron. J. Probab. 25, Paper No. 31, 31 p. (2020; Zbl 07206368) Full Text: DOI Euclid
Li, Yajing; Wang, Yejuan The existence and exponential behavior of solutions to time fractional stochastic delay evolution inclusions with nonlinear multiplicative noise and fractional noise. (English) Zbl 1443.34086 Discrete Contin. Dyn. Syst., Ser. B 25, No. 7, 2665-2697 (2020). MSC: 34K37 34K09 34K50 47N20 60J65 34K25 34K30 PDF BibTeX XML Cite \textit{Y. Li} and \textit{Y. Wang}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 7, 2665--2697 (2020; Zbl 1443.34086) Full Text: DOI
Chen, Xia Parabolic Anderson model with a fractional Gaussian noise that is rough in time. (English. French summary) Zbl 1434.60083 Ann. Inst. Henri Poincaré, Probab. Stat. 56, No. 2, 792-825 (2020). MSC: 60F10 60H15 60H40 60J65 81U10 PDF BibTeX XML Cite \textit{X. Chen}, Ann. Inst. Henri Poincaré, Probab. Stat. 56, No. 2, 792--825 (2020; Zbl 1434.60083) Full Text: DOI Euclid
Bolin, David; Kirchner, Kristin; Kovács, Mihály Numerical solution of fractional elliptic stochastic PDEs with spatial white noise. (English) Zbl 07199501 IMA J. Numer. Anal. 40, No. 2, 1051-1073 (2020). MSC: 65 PDF BibTeX XML Cite \textit{D. Bolin} et al., IMA J. Numer. Anal. 40, No. 2, 1051--1073 (2020; Zbl 07199501) Full Text: DOI
Deya, Aurélien On a non-linear 2D fractional wave equation. (English. French summary) Zbl 1434.60152 Ann. Inst. Henri Poincaré, Probab. Stat. 56, No. 1, 477-501 (2020). MSC: 60H15 60G22 35L71 PDF BibTeX XML Cite \textit{A. Deya}, Ann. Inst. Henri Poincaré, Probab. Stat. 56, No. 1, 477--501 (2020; Zbl 1434.60152) Full Text: DOI Euclid
Meng, Xiangqian; Nane, Erkan Space-time fractional stochastic partial differential equations with Lévy noise. (English) Zbl 07195727 Fract. Calc. Appl. Anal. 23, No. 1, 224-249 (2020). MSC: 60H15 35R60 60H40 PDF BibTeX XML Cite \textit{X. Meng} and \textit{E. Nane}, Fract. Calc. Appl. Anal. 23, No. 1, 224--249 (2020; Zbl 07195727) Full Text: DOI
Rang, Guanglin From directed polymers in spatial-correlated environment to stochastic heat equations driven by fractional noise in \(1 + 1\) dimensions. (English) Zbl 1434.60076 Stochastic Processes Appl. 130, No. 6, 3408-3444 (2020). MSC: 60F05 60H15 82C05 PDF BibTeX XML Cite \textit{G. Rang}, Stochastic Processes Appl. 130, No. 6, 3408--3444 (2020; Zbl 1434.60076) Full Text: DOI
Guo, Chun Xiao; Shu, Ji; Wang, Xiao Hu Fractal dimension of random attractors for non-autonomous fractional stochastic Ginzburg-Landau equations. (English) Zbl 1440.37075 Acta Math. Sin., Engl. Ser. 36, No. 3, 318-336 (2020). MSC: 37L55 37L30 60H15 35Q56 35R60 PDF BibTeX XML Cite \textit{C. X. Guo} et al., Acta Math. Sin., Engl. Ser. 36, No. 3, 318--336 (2020; Zbl 1440.37075) Full Text: DOI
Huang, Xipei; Lin, Lifeng; Wang, Huiqi Generalized stochastic resonance for a fractional noisy oscillator with random mass and random damping. (English) Zbl 1436.34061 J. Stat. Phys. 178, No. 5, 1201-1216 (2020). MSC: 34F15 34C15 34A08 34F05 37C60 34C60 PDF BibTeX XML Cite \textit{X. Huang} et al., J. Stat. Phys. 178, No. 5, 1201--1216 (2020; Zbl 1436.34061) Full Text: DOI
Bai, Qianqian; Shu, Ji; Li, Linyan; Li, Hui Dynamical behavior of non-autonomous fractional stochastic reaction-diffusion equations. (English) Zbl 1431.60052 J. Math. Anal. Appl. 485, No. 2, Article ID 123833, 16 p. (2020). MSC: 60H15 35K57 35R11 35R60 PDF BibTeX XML Cite \textit{Q. Bai} et al., J. Math. Anal. Appl. 485, No. 2, Article ID 123833, 16 p. (2020; Zbl 1431.60052) Full Text: DOI
Chowdhury, Mujibur Rahman; Zhang, Jun; Qin, Jing; Lou, Yifei Poisson image denoising based on fractional-order total variation. (English) Zbl 07170241 Inverse Probl. Imaging 14, No. 1, 77-96 (2020). MSC: 94A08 65F22 26A33 49J10 49M25 49N45 PDF BibTeX XML Cite \textit{M. R. Chowdhury} et al., Inverse Probl. Imaging 14, No. 1, 77--96 (2020; Zbl 07170241) Full Text: DOI
Giordano, Luca M.; Jolis, Maria; Quer-Sardanyons, Lluís SPDEs with fractional noise in space: continuity in law with respect to the Hurst index. (English) Zbl 1433.60054 Bernoulli 26, No. 1, 352-386 (2020). MSC: 60H15 60H40 PDF BibTeX XML Cite \textit{L. M. Giordano} et al., Bernoulli 26, No. 1, 352--386 (2020; Zbl 1433.60054) Full Text: DOI Euclid arXiv
Xu, Yong; Zan, Wanrong; Jia, Wantao; Kurths, Jürgen Path integral solutions of the governing equation of SDEs excited by Lévy white noise. (English) Zbl 1452.65021 J. Comput. Phys. 394, 41-55 (2019). MSC: 65C30 60H10 35R11 65C05 PDF BibTeX XML Cite \textit{Y. Xu} et al., J. Comput. Phys. 394, 41--55 (2019; Zbl 1452.65021) Full Text: DOI
Sun, Zhongkui; Dang, Puni; Xu, Wei Detecting and measuring stochastic resonance in fractional-order systems via statistical complexity. (English) Zbl 1448.34120 Chaos Solitons Fractals 125, 34-40 (2019). MSC: 34F15 34A08 60H10 34C60 PDF BibTeX XML Cite \textit{Z. Sun} et al., Chaos Solitons Fractals 125, 34--40 (2019; Zbl 1448.34120) Full Text: DOI
Li, Wei; Huang, Dongmei; Zhang, Meiting; Trisovic, Natasa; Zhao, Junfeng Bifurcation control of a generalized VDP system driven by color-noise excitation via FOPID controller. (English) Zbl 1448.93135 Chaos Solitons Fractals 121, 30-38 (2019). MSC: 93C15 93E03 34A08 34C29 PDF BibTeX XML Cite \textit{W. Li} et al., Chaos Solitons Fractals 121, 30--38 (2019; Zbl 1448.93135) Full Text: DOI
Yu, Tao; Zhang, Lu; Ji, Yuandong; Lai, Li Stochastic resonance of two coupled fractional harmonic oscillators with fluctuating mass. (English) Zbl 07264727 Commun. Nonlinear Sci. Numer. Simul. 72, 26-38 (2019). MSC: 34 93 PDF BibTeX XML Cite \textit{T. Yu} et al., Commun. Nonlinear Sci. Numer. Simul. 72, 26--38 (2019; Zbl 07264727) Full Text: DOI
Tuan, Nguyen Huy; Zhou, Yong; Thach, Tran Ngoc; Can, Nguyen Huu Initial inverse problem for the nonlinear fractional Rayleigh-Stokes equation with random discrete data. (English) Zbl 07264499 Commun. Nonlinear Sci. Numer. Simul. 78, Article ID 104873, 18 p. (2019). MSC: 65D 62 62G 62F PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Commun. Nonlinear Sci. Numer. Simul. 78, Article ID 104873, 18 p. (2019; Zbl 07264499) Full Text: DOI
Yuan, Liguo; Yang, Qigui Parameter identification of fractional-order chaotic systems without or with noise: reply to comments. (English) Zbl 07263901 Commun. Nonlinear Sci. Numer. Simul. 67, 506-516 (2019). MSC: 00 PDF BibTeX XML Cite \textit{L. Yuan} and \textit{Q. Yang}, Commun. Nonlinear Sci. Numer. Simul. 67, 506--516 (2019; Zbl 07263901) Full Text: DOI
Wang, Xiaohuan Hölder continuous of the solutions to stochastic nonlocal heat equations. (English) Zbl 1442.35571 Comput. Math. Appl. 78, No. 3, 741-753 (2019). MSC: 35R60 35B65 35R11 45K05 80A05 PDF BibTeX XML Cite \textit{X. Wang}, Comput. Math. Appl. 78, No. 3, 741--753 (2019; Zbl 1442.35571) Full Text: DOI
Liu, Ziyuan; Liang, Jiarui; Qian, Xu; Song, Songhe A generalized multi-symplectic method for stochastic space-fractional nonlinear Schrödinger equation with multiplicative noise. (Chinese. English summary) Zbl 1449.65351 Math. Numer. Sin. 41, No. 4, 440-452 (2019). MSC: 65P10 65C30 35Q55 PDF BibTeX XML Cite \textit{Z. Liu} et al., Math. Numer. Sin. 41, No. 4, 440--452 (2019; Zbl 1449.65351)
Vasylyk, O. I. Estimation of distribution of suprema of a strictly \(\varphi\)-sub-Gaussian quasi shot noise process. (Ukrainian. English summary) Zbl 1449.60075 Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2019, No. 2, 7-16 (2019). MSC: 60G15 60G22 60G51 62M15 PDF BibTeX XML Cite \textit{O. I. Vasylyk}, Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2019, No. 2, 7--16 (2019; Zbl 1449.60075)
Lizzy, R. Mabel; Balachandran, K.; Ma, Yong-Ki Controllability of nonlinear stochastic fractional higher order dynamical systems. (English) Zbl 1441.93034 Fract. Calc. Appl. Anal. 22, No. 4, 1063-1085 (2019). MSC: 93B05 93E03 34A08 93C43 60G51 PDF BibTeX XML Cite \textit{R. M. Lizzy} et al., Fract. Calc. Appl. Anal. 22, No. 4, 1063--1085 (2019; Zbl 1441.93034) Full Text: DOI
Dai, Hongzhe; Zhang, Ruijing; Zhang, Hao A new fractional moment equation method for the response prediction of nonlinear stochastic systems. (English) Zbl 1430.60047 Nonlinear Dyn. 97, No. 4, 2219-2230 (2019). MSC: 60G65 60H40 PDF BibTeX XML Cite \textit{H. Dai} et al., Nonlinear Dyn. 97, No. 4, 2219--2230 (2019; Zbl 1430.60047) Full Text: DOI
Chen, Yong; Gao, Hongjun; Huang, Jianhua Periodic stochastic high-order Degasperis-Procesi equation with cylindrical fBm. (English) Zbl 1434.60149 Stoch. Dyn. 19, No. 6, Article ID 1950043, 19 p. (2019). MSC: 60H15 60H40 35L70 PDF BibTeX XML Cite \textit{Y. Chen} et al., Stoch. Dyn. 19, No. 6, Article ID 1950043, 19 p. (2019; Zbl 1434.60149) Full Text: DOI
Wang, Yunxiao; Shu, Ji; Yang, Yuan; Li, Qian; Wang, Chunjiang Stochastic fractional non-autonomous Ginzburg-Landau equations with multiplicative noise in weighted space. (Chinese. English summary) Zbl 1449.35466 J. Sichuan Norm. Univ., Nat. Sci. 42, No. 4, 491-500 (2019). MSC: 35R60 35R11 35B40 35B41 35Q56 37L55 60H15 PDF BibTeX XML Cite \textit{Y. Wang} et al., J. Sichuan Norm. Univ., Nat. Sci. 42, No. 4, 491--500 (2019; Zbl 1449.35466) Full Text: DOI
Yang, Fan; Zhang, Yan; Li, Xiaoxiao Inversion of initial-value problem by means of quasi-reversibility regularization method combined with discrete random noise. (Chinese. English summary) Zbl 1449.65228 J. Lanzhou Univ. Technol. 45, No. 3, 153-158 (2019). MSC: 65M30 65M32 35R11 26A33 65J20 60H50 PDF BibTeX XML Cite \textit{F. Yang} et al., J. Lanzhou Univ. Technol. 45, No. 3, 153--158 (2019; Zbl 1449.65228)
Wang, Zhi; Yan, Litan; Yu, Xianye Local times of the solution to stochastic heat equation with fractional noise. (Chinese. English summary) Zbl 1449.60123 Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 3, 582-595 (2019). MSC: 60J55 60H15 35K05 PDF BibTeX XML Cite \textit{Z. Wang} et al., Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 3, 582--595 (2019; Zbl 1449.60123)
Nguyen Duc Phuong; Nguyen Huy Tuan; Baleanu, Dumitru; Tran Bao Ngoc On Cauchy problem for nonlinear fractional differential equation with random discrete data. (English) Zbl 1433.35451 Appl. Math. Comput. 362, Article ID 124458, 16 p. (2019). MSC: 35R11 35R60 35R30 PDF BibTeX XML Cite \textit{Nguyen Duc Phuong} et al., Appl. Math. Comput. 362, Article ID 124458, 16 p. (2019; Zbl 1433.35451) Full Text: DOI
Loch-Olszewska, Hanna Properties and distribution of the dynamical functional for the fractional Gaussian noise. (English) Zbl 1428.60055 Appl. Math. Comput. 356, 252-271 (2019). MSC: 60G22 37A25 62E17 PDF BibTeX XML Cite \textit{H. Loch-Olszewska}, Appl. Math. Comput. 356, 252--271 (2019; Zbl 1428.60055) Full Text: DOI
Wang, Renhai; Shi, Lin; Wang, Bixiang Asymptotic behavior of fractional nonclassical diffusion equations driven by nonlinear colored noise on \(\mathbb{R}^N\). (English) Zbl 1423.35419 Nonlinearity 32, No. 11, 4524-4556 (2019). MSC: 35R11 35B40 35B41 37L30 PDF BibTeX XML Cite \textit{R. Wang} et al., Nonlinearity 32, No. 11, 4524--4556 (2019; Zbl 1423.35419) Full Text: DOI
Xu, Pengfei; Huang, Jianhua; Zou, Guangan Well-posedness of time-space fractional stochastic evolution equations driven by \(\alpha\)-stable noise. (English) Zbl 1431.35188 Math. Methods Appl. Sci. 42, No. 11, 3818-3830 (2019). MSC: 35Q56 37L55 60H15 35R11 35R60 35Q30 35B65 33E12 47H10 65N06 PDF BibTeX XML Cite \textit{P. Xu} et al., Math. Methods Appl. Sci. 42, No. 11, 3818--3830 (2019; Zbl 1431.35188) Full Text: DOI
Lü, Yan; Lu, Hong Anomalous dynamics of inertial systems driven by colored Lévy noise. (English) Zbl 1426.82049 J. Stat. Phys. 176, No. 4, 1046-1056 (2019). MSC: 82C31 35Q84 35R11 60G51 PDF BibTeX XML Cite \textit{Y. Lü} and \textit{H. Lu}, J. Stat. Phys. 176, No. 4, 1046--1056 (2019; Zbl 1426.82049) Full Text: DOI
Hausenblas, Erika; Kovács, Mihály Global solutions to stochastic Volterra equations driven by Lévy noise. (English) Zbl 1436.60064 Fract. Calc. Appl. Anal. 21, No. 5, 1170-1202 (2019). MSC: 60H15 60G57 45D05 PDF BibTeX XML Cite \textit{E. Hausenblas} and \textit{M. Kovács}, Fract. Calc. Appl. Anal. 21, No. 5, 1170--1202 (2019; Zbl 1436.60064) Full Text: DOI
Kim, Ildoo; Kim, Kyeong-Hun; Lim, Sungbin A Sobolev space theory for stochastic partial differential equations with time-fractional derivatives. (English) Zbl 1446.60044 Ann. Probab. 47, No. 4, 2087-2139 (2019). Reviewer: Yuliya S. Mishura (Kyïv) MSC: 60H15 35R60 45D05 60H40 PDF BibTeX XML Cite \textit{I. Kim} et al., Ann. Probab. 47, No. 4, 2087--2139 (2019; Zbl 1446.60044) Full Text: DOI Euclid arXiv
Li, Yumeng Transportation inequalities for the fourth-order stochastic heat equations with fractional noises. (English) Zbl 1438.60089 J. Math., Wuhan Univ. 39, No. 3, 325-334 (2019). MSC: 60H15 35K05 PDF BibTeX XML Cite \textit{Y. Li}, J. Math., Wuhan Univ. 39, No. 3, 325--334 (2019; Zbl 1438.60089) Full Text: DOI
Liu, Ziyuan; Zhang, Hong; Yan, Jingye; Song, Songhe A fast mass-conserving explicit splitting method for the stochastic space-fractional nonlinear Schrödinger equation with multiplicative noise. (English) Zbl 07112032 Appl. Math. Lett. 98, 419-426 (2019). MSC: 65 60 PDF BibTeX XML Cite \textit{Z. Liu} et al., Appl. Math. Lett. 98, 419--426 (2019; Zbl 07112032) Full Text: DOI
Varvenne, Maylis Rate of convergence to equilibrium for discrete-time stochastic dynamics with memory. (English) Zbl 1431.62422 Bernoulli 25, No. 4B, 3234-3275 (2019). Reviewer: Rózsa Horváth-Bokor (Budakalász) MSC: 62M10 60G22 60G15 60H10 PDF BibTeX XML Cite \textit{M. Varvenne}, Bernoulli 25, No. 4B, 3234--3275 (2019; Zbl 1431.62422) Full Text: DOI Euclid
Balan, Raluca M.; Song, Jian Second order Lyapunov exponents for parabolic and hyperbolic Anderson models. (English) Zbl 1428.62408 Bernoulli 25, No. 4A, 3069-3089 (2019). MSC: 60H15 PDF BibTeX XML Cite \textit{R. M. Balan} and \textit{J. Song}, Bernoulli 25, No. 4A, 3069--3089 (2019; Zbl 1428.62408) Full Text: DOI Euclid arXiv
Wen, Huixia; Shu, Ji; Li, Linfang The random attractors for a class of nonautonomous fractional stochastic wave equations. (Chinese. English summary) Zbl 1438.35062 Acta Math. Sin., Chin. Ser. 62, No. 1, 25-40 (2019). MSC: 35B41 35B40 35R11 35R60 PDF BibTeX XML Cite \textit{H. Wen} et al., Acta Math. Sin., Chin. Ser. 62, No. 1, 25--40 (2019; Zbl 1438.35062)
Liu, Junfeng Fractional kinetic equation driven by general space-time homogeneous Gaussian noise. (English) Zbl 1422.60059 Bull. Malays. Math. Sci. Soc. (2) 42, No. 6, 3475-3499 (2019). MSC: 60G15 60H15 60H07 PDF BibTeX XML Cite \textit{J. Liu}, Bull. Malays. Math. Sci. Soc. (2) 42, No. 6, 3475--3499 (2019; Zbl 1422.60059) Full Text: DOI
Basse-O’Connor, Andreas; Nielsen, Mikkel Slot; Pedersen, Jan; Rohde, Victor Multivariate stochastic delay differential equations and CAR representations of CARMA processes. (English) Zbl 1422.60053 Stochastic Processes Appl. 129, No. 10, 4119-4143 (2019). MSC: 60G05 60G22 60G51 60H05 60H10 PDF BibTeX XML Cite \textit{A. Basse-O'Connor} et al., Stochastic Processes Appl. 129, No. 10, 4119--4143 (2019; Zbl 1422.60053) Full Text: DOI arXiv
Chen, Xia Parabolic Anderson model with rough or critical Gaussian noise. (English. French summary) Zbl 07097337 Ann. Inst. Henri Poincaré, Probab. Stat. 55, No. 2, 941-976 (2019). MSC: 60F10 60H15 60H40 60J65 81U10 PDF BibTeX XML Cite \textit{X. Chen}, Ann. Inst. Henri Poincaré, Probab. Stat. 55, No. 2, 941--976 (2019; Zbl 07097337) Full Text: DOI Euclid
Hu, Y. Schrödinger equation with Gaussian potential. (English) Zbl 07096679 Theory Probab. Math. Stat. 98, 115-126 (2019) and Teor. Jmovirn. Mat. Stat. 98, 109-120 (2018). MSC: 60G15 60G22 46F25 PDF BibTeX XML Cite \textit{Y. Hu}, Theory Probab. Math. Stat. 98, 115--126 (2019; Zbl 07096679) Full Text: DOI
El Barrimi, Oussama; Ouknine, Youssef Some stability results for semilinear stochastic heat equation driven by a fractional noise. (English) Zbl 1440.60051 Bull. Korean Math. Soc. 56, No. 3, 631-648 (2019). Reviewer: Yuliya S. Mishura (Kyïv) MSC: 60H15 60G18 60G22 PDF BibTeX XML Cite \textit{O. El Barrimi} and \textit{Y. Ouknine}, Bull. Korean Math. Soc. 56, No. 3, 631--648 (2019; Zbl 1440.60051) Full Text: DOI
Li, Shihu; Liu, Wei; Xie, Yingchao Ergodicity of 3D Leray-\(\alpha\) model with fractional dissipation and degenerate stochastic forcing. (English) Zbl 1447.60108 Infin. Dimens. Anal. Quantum Probab. Relat. Top. 22, No. 1, Article ID 1950002, 20 p. (2019). MSC: 60H15 37A25 35R11 35Q30 PDF BibTeX XML Cite \textit{S. Li} et al., Infin. Dimens. Anal. Quantum Probab. Relat. Top. 22, No. 1, Article ID 1950002, 20 p. (2019; Zbl 1447.60108) Full Text: DOI
Hu, Ying; Jiang, Yiming; Qian, Zhongmin Stochastic partial differential equations driven by space-time fractional noises. (English) Zbl 1415.60073 Stoch. Dyn. 19, No. 2, Article ID 1950012, 34 p. (2019). MSC: 60H15 PDF BibTeX XML Cite \textit{Y. Hu} et al., Stoch. Dyn. 19, No. 2, Article ID 1950012, 34 p. (2019; Zbl 1415.60073) Full Text: DOI
Li, Yueling; Xie, Longjie; Xie, Yingchao Well-posedness of SDEs with drifts in mixed-norm spaces and driven by mixed-noises. (English) Zbl 1425.34078 J. Differ. Equations 266, No. 5, 2638-2665 (2019). Reviewer: Aleksandr D. Borisenko (Kyïv) MSC: 34F05 60H10 60G52 35R11 PDF BibTeX XML Cite \textit{Y. Li} et al., J. Differ. Equations 266, No. 5, 2638--2665 (2019; Zbl 1425.34078) Full Text: DOI
Foondun, Mohammud; Liu, Wei; Nane, Erkan Some non-existence results for a class of stochastic partial differential equations. (English) Zbl 1420.35480 J. Differ. Equations 266, No. 5, 2575-2596 (2019). MSC: 35R60 60H15 PDF BibTeX XML Cite \textit{M. Foondun} et al., J. Differ. Equations 266, No. 5, 2575--2596 (2019; Zbl 1420.35480) Full Text: DOI arXiv
Wang, Renhai; Li, Yangrong; Wang, Bixiang Random dynamics of fractional nonclassical diffusion equations driven by colored noise. (English) Zbl 1414.37032 Discrete Contin. Dyn. Syst. 39, No. 7, 4091-4126 (2019). MSC: 37L55 37H15 60H15 PDF BibTeX XML Cite \textit{R. Wang} et al., Discrete Contin. Dyn. Syst. 39, No. 7, 4091--4126 (2019; Zbl 1414.37032) Full Text: DOI
Gao, Zhe Fractional-order Kalman filters for continuous-time linear and nonlinear fractional-order systems using Tustin generating function. (English) Zbl 1416.93192 Int. J. Control 92, No. 5, 960-974 (2019). MSC: 93E11 26A33 93C15 93C05 93C10 PDF BibTeX XML Cite \textit{Z. Gao}, Int. J. Control 92, No. 5, 960--974 (2019; Zbl 1416.93192) Full Text: DOI
Deya, Aurélien A nonlinear wave equation with fractional perturbation. (English) Zbl 1427.60121 Ann. Probab. 47, No. 3, 1775-1810 (2019). MSC: 60H15 60G22 35L71 PDF BibTeX XML Cite \textit{A. Deya}, Ann. Probab. 47, No. 3, 1775--1810 (2019; Zbl 1427.60121) Full Text: DOI Euclid
Nguyen, Hoang Luc; Nguyen, Huy Tuan; Mokhtar, Kirane; Dang, Xuan Thanh Duong Identifying initial condition of the Rayleigh-Stokes problem with random noise. (English) Zbl 1419.35221 Math. Methods Appl. Sci. 42, No. 5, 1561-1571 (2019). Reviewer: Sergey G. Pyatkov (Khanty-Mansiysk) MSC: 35R11 35Q35 35R25 35K05 PDF BibTeX XML Cite \textit{H. L. Nguyen} et al., Math. Methods Appl. Sci. 42, No. 5, 1561--1571 (2019; Zbl 1419.35221) Full Text: DOI
Prakasa Rao, B. L. S. Nonparametric estimation of trend for stochastic differential equations driven by mixed fractional Brownian motion. (English) Zbl 07054774 Stochastic Anal. Appl. 37, No. 2, 271-280 (2019). MSC: 62M09 62G07 60G22 60G15 60H10 PDF BibTeX XML Cite \textit{B. L. S. Prakasa Rao}, Stochastic Anal. Appl. 37, No. 2, 271--280 (2019; Zbl 07054774) Full Text: DOI
Lan, Yun; Shu, Ji Fractal dimension of random attractors for non-autonomous fractional stochastic Ginzburg-Landau equations with multiplicative noise. (English) Zbl 1415.37100 Dyn. Syst. 34, No. 2, 274-300 (2019). MSC: 37L55 37L30 60H15 35Q56 PDF BibTeX XML Cite \textit{Y. Lan} and \textit{J. Shu}, Dyn. Syst. 34, No. 2, 274--300 (2019; Zbl 1415.37100) Full Text: DOI
Lan, Xiaohong; Xiao, Yimin Regularity properties of the solution to a stochastic heat equation driven by a fractional Gaussian noise on \(\mathbb{S}^2\). (English) Zbl 07053200 J. Math. Anal. Appl. 476, No. 1, 27-52 (2019). MSC: 60 35 PDF BibTeX XML Cite \textit{X. Lan} and \textit{Y. Xiao}, J. Math. Anal. Appl. 476, No. 1, 27--52 (2019; Zbl 07053200) Full Text: DOI arXiv
Zhao, Wenqiang Asymptotical dynamics for non-autonomous stochastic equations driven by a non-local integro-differential operator of fractional type. (English) Zbl 1437.35715 Ann. Acad. Sci. Fenn., Math. 44, No. 1, 231-260 (2019). Reviewer: Stefanie Sonner (Nijmegen) MSC: 35R60 37L55 35B40 35B41 35R11 PDF BibTeX XML Cite \textit{W. Zhao}, Ann. Acad. Sci. Fenn., Math. 44, No. 1, 231--260 (2019; Zbl 1437.35715) Full Text: DOI
Zhou, Guoli Random attractor for the 3D viscous primitive equations driven by fractional noises. (English) Zbl 1418.60089 J. Differ. Equations 266, No. 11, 7569-7637 (2019). MSC: 60H15 35Q35 PDF BibTeX XML Cite \textit{G. Zhou}, J. Differ. Equations 266, No. 11, 7569--7637 (2019; Zbl 1418.60089) Full Text: DOI
Gunzburger, Max; Li, Buyang; Wang, Jilu Sharp convergence rates of time discretization for stochastic time-fractional PDEs subject to additive space-time white noise. (English) Zbl 1418.60077 Math. Comput. 88, No. 318, 1715-1741 (2019). MSC: 60H15 60H35 65M12 PDF BibTeX XML Cite \textit{M. Gunzburger} et al., Math. Comput. 88, No. 318, 1715--1741 (2019; Zbl 1418.60077) Full Text: DOI arXiv
Abouagwa, Mahmoud; Li, Ji Stochastic fractional differential equations driven by Lévy noise under Carathéodory conditions. (English) Zbl 1418.60051 J. Math. Phys. 60, No. 2, 022701, 16 p. (2019). MSC: 60H10 60G22 60H40 34F05 34A12 PDF BibTeX XML Cite \textit{M. Abouagwa} and \textit{J. Li}, J. Math. Phys. 60, No. 2, 022701, 16 p. (2019; Zbl 1418.60051) Full Text: DOI
Deya, Aurélien; Panloup, Fabien; Tindel, Samy Rate of convergence to equilibrium of fractional driven stochastic differential equations with rough multiplicative noise. (English) Zbl 1440.60028 Ann. Probab. 47, No. 1, 464-518 (2019). Reviewer: Ivan Podvigin (Novosibirsk) MSC: 60G22 37A25 60H10 PDF BibTeX XML Cite \textit{A. Deya} et al., Ann. Probab. 47, No. 1, 464--518 (2019; Zbl 1440.60028) Full Text: DOI Euclid
Thach, Tran Ngoc; Huy, Tuan Nguyen; Tam, Pham Thi Minh; Minh, Mach Nguyet; Can, Nguyen Huu Identification of an inverse source problem for time-fractional diffusion equation with random noise. (English) Zbl 1407.35093 Math. Methods Appl. Sci. 42, No. 1, 204-218 (2019). MSC: 35K05 35K99 47J06 47H10 PDF BibTeX XML Cite \textit{T. N. Thach} et al., Math. Methods Appl. Sci. 42, No. 1, 204--218 (2019; Zbl 1407.35093) Full Text: DOI
Lebovits, Joachim Stochastic calculus with respect to Gaussian processes. (English) Zbl 1442.60043 Potential Anal. 50, No. 1, 1-42 (2019). MSC: 60G15 60H40 60H05 60G22 PDF BibTeX XML Cite \textit{J. Lebovits}, Potential Anal. 50, No. 1, 1--42 (2019; Zbl 1442.60043) Full Text: DOI
Falsone, G. Stochastic differential calculus for Gaussian and non-Gaussian noises: a critical review. (English) Zbl 07263236 Commun. Nonlinear Sci. Numer. Simul. 56, 198-216 (2018). MSC: 00 PDF BibTeX XML Cite \textit{G. Falsone}, Commun. Nonlinear Sci. Numer. Simul. 56, 198--216 (2018; Zbl 07263236) Full Text: DOI
Alkahtani, Badr Saad T. Numerical analysis of dissipative system with noise model with the Atangana-Baleanu fractional derivative. (English) Zbl 1442.35498 Chaos Solitons Fractals 116, 239-248 (2018). MSC: 35R11 65M12 PDF BibTeX XML Cite \textit{B. S. T. Alkahtani}, Chaos Solitons Fractals 116, 239--248 (2018; Zbl 1442.35498) Full Text: DOI
Brechtl, Jamieson; Xie, Xie; Liaw, Peter K.; Zinkle, Steven J. Complexity modeling and analysis of chaos and other fluctuating phenomena. (English) Zbl 1442.37089 Chaos Solitons Fractals 116, 166-175 (2018). MSC: 37M10 94A17 PDF BibTeX XML Cite \textit{J. Brechtl} et al., Chaos Solitons Fractals 116, 166--175 (2018; Zbl 1442.37089) Full Text: DOI
Nandal, Amita; Gamboa-Rosales, Hamurabi; Dhaka, Arvind; Celaya-Padilla, Jose M.; Galvan-Tejada, Jorge Issac; Galvan-Tejada, Carlos Eric; Martinez-Ruiz, Francisco Javier; Guzman-Valdivia, Cesar Image edge detection using fractional calculus with feature and contrast enhancement. (English) Zbl 1425.94018 Circuits Syst. Signal Process. 37, No. 9, 3946-3972 (2018). MSC: 94A08 94A13 26A33 68U10 PDF BibTeX XML Cite \textit{A. Nandal} et al., Circuits Syst. Signal Process. 37, No. 9, 3946--3972 (2018; Zbl 1425.94018) Full Text: DOI
Ramezani, Abdolrahman; Safarinejadian, Behrouz A modified fractional-order unscented Kalman filter for nonlinear fractional-order systems. (English) Zbl 1427.93249 Circuits Syst. Signal Process. 37, No. 9, 3756-3784 (2018). MSC: 93E11 26A33 93C10 93C55 93C15 PDF BibTeX XML Cite \textit{A. Ramezani} and \textit{B. Safarinejadian}, Circuits Syst. Signal Process. 37, No. 9, 3756--3784 (2018; Zbl 1427.93249) Full Text: DOI
Lin, Lifeng; Wang, Huiqi; Huang, Xipei; Wen, Yongxian Generalized stochastic resonance for a fractional harmonic oscillator with bias-signal-modulated trichotomous noise. (English) Zbl 1423.34077 Int. J. Mod. Phys. B 32, No. 7, Article ID 1850072, 23 p. (2018). MSC: 34F15 34A08 34C15 94A12 PDF BibTeX XML Cite \textit{L. Lin} et al., Int. J. Mod. Phys. B 32, No. 7, Article ID 1850072, 23 p. (2018; Zbl 1423.34077) Full Text: DOI