Fu, Taibai; Du, Changfa; Xu, Yufeng An effective finite element method with shifted fractional powers bases for fractional boundary value problems. (English) Zbl 07547971 J. Sci. Comput. 92, No. 1, Paper No. 4, 15 p. (2022). MSC: 65-XX 26A33 65J99 65N30 PDF BibTeX XML Cite \textit{T. Fu} et al., J. Sci. Comput. 92, No. 1, Paper No. 4, 15 p. (2022; Zbl 07547971) Full Text: DOI OpenURL
Bezerra, F. D. M. A second-order evolution equation and logarithmic operators. (English) Zbl 07543745 Bull. Braz. Math. Soc. (N.S.) 53, No. 2, 571-593 (2022). MSC: 35L20 26A33 34A08 35L05 35R11 47D06 PDF BibTeX XML Cite \textit{F. D. M. Bezerra}, Bull. Braz. Math. Soc. (N.S.) 53, No. 2, 571--593 (2022; Zbl 07543745) Full Text: DOI OpenURL
Frantzikinakis, Nikos Joint ergodicity of fractional powers of primes. (English) Zbl 07541104 Forum Math. Sigma 10, Paper No. e30, 30 p. (2022). MSC: 37A44 28D05 05D10 11B30 PDF BibTeX XML Cite \textit{N. Frantzikinakis}, Forum Math. Sigma 10, Paper No. e30, 30 p. (2022; Zbl 07541104) Full Text: DOI OpenURL
Bezerra, Flank D. M. Logarithmic counterpart for semilinear Schrödinger equations. (English) Zbl 07538100 J. Pseudo-Differ. Oper. Appl. 13, No. 3, Paper No. 32, 16 p. (2022). MSC: 35Q55 35S15 26A33 35R11 PDF BibTeX XML Cite \textit{F. D. M. Bezerra}, J. Pseudo-Differ. Oper. Appl. 13, No. 3, Paper No. 32, 16 p. (2022; Zbl 07538100) Full Text: DOI OpenURL
Bezerra, Flank D. M.; Carvalho, Alexandre N.; Santos, Lucas A. Well-posedness for some third-order evolution differential equations: a semigroup approach. (English) Zbl 07538093 J. Evol. Equ. 22, No. 2, Paper No. 53, 18 p. (2022). MSC: 34A08 47D06 47D03 35K10 PDF BibTeX XML Cite \textit{F. D. M. Bezerra} et al., J. Evol. Equ. 22, No. 2, Paper No. 53, 18 p. (2022; Zbl 07538093) Full Text: DOI OpenURL
Danczul, Tobias; Schöberl, Joachim A reduced basis method for fractional diffusion operators. I. (English) Zbl 07536676 Numer. Math. 151, No. 2, 369-404 (2022). MSC: 65N30 65N12 65N15 35J15 46B70 26A33 35R11 PDF BibTeX XML Cite \textit{T. Danczul} and \textit{J. Schöberl}, Numer. Math. 151, No. 2, 369--404 (2022; Zbl 07536676) Full Text: DOI OpenURL
Vabishchevich, Petr N. Factorized schemes for first and second order evolution equations with fractional powers of operators. (English) Zbl 07516755 Comput. Methods Appl. Math. 22, No. 2, 493-510 (2022). MSC: 65-XX 26A33 35R11 65F60 65M06 PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, Comput. Methods Appl. Math. 22, No. 2, 493--510 (2022; Zbl 07516755) Full Text: DOI OpenURL
Vabishchevich, Petr N. Numerical solution of non-stationary problems with a rational approximation for fractional powers of the operator. (English) Zbl 07511623 Lirkov, Ivan (ed.) et al., Large-scale scientific computing. 13th international conference, LSSC 2021, Sozopol, Bulgaria, June 7–11, 2021. Revised selected papers. Cham: Springer. Lect. Notes Comput. Sci. 13127, 81-88 (2022). MSC: 65Mxx 65Nxx PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, Lect. Notes Comput. Sci. 13127, 81--88 (2022; Zbl 07511623) Full Text: DOI OpenURL
Roidos, Nikolaos; Shao, Yuanzhen The fractional porous medium equation on manifolds with conical singularities. I. (English) Zbl 1485.35405 J. Evol. Equ. 22, No. 1, Paper No. 8, 39 p. (2022). MSC: 35R11 35K59 35K65 35R01 47D06 76S05 PDF BibTeX XML Cite \textit{N. Roidos} and \textit{Y. Shao}, J. Evol. Equ. 22, No. 1, Paper No. 8, 39 p. (2022; Zbl 1485.35405) Full Text: DOI arXiv OpenURL
Vabishchevich, Petr N. Some methods for solving equations with an operator function and applications for problems with a fractional power of an operator. (English) Zbl 07474422 J. Comput. Appl. Math. 407, Article ID 114096, 13 p. (2022). MSC: 65Mxx 26A33 35R11 65F60 65M06 PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, J. Comput. Appl. Math. 407, Article ID 114096, 13 p. (2022; Zbl 07474422) Full Text: DOI arXiv OpenURL
Cao, Linfen; Wang, Xiaoshan Radial symmetry of positive solutions to a class of fractional Laplacian with a singular nonlinearity. (English) Zbl 1483.35011 J. Korean Math. Soc. 58, No. 6, 1449-1460 (2021). MSC: 35B06 35J61 35J75 35R11 PDF BibTeX XML Cite \textit{L. Cao} and \textit{X. Wang}, J. Korean Math. Soc. 58, No. 6, 1449--1460 (2021; Zbl 1483.35011) Full Text: DOI OpenURL
Benkabdi, Youssef; Lakhel, E. Controllability of impulsive neutral stochastic integro-differential systems driven by a Rosenblatt process with unbounded delay. (English) Zbl 1480.93036 Random Oper. Stoch. Equ. 29, No. 4, 237-250 (2021). MSC: 93B05 60H15 60H10 PDF BibTeX XML Cite \textit{Y. Benkabdi} and \textit{E. Lakhel}, Random Oper. Stoch. Equ. 29, No. 4, 237--250 (2021; Zbl 1480.93036) Full Text: DOI OpenURL
Bezerra, Flank D. M.; Figueroa-López, Rodiak N.; Nascimento, Marcelo J. D. Fractional oscillon equations; solvability and connection with classical oscillon equations. (English) Zbl 1483.35024 Commun. Pure Appl. Anal. 20, No. 6, 2257-2277 (2021). MSC: 35B40 35B41 34A08 35L20 35L71 35R11 47D06 PDF BibTeX XML Cite \textit{F. D. M. Bezerra} et al., Commun. Pure Appl. Anal. 20, No. 6, 2257--2277 (2021; Zbl 1483.35024) Full Text: DOI arXiv OpenURL
Colombo, Fabrizio; González, Denis Deniz; Pinton, Stefano The noncommutative fractional Fourier law in bounded and unbounded domains. (English) Zbl 07422101 Complex Anal. Oper. Theory 15, No. 7, Paper No. 114, 27 p. (2021). MSC: 47A10 47A60 PDF BibTeX XML Cite \textit{F. Colombo} et al., Complex Anal. Oper. Theory 15, No. 7, Paper No. 114, 27 p. (2021; Zbl 07422101) Full Text: DOI arXiv OpenURL
Baker, Roger Some Diophantine equations and inequalities with primes. (English) Zbl 1484.11195 Funct. Approximatio, Comment. Math. 64, No. 2, 203-250 (2021). Reviewer: D. R. Heath-Brown (Oxford) MSC: 11P32 11P55 11N36 11D75 PDF BibTeX XML Cite \textit{R. Baker}, Funct. Approximatio, Comment. Math. 64, No. 2, 203--250 (2021; Zbl 1484.11195) Full Text: DOI arXiv OpenURL
Dieye, Moustapha; Lakhel, El Hassan; McKibben, Mark A. Controllability of fractional neutral functional differential equations with infinite delay driven by fractional Brownian motion. (English) Zbl 1471.93035 IMA J. Math. Control Inf. 38, No. 3, 929-956 (2021). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 93B05 93C23 34K40 34K50 34K37 60G22 PDF BibTeX XML Cite \textit{M. Dieye} et al., IMA J. Math. Control Inf. 38, No. 3, 929--956 (2021; Zbl 1471.93035) Full Text: DOI OpenURL
Meichsner, Jan; Seifert, Christian On some consequences of the solvability of the Caffarelli-Silvestre extension problem. (English) Zbl 07393042 Bastos, M. Amélia (ed.) et al., Operator theory, functional analysis and applications. Proceedings of the 30th international workshop on operator theory and its applications, IWOTA 2019, Lisbon, Portugal, July 22–26, 2019. Cham: Birkhäuser. Oper. Theory: Adv. Appl. 282, 441-453 (2021). Reviewer: Luong Vu Trong (Hanoi) MSC: 47D06 47A60 34G10 26A33 PDF BibTeX XML Cite \textit{J. Meichsner} and \textit{C. Seifert}, Oper. Theory: Adv. Appl. 282, 441--453 (2021; Zbl 07393042) Full Text: DOI OpenURL
Colombo, Fabrizio; Gantner, Jonathan; Pinton, Stefano An introduction to hyperholomorphic spectral theories and fractional powers of vector operators. (English) Zbl 07384103 Adv. Appl. Clifford Algebr. 31, No. 3, Paper No. 45, 37 p. (2021). Reviewer: Florian-Horia Vasilescu (Villeneuve d’Ascq) MSC: 47A10 47A60 30G35 PDF BibTeX XML Cite \textit{F. Colombo} et al., Adv. Appl. Clifford Algebr. 31, No. 3, Paper No. 45, 37 p. (2021; Zbl 07384103) Full Text: DOI arXiv OpenURL
Wang, Yejuan; Liu, Yarong; Caraballo, Tomás Exponential behavior and upper noise excitation index of solutions to evolution equations with unbounded delay and tempered fractional Brownian motions. (English) Zbl 1470.35070 J. Evol. Equ. 21, No. 2, 1779-1807 (2021). MSC: 35B40 35R60 35R10 PDF BibTeX XML Cite \textit{Y. Wang} et al., J. Evol. Equ. 21, No. 2, 1779--1807 (2021; Zbl 1470.35070) Full Text: DOI OpenURL
Aragão, Gleiciane S.; Bezerra, Flank D. M.; Figueroa-López, Rodiak N.; Nascimento, Marcelo J. D. Continuity of pullback attractors for evolution processes associated with semilinear damped wave equations with time-dependent coefficients. (English) Zbl 1480.37084 J. Differ. Equations 298, 30-67 (2021). MSC: 37L30 35B40 35B41 35L71 PDF BibTeX XML Cite \textit{G. S. Aragão} et al., J. Differ. Equations 298, 30--67 (2021; Zbl 1480.37084) Full Text: DOI OpenURL
Banerjee, Agnid; Garofalo, Nicola; Munive, Isidro H.; Nhieu, Duy-Minh The Harnack inequality for a class of nonlocal parabolic equations. (English) Zbl 1469.35215 Commun. Contemp. Math. 23, No. 6, Article ID 2050050, 23 p. (2021). MSC: 35R11 35A23 35B65 35H20 35K10 PDF BibTeX XML Cite \textit{A. Banerjee} et al., Commun. Contemp. Math. 23, No. 6, Article ID 2050050, 23 p. (2021; Zbl 1469.35215) Full Text: DOI arXiv OpenURL
Hou, Wenwen; Zhang, Lihong; Agarwal, Ravi P.; Wang, Guotao Radial symmetry for a generalized nonlinear fractional \(p\)-Laplacian problem. (English) Zbl 1470.35350 Nonlinear Anal., Model. Control 26, No. 2, 349-362 (2021). MSC: 35Q74 35B06 35B09 74D10 35R11 PDF BibTeX XML Cite \textit{W. Hou} et al., Nonlinear Anal., Model. Control 26, No. 2, 349--362 (2021; Zbl 1470.35350) Full Text: DOI OpenURL
Vabishchevich, Petr N. Splitting schemes for non-stationary problems with a rational approximation for fractional powers of the operator. (English) Zbl 1475.65082 Appl. Numer. Math. 165, 414-430 (2021). MSC: 65M06 41A20 26A33 35R11 PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, Appl. Numer. Math. 165, 414--430 (2021; Zbl 1475.65082) Full Text: DOI arXiv OpenURL
Farwig, Reinhard; Tsuda, Kazuyuki Uniform estimates for fractional operators. (English) Zbl 1464.35176 SN Partial Differ. Equ. Appl. 2, No. 2, Paper No. 27, 19 p. (2021). MSC: 35Q30 35B10 46B70 47A55 35B65 35R11 PDF BibTeX XML Cite \textit{R. Farwig} and \textit{K. Tsuda}, SN Partial Differ. Equ. Appl. 2, No. 2, Paper No. 27, 19 p. (2021; Zbl 1464.35176) Full Text: DOI OpenURL
Choi, Yunseo Congruences for fractional partition functions. (English) Zbl 1470.11264 Integers 21, Paper A9, 11 p. (2021). Reviewer: Mihály Szalay (Budapest) MSC: 11P83 05A17 11F20 PDF BibTeX XML Cite \textit{Y. Choi}, Integers 21, Paper A9, 11 p. (2021; Zbl 1470.11264) Full Text: arXiv Link OpenURL
Roncal, Luz; Thangavelu, Sundaram An extension problem and trace Hardy inequality for the sub-Laplacian on \(H\)-type groups. (English) Zbl 1484.35015 Int. Math. Res. Not. 2020, No. 14, 4238-4294 (2020); corrigendum ibid. 2022, No. 12, 9598-9602 (2022). MSC: 35A23 35H20 35R03 35R11 PDF BibTeX XML Cite \textit{L. Roncal} and \textit{S. Thangavelu}, Int. Math. Res. Not. 2020, No. 14, 4238--4294 (2020; Zbl 1484.35015) Full Text: DOI arXiv OpenURL
Lefter, Cătălin-George; Melnig, Elena-Alexandra On the parabolic regularity, Sobolev embeddings and global Carleman estimates in \(L^q(L^p)\) spaces. (English) Zbl 1465.35090 Pure Appl. Funct. Anal. 5, No. 5, 1095-1113 (2020). MSC: 35B65 35B45 35K20 35K90 46E35 47A57 93B07 PDF BibTeX XML Cite \textit{C.-G. Lefter} and \textit{E.-A. Melnig}, Pure Appl. Funct. Anal. 5, No. 5, 1095--1113 (2020; Zbl 1465.35090) Full Text: Link OpenURL
Duan, Beiping; Lazarov, Raytcho D.; Pasciak, Joseph E. Numerical approximation of fractional powers of elliptic operators. (English) Zbl 1466.65184 IMA J. Numer. Anal. 40, No. 3, 1746-1771 (2020). MSC: 65N30 65N22 65F60 41A21 35J15 35R11 PDF BibTeX XML Cite \textit{B. Duan} et al., IMA J. Numer. Anal. 40, No. 3, 1746--1771 (2020; Zbl 1466.65184) Full Text: DOI arXiv OpenURL
Sidi, Avram Acceleration of convergence of some infinite sequences \(\{A_n\}\) whose asymptotic expansions involve fractional powers of \(n\) via the \(\widetilde{d}^{(m)}\) transformation. (English) Zbl 1456.65002 Numer. Algorithms 85, No. 4, 1409-1445 (2020). MSC: 65B05 65B10 40A05 40A25 PDF BibTeX XML Cite \textit{A. Sidi}, Numer. Algorithms 85, No. 4, 1409--1445 (2020; Zbl 1456.65002) Full Text: DOI arXiv OpenURL
Bezerra, Flank D. M.; Carvalho, Alexandre N.; Nascimento, Marcelo J. D. Fractional approximations of abstract semilinear parabolic problems. (English) Zbl 1452.35085 Discrete Contin. Dyn. Syst., Ser. B 25, No. 11, 4221-4255 (2020). MSC: 35K90 35K58 35B41 47D06 PDF BibTeX XML Cite \textit{F. D. M. Bezerra} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 11, 4221--4255 (2020; Zbl 1452.35085) Full Text: DOI OpenURL
Meichsner, Jan; Seifert, Christian On the harmonic extension approach to fractional powers in Banach spaces. (English) Zbl 1474.47055 Fract. Calc. Appl. Anal. 23, No. 4, 1054-1089 (2020). MSC: 47B12 47D06 47A60 PDF BibTeX XML Cite \textit{J. Meichsner} and \textit{C. Seifert}, Fract. Calc. Appl. Anal. 23, No. 4, 1054--1089 (2020; Zbl 1474.47055) Full Text: DOI arXiv OpenURL
Roidos, Nikolaos Heinz-Kato inequality in Banach spaces. (English) Zbl 07261149 J. Anal. 28, No. 3, 841-846 (2020). MSC: 47A30 47A63 PDF BibTeX XML Cite \textit{N. Roidos}, J. Anal. 28, No. 3, 841--846 (2020; Zbl 07261149) Full Text: DOI arXiv OpenURL
Bezerra, Flank D. M.; Santos, Lucas A. Fractional powers approach of operators for abstract evolution equations of third order in time. (English) Zbl 1468.34091 J. Differ. Equations 269, No. 7, 5661-5679 (2020). Reviewer: Hristo S. Kiskinov (Plovdiv) MSC: 34G10 47D06 47D03 PDF BibTeX XML Cite \textit{F. D. M. Bezerra} and \textit{L. A. Santos}, J. Differ. Equations 269, No. 7, 5661--5679 (2020; Zbl 1468.34091) Full Text: DOI OpenURL
Le, Phuong; Ho, Vu Fractional \(p\)-Laplacian problems with negative powers in a ball or an exterior domain. (English) Zbl 1445.35304 J. Pseudo-Differ. Oper. Appl. 11, No. 2, 789-803 (2020). MSC: 35R11 35J92 35B06 35J75 PDF BibTeX XML Cite \textit{P. Le} and \textit{V. Ho}, J. Pseudo-Differ. Oper. Appl. 11, No. 2, 789--803 (2020; Zbl 1445.35304) Full Text: DOI OpenURL
Aceto, Lidia; Novati, Paolo Padé-type approximations to the resolvent of fractional powers of operators. (English) Zbl 1443.47015 J. Sci. Comput. 83, No. 1, Paper No. 13, 17 p. (2020). MSC: 47A58 65F60 65D32 PDF BibTeX XML Cite \textit{L. Aceto} and \textit{P. Novati}, J. Sci. Comput. 83, No. 1, Paper No. 13, 17 p. (2020; Zbl 1443.47015) Full Text: DOI arXiv OpenURL
Garofalo, Nicola; Tralli, Giulio Functional inequalities for a class of nonlocal hypoelliptic equations of Hörmander type. (English) Zbl 1439.35139 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 193, Article ID 111567, 23 p. (2020). MSC: 35H10 35R11 26D10 47F05 PDF BibTeX XML Cite \textit{N. Garofalo} and \textit{G. Tralli}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 193, Article ID 111567, 23 p. (2020; Zbl 1439.35139) Full Text: DOI arXiv OpenURL
Colombo, Fabrizio; González, Denis Deniz; Pinton, Stefano Fractional powers of vector operators with first order boundary conditions. (English) Zbl 1442.47066 J. Geom. Phys. 151, Article ID 103618, 18 p. (2020). MSC: 47S05 47B93 26A33 PDF BibTeX XML Cite \textit{F. Colombo} et al., J. Geom. Phys. 151, Article ID 103618, 18 p. (2020; Zbl 1442.47066) Full Text: DOI OpenURL
Andreianov, Boris; Brassart, Matthieu Uniqueness of entropy solutions to fractional conservation laws with “Fully infinite” speed of propagation. (English) Zbl 1473.35619 J. Differ. Equations 268, No. 7, 3903-3935 (2020). MSC: 35R11 35A02 35D30 35L65 PDF BibTeX XML Cite \textit{B. Andreianov} and \textit{M. Brassart}, J. Differ. Equations 268, No. 7, 3903--3935 (2020; Zbl 1473.35619) Full Text: DOI HAL OpenURL
Yu, Gang On a binary additive problem involving fractional powers. (English) Zbl 1472.11223 J. Number Theory 208, 101-119 (2020). MSC: 11L07 11D85 PDF BibTeX XML Cite \textit{G. Yu}, J. Number Theory 208, 101--119 (2020; Zbl 1472.11223) Full Text: DOI OpenURL
Piskarev, Sergey; Siegmund, Stefan Approximations of stable manifolds in the vicinity of hyperbolic equilibrium points for fractional differential equations. (English) Zbl 1439.34013 Nonlinear Dyn. 95, No. 1, 685-697 (2019). MSC: 34A08 34C45 37D10 PDF BibTeX XML Cite \textit{S. Piskarev} and \textit{S. Siegmund}, Nonlinear Dyn. 95, No. 1, 685--697 (2019; Zbl 1439.34013) Full Text: DOI OpenURL
Alikulov, T. N. Application of fractional powers of a singular Schrödinger operator to the study of a differential equation in a Banach space. (English. Russian original) Zbl 1445.47054 Differ. Equ. 55, No. 10, 1304-1310 (2019); translation from Differ. Uravn. 55, No. 10, 1347-1353 (2019). Reviewer: Panagiotis Koumantos (Athína) MSC: 47N20 47F10 35J10 34G10 PDF BibTeX XML Cite \textit{T. N. Alikulov}, Differ. Equ. 55, No. 10, 1304--1310 (2019; Zbl 1445.47054); translation from Differ. Uravn. 55, No. 10, 1347--1353 (2019) Full Text: DOI OpenURL
Colombo, Fabrizio; Peloso, Marco M.; Pinton, Stefano The structure of the fractional powers of the noncommutative Fourier law. (English) Zbl 1447.47062 Math. Methods Appl. Sci. 42, No. 18, 6259-6276 (2019). MSC: 47N20 47A10 47A60 26A33 60J60 35K05 PDF BibTeX XML Cite \textit{F. Colombo} et al., Math. Methods Appl. Sci. 42, No. 18, 6259--6276 (2019; Zbl 1447.47062) Full Text: DOI OpenURL
Lakhel, El Hassan; Tlidi, Abdelmonaim Existence, uniqueness and stability of impulsive stochastic neutral functional differential equations driven by Rosenblatt process with varying-time delays. (English) Zbl 1439.60062 Random Oper. Stoch. Equ. 27, No. 4, 213-223 (2019). MSC: 60H15 60G18 60G22 60H20 PDF BibTeX XML Cite \textit{E. H. Lakhel} and \textit{A. Tlidi}, Random Oper. Stoch. Equ. 27, No. 4, 213--223 (2019; Zbl 1439.60062) Full Text: DOI OpenURL
Hauer, Daniel; He, Yuhan; Liu, Dehui Fractional powers of monotone operators in Hilbert spaces. (English) Zbl 1427.35323 Adv. Nonlinear Stud. 19, No. 4, 717-755 (2019). MSC: 35R11 47H05 47H07 35B65 47H06 PDF BibTeX XML Cite \textit{D. Hauer} et al., Adv. Nonlinear Stud. 19, No. 4, 717--755 (2019; Zbl 1427.35323) Full Text: DOI arXiv OpenURL
Ashyralyev, Allaberen; Hamad, Ayman A note on fractional powers of strongly positive operators and their applications. (English) Zbl 07115434 Fract. Calc. Appl. Anal. 22, No. 2, 302-325 (2019). MSC: 47H07 47F05 46B70 26A33 PDF BibTeX XML Cite \textit{A. Ashyralyev} and \textit{A. Hamad}, Fract. Calc. Appl. Anal. 22, No. 2, 302--325 (2019; Zbl 07115434) Full Text: DOI OpenURL
Chaouchi, Belkacem; Kostić, Marko On the study of an initial value problem for a second order differential equation set in a singular cylindrical domain. (English) Zbl 1438.34207 Sarajevo J. Math. 15(28), No. 1, 67-79 (2019). MSC: 34G10 47D06 PDF BibTeX XML Cite \textit{B. Chaouchi} and \textit{M. Kostić}, Sarajevo J. Math. 15(28), No. 1, 67--79 (2019; Zbl 1438.34207) Full Text: DOI OpenURL
Colombo, Fabrizio; Gantner, Jonathan Quaternionic closed operators, fractional powers and fractional diffusion processes. (English) Zbl 1458.47001 Operator Theory: Advances and Applications 274. Cham: Birkhäuser (ISBN 978-3-030-16408-9/hbk; 978-3-030-16411-9/pbk; 978-3-030-16409-6/ebook). viii, 322 p. (2019). Reviewer: Heinrich Hering (Rockenberg) MSC: 47-02 47S05 47A60 26A33 60J60 PDF BibTeX XML Cite \textit{F. Colombo} and \textit{J. Gantner}, Quaternionic closed operators, fractional powers and fractional diffusion processes. Cham: Birkhäuser (2019; Zbl 1458.47001) Full Text: DOI OpenURL
Baba, Hind Al Fractional powers of the Stokes operator with boundary conditions involving the pressure. (English) Zbl 1420.35178 Math. Nachr. 292, No. 6, 1194-1212 (2019). MSC: 35Q30 35B65 35D30 35D35 35K20 76D05 76D07 76N10 35R11 PDF BibTeX XML Cite \textit{H. A. Baba}, Math. Nachr. 292, No. 6, 1194--1212 (2019; Zbl 1420.35178) Full Text: DOI OpenURL
Al Baba, Hind Maximal \(L^{p}-L^{q}\) regularity to the Stokes problem with Navier boundary conditions. (English) Zbl 1421.35041 Adv. Nonlinear Anal. 8, 743-761 (2019). MSC: 35B65 35D30 35D35 35K20 35Q30 76D05 76D07 76N10 35B45 PDF BibTeX XML Cite \textit{H. Al Baba}, Adv. Nonlinear Anal. 8, 743--761 (2019; Zbl 1421.35041) Full Text: DOI arXiv OpenURL
Yan, Zuomao; Han, Li Optimal mild solutions for a class of nonlocal multi-valued stochastic delay differential equations. (English) Zbl 1416.34063 J. Optim. Theory Appl. 181, No. 3, 1053-1075 (2019). MSC: 34K50 34K30 34A45 34K09 47N20 60H15 PDF BibTeX XML Cite \textit{Z. Yan} and \textit{L. Han}, J. Optim. Theory Appl. 181, No. 3, 1053--1075 (2019; Zbl 1416.34063) Full Text: DOI OpenURL
Colombo, Fabrizio; Mongodi, Samuele; Peloso, Marco; Pinton, Stefano Fractional powers of the noncommutative Fourier’s law by the \(S\)-spectrum approach. (English) Zbl 1447.47061 Math. Methods Appl. Sci. 42, No. 5, 1662-1686 (2019). MSC: 47N20 47A10 47A60 26A33 60J60 35K05 PDF BibTeX XML Cite \textit{F. Colombo} et al., Math. Methods Appl. Sci. 42, No. 5, 1662--1686 (2019; Zbl 1447.47061) Full Text: DOI OpenURL
Nakai, Kengo Direction of vorticity and a refined regularity criterion for the Navier-Stokes equations with fractional Laplacian. (English) Zbl 1416.35190 J. Math. Fluid Mech. 21, No. 2, Paper No. 21, 8 p. (2019). MSC: 35Q30 76D03 76D05 35R11 35D35 35B65 PDF BibTeX XML Cite \textit{K. Nakai}, J. Math. Fluid Mech. 21, No. 2, Paper No. 21, 8 p. (2019; Zbl 1416.35190) Full Text: DOI OpenURL
Bugeaud, Yann; Liao, Lingmin; Rams, Michał Metrical results on the distribution of fractional parts of powers of real numbers. (English) Zbl 1476.11104 Proc. Edinb. Math. Soc., II. Ser. 62, No. 2, 505-521 (2019). Reviewer: Roman Urban (Wrocław) MSC: 11K36 11J71 28A80 PDF BibTeX XML Cite \textit{Y. Bugeaud} et al., Proc. Edinb. Math. Soc., II. Ser. 62, No. 2, 505--521 (2019; Zbl 1476.11104) Full Text: DOI arXiv OpenURL
Ferguson, Timothy; Mei, Tao; Simanek, Brian \(H^{\infty}\)-calculus for semigroup generators on BMO. (English) Zbl 07044295 Adv. Math. 347, 408-441 (2019). MSC: 47-XX 46-XX PDF BibTeX XML Cite \textit{T. Ferguson} et al., Adv. Math. 347, 408--441 (2019; Zbl 07044295) Full Text: DOI arXiv OpenURL
Santra, Sanjiban Existence and shape of the least energy solution of a fractional Laplacian. (English) Zbl 1406.34019 Calc. Var. Partial Differ. Equ. 58, No. 2, Paper No. 48, 25 p. (2019). Reviewer: Ahmed M. A. El-Sayed (Alexandria) MSC: 34A08 34A12 34K25 PDF BibTeX XML Cite \textit{S. Santra}, Calc. Var. Partial Differ. Equ. 58, No. 2, Paper No. 48, 25 p. (2019; Zbl 1406.34019) Full Text: DOI OpenURL
Lakhel, E.; McKibben, M. A. Existence of solutions for fractional neutral functional differential equations driven by fBm with infinite delay. (English) Zbl 07550687 Stochastics 90, No. 3, 313-329 (2018). MSC: 60-XX PDF BibTeX XML Cite \textit{E. Lakhel} and \textit{M. A. McKibben}, Stochastics 90, No. 3, 313--329 (2018; Zbl 07550687) Full Text: DOI OpenURL
Adell, José A.; Bustamante, Jorge; Merino, Juan J.; Quesada, José M. Generalized Jacobi-Weierstrass operators and Jacobi expansions. (English) Zbl 07445869 J. Inequal. Appl. 2018, Paper No. 153, 14 p. (2018). MSC: 41A35 47D06 PDF BibTeX XML Cite \textit{J. A. Adell} et al., J. Inequal. Appl. 2018, Paper No. 153, 14 p. (2018; Zbl 07445869) Full Text: DOI OpenURL
Rubin, Boris A note on the Blaschke-Petkantschin formula, Riesz distributions, and Drury’s identity. (English) Zbl 1434.44002 Fract. Calc. Appl. Anal. 21, No. 6, 1641-1650 (2018). MSC: 44A12 28A75 60D05 PDF BibTeX XML Cite \textit{B. Rubin}, Fract. Calc. Appl. Anal. 21, No. 6, 1641--1650 (2018; Zbl 1434.44002) Full Text: DOI OpenURL
Yan, Zuomao; Lu, Fangxia Existence of optimal mild solutions for multi-valued impulsive stochastic partial functional integrodifferential equations. (English) Zbl 1407.45008 Bull. Iran. Math. Soc. 44, No. 5, 1351-1386 (2018). MSC: 45K05 35A01 35R60 60H15 PDF BibTeX XML Cite \textit{Z. Yan} and \textit{F. Lu}, Bull. Iran. Math. Soc. 44, No. 5, 1351--1386 (2018; Zbl 1407.45008) Full Text: DOI OpenURL
Chen, Yong; Hu, Yaozhong; Wang, Zhi Gradient and stability estimates of heat kernels for fractional powers of elliptic operator. (English) Zbl 1406.60111 Stat. Probab. Lett. 142, 44-49 (2018). MSC: 60J35 47D07 PDF BibTeX XML Cite \textit{Y. Chen} et al., Stat. Probab. Lett. 142, 44--49 (2018; Zbl 1406.60111) Full Text: DOI arXiv OpenURL
Jakimczuk, Rafael On consecutive perfect powers and fractional parts. (English) Zbl 1407.11004 Gulf J. Math. 6, No. 3, 52-69 (2018). MSC: 11A05 11N37 PDF BibTeX XML Cite \textit{R. Jakimczuk}, Gulf J. Math. 6, No. 3, 52--69 (2018; Zbl 1407.11004) OpenURL
Colombo, Fabrizio; Gantner, Jonathan An application of the \(S\)-functional calculus to fractional diffusion processes. (English) Zbl 1447.47063 Milan J. Math. 86, No. 2, 225-303 (2018). MSC: 47S05 47A60 47A10 26A33 60J60 47N20 PDF BibTeX XML Cite \textit{F. Colombo} and \textit{J. Gantner}, Milan J. Math. 86, No. 2, 225--303 (2018; Zbl 1447.47063) Full Text: DOI arXiv OpenURL
Ciaurri, Óscar; Roncal, Luz Hardy’s inequality for the fractional powers of a discrete Laplacian. (English) Zbl 1402.26003 J. Anal. 26, No. 2, 211-225 (2018). MSC: 26A33 26D15 33C10 PDF BibTeX XML Cite \textit{Ó. Ciaurri} and \textit{L. Roncal}, J. Anal. 26, No. 2, 211--225 (2018; Zbl 1402.26003) Full Text: DOI OpenURL
Harizanov, S.; Lazarov, R.; Margenov, S.; Marinov, P.; Vutov, Y. Optimal solvers for linear systems with fractional powers of sparse SPD matrices. (English) Zbl 06986996 Numer. Linear Algebra Appl. 25, No. 5, e2167, 24 p. (2018). MSC: 65F50 PDF BibTeX XML Cite \textit{S. Harizanov} et al., Numer. Linear Algebra Appl. 25, No. 5, e2167, 24 p. (2018; Zbl 06986996) Full Text: DOI arXiv OpenURL
Zhu, Wenbin Erratum to: “Representation of integers as sums of fractional powers of primes and powers of 2”. (English) Zbl 1435.11133 Acta Arith. 185, No. 2, 197-199 (2018). MSC: 11P32 11P05 PDF BibTeX XML Cite \textit{W. Zhu}, Acta Arith. 185, No. 2, 197--199 (2018; Zbl 1435.11133) Full Text: DOI OpenURL
Prüss, Jan \(H^\infty\)-calculus for generalized Stokes operators. (English) Zbl 1401.35294 J. Evol. Equ. 18, No. 3, 1543-1574 (2018). MSC: 35Q92 92C35 35Q35 PDF BibTeX XML Cite \textit{J. Prüss}, J. Evol. Equ. 18, No. 3, 1543--1574 (2018; Zbl 1401.35294) Full Text: DOI OpenURL
Colombo, Fabrizio; Gantner, Jonathan Fractional powers of vector operators and fractional Fourier’s law in a Hilbert space. (English) Zbl 1401.60151 J. Phys. A, Math. Theor. 51, No. 30, Article ID 305201, 25 p. (2018). MSC: 60J60 60G22 80A20 PDF BibTeX XML Cite \textit{F. Colombo} and \textit{J. Gantner}, J. Phys. A, Math. Theor. 51, No. 30, Article ID 305201, 25 p. (2018; Zbl 1401.60151) Full Text: DOI arXiv OpenURL
Garofalo, Nicola Some properties of sub-Laplaceans. (English) Zbl 1402.35300 Electron. J. Differ. Equ. 2018, Conf. 25, 103-131 (2018). MSC: 35R11 35C15 35K05 35J70 PDF BibTeX XML Cite \textit{N. Garofalo}, Electron. J. Differ. Equ. 2018, 103--131 (2018; Zbl 1402.35300) Full Text: arXiv Link OpenURL
Cai, Miaomiao; Ma, Li Moving planes for nonlinear fractional Laplacian equation with negative powers. (English) Zbl 1397.35330 Discrete Contin. Dyn. Syst. 38, No. 9, 4603-4615 (2018). MSC: 35R11 35J60 53C21 58J05 PDF BibTeX XML Cite \textit{M. Cai} and \textit{L. Ma}, Discrete Contin. Dyn. Syst. 38, No. 9, 4603--4615 (2018; Zbl 1397.35330) Full Text: DOI OpenURL
Gil’, Michael Norm estimates for functions of a Hilbert-Schmidt operator nonregular on the convex hull of the spectrum. (English) Zbl 06901248 J. Anal. 26, No. 1, 39-48 (2018). MSC: 47A56 47A60 47B10 47A63 15A45 15A60 PDF BibTeX XML Cite \textit{M. Gil'}, J. Anal. 26, No. 1, 39--48 (2018; Zbl 06901248) Full Text: DOI OpenURL
Pudwell, Lara; Rowland, Eric Avoiding fractional powers over the natural numbers. (English) Zbl 1402.68150 Electron. J. Comb. 25, No. 2, Research Paper P2.27, 46 p. (2018). Reviewer: Jean-Paul Allouche (Paris) MSC: 68R15 11B85 PDF BibTeX XML Cite \textit{L. Pudwell} and \textit{E. Rowland}, Electron. J. Comb. 25, No. 2, Research Paper P2.27, 46 p. (2018; Zbl 1402.68150) Full Text: arXiv Link OpenURL
Boufoussi, Brahim; Hajji, Salah; Lakhel, El Hassan Exponential stability of impulsive neutral stochastic functional differential equation driven by fractional Brownian motion and Poisson point processes. (English) Zbl 1399.60107 Afr. Mat. 29, No. 1-2, 233-247 (2018). MSC: 60H15 60G22 60J75 60G55 PDF BibTeX XML Cite \textit{B. Boufoussi} et al., Afr. Mat. 29, No. 1--2, 233--247 (2018; Zbl 1399.60107) Full Text: DOI OpenURL
Boudaoui, A.; Lakhel, E. Controllability of stochastic impulsive neutral functional differential equations driven by fractional Brownian motion with infinite delay. (English) Zbl 1387.35598 Differ. Equ. Dyn. Syst. 26, No. 1-3, 247-263 (2018). MSC: 35R10 93B05 60G22 60H20 PDF BibTeX XML Cite \textit{A. Boudaoui} and \textit{E. Lakhel}, Differ. Equ. Dyn. Syst. 26, No. 1--3, 247--263 (2018; Zbl 1387.35598) Full Text: DOI arXiv OpenURL
Colombo, Fabrizio; Gantner, Jonathan Fractional powers of quaternionic operators and Kato’s formula using slice hyperholomorphicity. (English) Zbl 06814519 Trans. Am. Math. Soc. 370, No. 2, 1045-1100 (2018). MSC: 47A10 47A60 PDF BibTeX XML Cite \textit{F. Colombo} and \textit{J. Gantner}, Trans. Am. Math. Soc. 370, No. 2, 1045--1100 (2018; Zbl 06814519) Full Text: DOI arXiv OpenURL
Zhu, Wenbin A binary additive problem with fractional powers. (English) Zbl 1428.11175 Int. J. Number Theory 14, No. 1, 221-232 (2018). MSC: 11P05 11L07 11N25 PDF BibTeX XML Cite \textit{W. Zhu}, Int. J. Number Theory 14, No. 1, 221--232 (2018; Zbl 1428.11175) Full Text: DOI OpenURL
Bezerra, Flank D. M.; Carvalho, Alexandre N.; Dlotko, Tomasz; Nascimento, Marcelo J. D. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation. (English) Zbl 06779600 J. Math. Anal. Appl. 457, No. 1, 336-360 (2018). MSC: 35-XX 34-XX PDF BibTeX XML Cite \textit{F. D. M. Bezerra} et al., J. Math. Anal. Appl. 457, No. 1, 336--360 (2018; Zbl 06779600) Full Text: DOI OpenURL
Colombo, Fabrizio; Gantner, Jonathan An introduction to fractional powers of quaternionic operators and new fractional diffusion processes. (English) Zbl 06864061 Colombo, Fabrizio (ed.) et al., Advances in complex analysis and operator theory. Festschrift in honor of Daniel Alpay’s 60th birthday. Contributions partly based on the presentations at the international conference on complex analysis and operator theory, Chapman University, Orange, CA, USA, November 2016. Cham: Birkhäuser/Springer. Trends Math., 101-134 (2017). MSC: 47-XX 47A10 47A60 PDF BibTeX XML Cite \textit{F. Colombo} and \textit{J. Gantner}, in: Advances in complex analysis and operator theory. Festschrift in honor of Daniel Alpay's 60th birthday. Contributions partly based on the presentations at the international conference on complex analysis and operator theory, Chapman University, Orange, CA, USA, November 2016. Cham: Birkhäuser/Springer. 101--134 (2017; Zbl 06864061) Full Text: DOI OpenURL
Guillot, Dominique; Khare, Apoorva; Rajaratnam, Bala The critical exponent: a novel graph invariant. (English. French summary) Zbl 1385.05068 Sémin. Lothar. Comb. 78B, 78B.62, 12 p. (2017). MSC: 05C99 15A63 15A45 PDF BibTeX XML Cite \textit{D. Guillot} et al., Sémin. Lothar. Comb. 78B, 78B.62, 12 p. (2017; Zbl 1385.05068) Full Text: arXiv Link OpenURL
Citterio, Maurizio; Talamo, Rodolfo Nonlinear oscillators with real valued powers: an analytic treatment. (English) Zbl 1380.34056 Meccanica 52, No. 6, 1257-1264 (2017). MSC: 34C15 76S05 PDF BibTeX XML Cite \textit{M. Citterio} and \textit{R. Talamo}, Meccanica 52, No. 6, 1257--1264 (2017; Zbl 1380.34056) Full Text: DOI OpenURL
Zhu, Wenbin Representation of integers as sums of fractional powers of primes and powers of 2. (English) Zbl 1441.11262 Acta Arith. 181, No. 2, 185-196 (2017); erratum ibid. 185, No. 2, 197-199 (2018). Reviewer: Stephan Baier (Haora) MSC: 11P32 11P05 11N36 PDF BibTeX XML Cite \textit{W. Zhu}, Acta Arith. 181, No. 2, 185--196 (2017; Zbl 1441.11262) Full Text: DOI OpenURL
Lakhel, El Hassan Controllability of neutral functional differential equations driven by fractional Brownian motion with infinite delay. (English) Zbl 1377.35256 Nonlinear Dyn. Syst. Theory 17, No. 3, 291-302 (2017). MSC: 35R10 93B05 60G22 60H20 PDF BibTeX XML Cite \textit{E. H. Lakhel}, Nonlinear Dyn. Syst. Theory 17, No. 3, 291--302 (2017; Zbl 1377.35256) OpenURL
Grosjean, Nicolas; Huillet, Thierry Additional aspects of the generalized linear-fractional branching process. (English) Zbl 1384.60092 Ann. Inst. Stat. Math. 69, No. 5, 1075-1097 (2017). Reviewer: Yuehua Wu (Toronto) MSC: 60J80 60G22 PDF BibTeX XML Cite \textit{N. Grosjean} and \textit{T. Huillet}, Ann. Inst. Stat. Math. 69, No. 5, 1075--1097 (2017; Zbl 1384.60092) Full Text: DOI arXiv OpenURL
Dolbeault, Jean; Zhang, An Flows and functional inequalities for fractional operators. (English) Zbl 06768006 Appl. Anal. 96, No. 9, 1547-1560 (2017). MSC: 35R11 26A33 35A23 35B33 35B40 35K65 PDF BibTeX XML Cite \textit{J. Dolbeault} and \textit{A. Zhang}, Appl. Anal. 96, No. 9, 1547--1560 (2017; Zbl 06768006) Full Text: DOI arXiv OpenURL
Xia, Zhinan Pseudo almost periodicity of fractional integro-differential equations with impulsive effects in Banach spaces. (English) Zbl 1458.34038 Czech. Math. J. 67, No. 1, 123-141 (2017). MSC: 34A37 26A33 34K14 34K45 PDF BibTeX XML Cite \textit{Z. Xia}, Czech. Math. J. 67, No. 1, 123--141 (2017; Zbl 1458.34038) Full Text: DOI Link OpenURL
Yagi, A. Real sectorial operators. (English) Zbl 1375.47031 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 10, No. 1, 97-112 (2017). MSC: 47B44 47A60 47F05 46B70 47A07 PDF BibTeX XML Cite \textit{A. Yagi}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 10, No. 1, 97--112 (2017; Zbl 1375.47031) Full Text: DOI MNR OpenURL
Lazarov, Raytcho; Vabishchevich, Petr A numerical study of the homogeneous elliptic equation with fractional boundary conditions. (English) Zbl 1364.65253 Fract. Calc. Appl. Anal. 20, No. 2, 337-351 (2017). Reviewer: Abdallah Bradji (Annaba) MSC: 65N30 65M12 35R11 PDF BibTeX XML Cite \textit{R. Lazarov} and \textit{P. Vabishchevich}, Fract. Calc. Appl. Anal. 20, No. 2, 337--351 (2017; Zbl 1364.65253) Full Text: DOI arXiv OpenURL
Goldstein, Jerome A. Semigroups of linear operators and applications. 2nd edition. Slightly corrected and updated reprint of the 1985 original published by Oxord University Press. (English) Zbl 1364.47005 Mineola, NY: Dover Publications (ISBN 978-0-486-81257-1/pbk). viii, 245 p. (2017). MSC: 47D03 47-02 35G10 35K25 47A40 PDF BibTeX XML Cite \textit{J. A. Goldstein}, Semigroups of linear operators and applications. 2nd edition. Slightly corrected and updated reprint of the 1985 original published by Oxord University Press. Mineola, NY: Dover Publications (2017; Zbl 1364.47005) OpenURL
Zvyagin, V. G.; Orlov, V. P. Solvability of a parabolic problem with non-smooth data. (English) Zbl 1404.35225 J. Math. Anal. Appl. 453, No. 1, 589-606 (2017). MSC: 35K20 35A01 35D30 PDF BibTeX XML Cite \textit{V. G. Zvyagin} and \textit{V. P. Orlov}, J. Math. Anal. Appl. 453, No. 1, 589--606 (2017; Zbl 1404.35225) Full Text: DOI OpenURL
Kunstmann, Peer Christian; Weis, Lutz New criteria for the \(H^\infty\)-calculus and the Stokes operator on bounded Lipschitz domains. (English) Zbl 1396.42003 J. Evol. Equ. 17, No. 1, 387-409 (2017). MSC: 42B30 35Q35 PDF BibTeX XML Cite \textit{P. C. Kunstmann} and \textit{L. Weis}, J. Evol. Equ. 17, No. 1, 387--409 (2017; Zbl 1396.42003) Full Text: DOI OpenURL
Yue, Gaocheng Attractors for non-autonomous reaction-diffusion equations with fractional diffusion in locally uniform spaces. (English) Zbl 1360.35099 Discrete Contin. Dyn. Syst., Ser. B 22, No. 4, 1645-1671 (2017). MSC: 35K57 35B40 35B41 PDF BibTeX XML Cite \textit{G. Yue}, Discrete Contin. Dyn. Syst., Ser. B 22, No. 4, 1645--1671 (2017; Zbl 1360.35099) Full Text: DOI OpenURL
Sayed, Wafaa S.; Fahmy, Hossam A. H.; Rezk, Ahmed A.; Radwan, Ahmed G. Generalized smooth transition map between tent and logistic maps. (English) Zbl 1358.37075 Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 1, Article ID 1730004, 22 p. (2017). MSC: 37E05 37D45 37D25 37G35 94A60 PDF BibTeX XML Cite \textit{W. S. Sayed} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 1, Article ID 1730004, 22 p. (2017; Zbl 1358.37075) Full Text: DOI OpenURL
Kostin, V. A.; Chekhov, S. A.; Fakhad, D. A. About correct solvability of problems without initial conditions for V. S. Golubev’s equations, which describe the motion of a compressible fluid in a porous environment. (Russian. English summary) Zbl 1457.76169 Vestn. Voronezh. Gos. Univ., Ser. Fiz. Mat. 2016, No. 3, 162-169 (2016). MSC: 76S05 76N10 35Q35 35R11 PDF BibTeX XML Cite \textit{V. A. Kostin} et al., Vestn. Voronezh. Gos. Univ., Ser. Fiz. Mat. 2016, No. 3, 162--169 (2016; Zbl 1457.76169) Full Text: Link OpenURL
Li, Kexue Fractional order semilinear Volterra integrodifferential equations in Banach spaces. (English) Zbl 1373.45007 Topol. Methods Nonlinear Anal. 47, No. 2, 439-455 (2016). Reviewer: Daria Bbugajewska (Poznań) MSC: 45J05 26A33 45G10 45N05 45D05 PDF BibTeX XML Cite \textit{K. Li}, Topol. Methods Nonlinear Anal. 47, No. 2, 439--455 (2016; Zbl 1373.45007) Full Text: DOI arXiv OpenURL
Farah, Attaif; Mnif, Maher Spectral mapping theorem for fractional powers of linear relations. (English) Zbl 1373.47003 Complex Anal. Oper. Theory 10, No. 8, 1789-1798 (2016). MSC: 47A06 47A53 47A60 47B65 PDF BibTeX XML Cite \textit{A. Farah} and \textit{M. Mnif}, Complex Anal. Oper. Theory 10, No. 8, 1789--1798 (2016; Zbl 1373.47003) Full Text: DOI OpenURL
Moghaddam, Hossein Bazrafshan; Brandenberger, Robert Preheating with fractional powers. (English) Zbl 1353.83035 Mod. Phys. Lett. A 31, No. 39, Article ID 1650217, 15 p. (2016). MSC: 83F05 PDF BibTeX XML Cite \textit{H. B. Moghaddam} and \textit{R. Brandenberger}, Mod. Phys. Lett. A 31, No. 39, Article ID 1650217, 15 p. (2016; Zbl 1353.83035) Full Text: DOI arXiv OpenURL
Bocci, Cristiano; Cooper, Susan; Guardo, Elena; Harbourne, Brian; Janssen, Mike; Nagel, Uwe; Seceleanu, Alexandra; Van Tuyl, Adam; Vu, Thanh The Waldschmidt constant for squarefree monomial ideals. (English) Zbl 1352.13012 J. Algebr. Comb. 44, No. 4, 875-904 (2016). Reviewer: Piotr Pokora (Hannover) MSC: 13F20 13A02 14N05 PDF BibTeX XML Cite \textit{C. Bocci} et al., J. Algebr. Comb. 44, No. 4, 875--904 (2016; Zbl 1352.13012) Full Text: DOI arXiv OpenURL
Lakhel, El Hassan; Hajji, Salah Neutral stochastic functional differential equation driven by fractional Brownian motion and Poisson point processes. (English) Zbl 1389.60080 Gulf J. Math. 4, No. 3, 1-14 (2016). MSC: 60H15 60G22 60G55 PDF BibTeX XML Cite \textit{E. H. Lakhel} and \textit{S. Hajji}, Gulf J. Math. 4, No. 3, 1--14 (2016; Zbl 1389.60080) Full Text: arXiv Link OpenURL
Triggiani, Roberto A matrix-valued generator \(\mathcal{A}\) with strong boundary coupling: a critical subspace of \(\mathcal D((-\mathcal{A})^{\frac{1}{2}})\) and \(\mathcal D((-\mathcal{A}^*)^{\frac{1}{2}})\) and implications. (English) Zbl 1353.35216 Evol. Equ. Control Theory 5, No. 1, 185-199 (2016). MSC: 35M13 93D20 35R11 47D06 PDF BibTeX XML Cite \textit{R. Triggiani}, Evol. Equ. Control Theory 5, No. 1, 185--199 (2016; Zbl 1353.35216) Full Text: DOI OpenURL
Lasiecka, Irena; Triggiani, Roberto Heat-structure interaction with viscoelastic damping: analyticity with sharp analytic sector, exponential decay, fractional powers. (English) Zbl 1388.35131 Commun. Pure Appl. Anal. 15, No. 5, 1515-1543 (2016). MSC: 35M13 93D20 35K05 35L25 35Q74 47B44 76D07 PDF BibTeX XML Cite \textit{I. Lasiecka} and \textit{R. Triggiani}, Commun. Pure Appl. Anal. 15, No. 5, 1515--1543 (2016; Zbl 1388.35131) Full Text: DOI OpenURL
Guillot, Dominique; Khare, Apoorva; Rajaratnam, Bala Preserving positivity for matrices with sparsity constraints. (English) Zbl 1350.15014 Trans. Am. Math. Soc. 368, No. 12, 8929-8953 (2016). MSC: 15A86 15B48 05C50 15A60 PDF BibTeX XML Cite \textit{D. Guillot} et al., Trans. Am. Math. Soc. 368, No. 12, 8929--8953 (2016; Zbl 1350.15014) Full Text: DOI arXiv OpenURL