Sofonea, Mircea; Tarzia, Domingo A. Convergence results for optimal control problems governed by elliptic quasivariational inequalities. (English) Zbl 07241791 Numer. Funct. Anal. Optim. 41, No. 11, 1326-1351 (2020). MSC: 47J20 49J27 49J40 49K20 74M15 74M10 PDF BibTeX XML Cite \textit{M. Sofonea} and \textit{D. A. Tarzia}, Numer. Funct. Anal. Optim. 41, No. 11, 1326--1351 (2020; Zbl 07241791) Full Text: DOI
Kashiwabara, Takahito On a strong solution of the non-stationary Navier-Stokes equations under slip or leak boundary conditions of friction type. (English) Zbl 1253.35102 J. Differ. Equations 254, No. 2, 756-778 (2013). MSC: 35Q30 35K86 35B45 35D35 PDF BibTeX XML Cite \textit{T. Kashiwabara}, J. Differ. Equations 254, No. 2, 756--778 (2013; Zbl 1253.35102) Full Text: DOI arXiv
Sofonea, Mircea; Matei, Andaluzia Mathematical models in contact mechanics. (English) Zbl 1255.49002 London Mathematical Society Lecture Note Series 398. Cambridge: Cambridge University Press (ISBN 978-1-107-60665-4/pbk; 978-1-139-10416-6/ebook). xiv, 280 p. (2012). Reviewer: Jan Lovíšek (Bratislava) MSC: 49-02 49S05 74M15 47J20 PDF BibTeX XML Cite \textit{M. Sofonea} and \textit{A. Matei}, Mathematical models in contact mechanics. Cambridge: Cambridge University Press (2012; Zbl 1255.49002) Full Text: DOI
Amassad, Amina; Fabre, Caroline Existence for problems of viscoplastic contact with Coulomb friction. (English) Zbl 1028.74039 Int. J. Math. Math. Sci. 32, No. 7, 411-437 (2002). MSC: 74M15 74M10 74G25 PDF BibTeX XML Cite \textit{A. Amassad} and \textit{C. Fabre}, Int. J. Math. Math. Sci. 32, No. 7, 411--437 (2002; Zbl 1028.74039) Full Text: DOI EuDML
Stavroulakis, Georgios E. Inverse and crack identification problems in engineering mechanics. (English) Zbl 0978.74001 Applied Optimization. 46. Dordrecht: Kluwer Academic Publishers. xiii, 223 p. EUR 113.50; $ 122.00; £78.00 (2001). Reviewer: Sanda Cleja-Ţigoiu (Bucureşti) MSC: 74-02 74G75 74M15 74R10 74P10 49J40 PDF BibTeX XML Cite \textit{G. E. Stavroulakis}, Inverse and crack identification problems in engineering mechanics. Dordrecht: Kluwer Academic Publishers (2001; Zbl 0978.74001)
Martins, J. A. C.; Barbarin, S.; Raous, M.; Pinto da Costa, A. Dynamic stability of finite dimensional linearly elastic systems with unilateral contact and Coulomb friction. (English) Zbl 0943.74023 Comput. Methods Appl. Mech. Eng. 177, No. 3-4, 289-328 (1999). MSC: 74H55 74M15 74M10 PDF BibTeX XML Cite \textit{J. A. C. Martins} et al., Comput. Methods Appl. Mech. Eng. 177, No. 3--4, 289--328 (1999; Zbl 0943.74023) Full Text: DOI
Radi, E.; Bigoni, D.; Tralli, A. On uniqueness for frictional contact rate problems. (English) Zbl 0972.74051 J. Mech. Phys. Solids 47, No. 2, 275-296 (1999). MSC: 74M15 74M10 74G30 74G60 PDF BibTeX XML Cite \textit{E. Radi} et al., J. Mech. Phys. Solids 47, No. 2, 275--296 (1999; Zbl 0972.74051) Full Text: DOI
Raous, M.; Chabrand, P.; Lebon, F. Numerical methods for frictional contact problems and applications. (English) Zbl 0679.73048 J. Méc. Théor. Appl. 7, Suppl. 1, 111-128 (1988). MSC: 74A55 74M15 74S30 74S05 PDF BibTeX XML Cite \textit{M. Raous} et al., J. Méc. Théor. Appl. 7, 111--128 (1988; Zbl 0679.73048)
Bajer, C. Dynamics of contact problem by adaptive simplex-shaped space-time approximation. (English) Zbl 0668.73077 J. Méc. Théor. Appl. 7, Suppl. 1, 235-248 (1988). MSC: 74A55 74M15 74S05 PDF BibTeX XML Cite \textit{C. Bajer}, J. Méc. Théor. Appl. 7, 235--248 (1988; Zbl 0668.73077)
Klarbring, A. General contact boundary conditions and the analysis of frictional systems. (English) Zbl 0603.73113 Int. J. Solids Struct. 22, 1377-1398 (1986). MSC: 74A55 74M15 74S30 49J40 65K05 PDF BibTeX XML Cite \textit{A. Klarbring}, Int. J. Solids Struct. 22, 1377--1398 (1986; Zbl 0603.73113) Full Text: DOI