Saha, Dipankar; Sen, Mausumi; Roy, Santanu Analyzing the existence of solution of a fractional order integral equation: a fixed point approach. (English) Zbl 1502.45005 J. Appl. Anal. 28, No. 2, 199-210 (2022). MSC: 45G10 26A33 47N20 47H08 47H10 PDF BibTeX XML Cite \textit{D. Saha} et al., J. Appl. Anal. 28, No. 2, 199--210 (2022; Zbl 1502.45005) Full Text: DOI OpenURL
Ilea, Veronica; Otrocol, Diana; Rus, Ioan A.; Şerban, Marcel Adrian Applications of fibre contraction principle to some classes of functional integral equations. (English) Zbl 07606928 Fixed Point Theory 23, No. 1, 279-292 (2022). MSC: 47H10 45D05 47H09 54H25 PDF BibTeX XML Cite \textit{V. Ilea} et al., Fixed Point Theory 23, No. 1, 279--292 (2022; Zbl 07606928) Full Text: Link OpenURL
Ciplea, Sorina Anamaria; Lungu, Nicolaie; Marian, Daniela; Rassias, Themistocles M. On Hyers-Ulam-Rassias stability of a Volterra-Hammerstein functional integral equation. (English) Zbl 1496.45004 Daras, Nicholas J. (ed.) et al., Approximation and computation in science and engineering. Cham: Springer. Springer Optim. Appl. 180, 147-156 (2022). MSC: 45G10 26D10 39B82 47H30 PDF BibTeX XML Cite \textit{S. A. Ciplea} et al., Springer Optim. Appl. 180, 147--156 (2022; Zbl 1496.45004) Full Text: DOI arXiv OpenURL
Maldar, Samet; Atalan, Yunus Common fixed point theorems for complex-valued mappings with applications. (English) Zbl 07597443 Korean J. Math. 30, No. 2, 205-229 (2022). MSC: 47J26 47N20 PDF BibTeX XML Cite \textit{S. Maldar} and \textit{Y. Atalan}, Korean J. Math. 30, No. 2, 205--229 (2022; Zbl 07597443) Full Text: DOI OpenURL
Kumar, Satish; Singh, Hitesh Kumar; Singh, Beenu; Arora, Vinay Application of Petryshyn’s fixed point theorem of existence result for non-linear 2D Volterra functional integral equations. (English) Zbl 07588230 Differ. Equ. Appl. 14, No. 3, 487-497 (2022). MSC: 47N20 47H08 45D05 PDF BibTeX XML Cite \textit{S. Kumar} et al., Differ. Equ. Appl. 14, No. 3, 487--497 (2022; Zbl 07588230) Full Text: DOI OpenURL
Dhiman, Deepak; Mishra, Lakshmi Narayan; Mishra, Vishnu Narayan Solvability of some nonlinear functional integral equations via measure of noncompactness. (English) Zbl 07583810 Adv. Stud. Contemp. Math., Kyungshang 32, No. 2, 157-171 (2022). Reviewer: Jürgen Appell (Würzburg) MSC: 47H10 47H08 90C39 PDF BibTeX XML Cite \textit{D. Dhiman} et al., Adv. Stud. Contemp. Math., Kyungshang 32, No. 2, 157--171 (2022; Zbl 07583810) Full Text: DOI OpenURL
Deep, Amar; Kumar, Ashish; Abbas, Syed; Hazarika, Bipan An existence result for functional integral equations via Petryshyn’s fixed point theorem. (English) Zbl 07576911 J. Integral Equations Appl. 34, No. 2, 165-181 (2022). MSC: 47H09 47H10 PDF BibTeX XML Cite \textit{A. Deep} et al., J. Integral Equations Appl. 34, No. 2, 165--181 (2022; Zbl 07576911) Full Text: DOI OpenURL
Hosseinzadeh, Hasan; Işık, Hüseyin; Bonab, Samira Hadi; George, Reny Coupled measure of noncompactness and functional integral equations. (English) Zbl 07517538 Open Math. 20, 38-49 (2022). MSC: 47H09 47H10 34A12 PDF BibTeX XML Cite \textit{H. Hosseinzadeh} et al., Open Math. 20, 38--49 (2022; Zbl 07517538) Full Text: DOI OpenURL
Boulfoul, Bilal; Djebali, Smail A measure of weak noncompactness in \(L^1(\mathbb{R}^N)\) and applications. (English) Zbl 07488620 Mediterr. J. Math. 19, No. 2, Paper No. 64, 17 p. (2022). MSC: 47H08 47H09 47H10 47H30 47N20 PDF BibTeX XML Cite \textit{B. Boulfoul} and \textit{S. Djebali}, Mediterr. J. Math. 19, No. 2, Paper No. 64, 17 p. (2022; Zbl 07488620) Full Text: DOI OpenURL
El-Sayed, Ahmed M. A.; Al-Issa, Shorouk M. On set-valued functional integral equations of Hammerstein-Stieltjes type: existence of solutions, continuous dependence, and applications. (English) Zbl 07633621 Methods Funct. Anal. Topol. 27, No. 2, 157-172 (2021). MSC: 26A33 74H10 45G10 PDF BibTeX XML Cite \textit{A. M. A. El-Sayed} and \textit{S. M. Al-Issa}, Methods Funct. Anal. Topol. 27, No. 2, 157--172 (2021; Zbl 07633621) Full Text: DOI OpenURL
Thuc, Nguyen Dat; Ngoc, Le Thi Phuong; Long, Nguyen Thanh Solvability, stability, smoothness and compactness of the set of solutions for a nonlinear functional integral equation. (English) Zbl 1496.39016 Turk. J. Math. 45, No. 3, 1386-1406 (2021). MSC: 39B72 45F10 47N20 PDF BibTeX XML Cite \textit{N. D. Thuc} et al., Turk. J. Math. 45, No. 3, 1386--1406 (2021; Zbl 1496.39016) Full Text: DOI OpenURL
Singh, Soniya; Singh, Bhupander; Nisar, Kottakkaran Sooppy; Hyder, Abd-Allah; Zakarya, M. Solvability for generalized nonlinear two dimensional functional integral equations via measure of noncompactness. (English) Zbl 1494.45008 Adv. Difference Equ. 2021, Paper No. 372, 12 p. (2021). MSC: 45H05 47H09 45G10 47N20 47H08 PDF BibTeX XML Cite \textit{S. Singh} et al., Adv. Difference Equ. 2021, Paper No. 372, 12 p. (2021; Zbl 1494.45008) Full Text: DOI OpenURL
El-Sayed, Ahmed; Al-Issa, Shorouk; Omar, Yasmin On Chandrasekhar functional integral inclusion and Chandrasekhar quadratic integral equation via a nonlinear Urysohn-Stieltjes functional integral inclusion. (English) Zbl 1494.45007 Adv. Difference Equ. 2021, Paper No. 137, 17 p. (2021). MSC: 45G10 47H09 26A42 47H30 PDF BibTeX XML Cite \textit{A. El-Sayed} et al., Adv. Difference Equ. 2021, Paper No. 137, 17 p. (2021; Zbl 1494.45007) Full Text: DOI OpenURL
Deep, Amar; Deepmala; Hazarika, Bipan An existence result for Hadamard type two dimensional fractional functional integral equations via measure of noncompactness. (English) Zbl 1486.45006 Chaos Solitons Fractals 147, Article ID 110874, 11 p. (2021). MSC: 45G10 47H10 PDF BibTeX XML Cite \textit{A. Deep} et al., Chaos Solitons Fractals 147, Article ID 110874, 11 p. (2021; Zbl 1486.45006) Full Text: DOI OpenURL
Rabbani, Mohsen; Deep, Amar; Deepmala On some generalized non-linear functional integral equations of two variables via measures of noncompactness and numerical method to solve it. (English) Zbl 1486.45008 Math. Sci., Springer 15, No. 4, 317-324 (2021). MSC: 45G10 47H08 47H10 PDF BibTeX XML Cite \textit{M. Rabbani} et al., Math. Sci., Springer 15, No. 4, 317--324 (2021; Zbl 1486.45008) Full Text: DOI OpenURL
Ilea, Veronica; Otrocol, Diana Functional differential equations with maxima, via step by step contraction principle. (English) Zbl 1478.34072 Carpathian J. Math. 37, No. 2, 195-202 (2021). MSC: 34K05 34K38 34K12 45D05 45G10 47N20 PDF BibTeX XML Cite \textit{V. Ilea} and \textit{D. Otrocol}, Carpathian J. Math. 37, No. 2, 195--202 (2021; Zbl 1478.34072) Full Text: DOI Link OpenURL
Deep, Amar; Deepmala; Rabbani, Mohsen A numerical method for solvability of some non-linear functional integral equations. (English) Zbl 1490.65313 Appl. Math. Comput. 402, Article ID 125637, 12 p. (2021). MSC: 65R20 45G10 PDF BibTeX XML Cite \textit{A. Deep} et al., Appl. Math. Comput. 402, Article ID 125637, 12 p. (2021; Zbl 1490.65313) Full Text: DOI OpenURL
Petrușel, Adrian; Rus, Ioan A.; Șerban, Marcel-Adrian Some variants of fibre contraction principle and applications: from existence to the convergence of successive approximations. (English) Zbl 07396559 Fixed Point Theory 22, No. 2, 795-808 (2021). Reviewer: Erdal Karapinar (Taichung) MSC: 47H10 54H25 47H09 45N05 PDF BibTeX XML Cite \textit{A. Petrușel} et al., Fixed Point Theory 22, No. 2, 795--808 (2021; Zbl 07396559) Full Text: Link OpenURL
Deep, Amar; Dhiman, Deepak; Hazarika, Bipan; Abbas, Syed Solvability for two dimensional functional integral equations via Petryshyn’s fixed point theorem. (English) Zbl 1494.47129 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 4, Paper No. 160, 17 p. (2021). MSC: 47N20 45G10 47H09 47H10 PDF BibTeX XML Cite \textit{A. Deep} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 4, Paper No. 160, 17 p. (2021; Zbl 1494.47129) Full Text: DOI OpenURL
Deep, Amar; Deepmala; Roshan, Jamal Rezaei Solvability for generalized nonlinear functional integral equations in Banach spaces with applications. (English) Zbl 1476.45011 J. Integral Equations Appl. 33, No. 1, 19-30 (2021). MSC: 45N05 45G10 47N20 47H08 PDF BibTeX XML Cite \textit{A. Deep} et al., J. Integral Equations Appl. 33, No. 1, 19--30 (2021; Zbl 1476.45011) Full Text: DOI OpenURL
Deep, Amar; Deepmala; Ezzati, R. Application of Petryshyn’s fixed point theorem to solvability for functional integral equations. (English) Zbl 07335169 Appl. Math. Comput. 395, Article ID 125878, 9 p. (2021). MSC: 47-XX 45-XX PDF BibTeX XML Cite \textit{A. Deep} et al., Appl. Math. Comput. 395, Article ID 125878, 9 p. (2021; Zbl 07335169) Full Text: DOI OpenURL
El-Sayed, Ahmed M. A.; Ebead, Hanaa R. On the solvability of a self-reference functional and quadratic functional integral equations. (English) Zbl 1499.32020 Filomat 34, No. 1, 129-141 (2020). MSC: 32A55 47J35 45G10 PDF BibTeX XML Cite \textit{A. M. A. El-Sayed} and \textit{H. R. Ebead}, Filomat 34, No. 1, 129--141 (2020; Zbl 1499.32020) Full Text: DOI OpenURL
El-Sayed, Ahmed Mohamed; Al-Issa, Shorouk Mahmoud On the existence of solutions of a set-valued functional integral equation of Volterra-Stieltjes type and some applications. (English) Zbl 1487.45014 Adv. Difference Equ. 2020, Paper No. 59, 16 p. (2020). MSC: 45N05 45G10 PDF BibTeX XML Cite \textit{A. M. El-Sayed} and \textit{S. M. Al-Issa}, Adv. Difference Equ. 2020, Paper No. 59, 16 p. (2020; Zbl 1487.45014) Full Text: DOI OpenURL
Arab, Reza; Nashine, Hemant Kumar; Can, N. H.; Tran Thanh Binh Solvability of functional-integral equations (fractional order) using measure of noncompactness. (English) Zbl 1493.47121 Adv. Difference Equ. 2020, Paper No. 12, 13 p. (2020). MSC: 47N20 47H08 34A08 34K37 45J05 PDF BibTeX XML Cite \textit{R. Arab} et al., Adv. Difference Equ. 2020, Paper No. 12, 13 p. (2020; Zbl 1493.47121) Full Text: DOI OpenURL
Alyami, Maryam Ahmed; Darwish, Mohamed Abdalla On asymptotic stable solutions of a quadratic Erdélyi-Kober fractional functional integral equation with linear modification of the arguments. (English) Zbl 1495.45007 Chaos Solitons Fractals 131, Article ID 109475, 7 p. (2020). MSC: 45M05 45G10 26A33 47H08 47N20 PDF BibTeX XML Cite \textit{M. A. Alyami} and \textit{M. A. Darwish}, Chaos Solitons Fractals 131, Article ID 109475, 7 p. (2020; Zbl 1495.45007) Full Text: DOI OpenURL
Saha, D.; Sen, M.; Sarkar, N.; Saha, N. Existence of a solution in the Holder space for a nonlinear functional integral equation. (English) Zbl 1454.45002 Armen. J. Math. 12, Paper No. 7, 8 p. (2020). MSC: 45G10 47H09 47H10 PDF BibTeX XML Cite \textit{D. Saha} et al., Armen. J. Math. 12, Paper No. 7, 8 p. (2020; Zbl 1454.45002) Full Text: Link OpenURL
Rehman, Habib ur; Kumam, Poom; Dhompongsa, Sompong Existence of tripled fixed points and solution of functional integral equations through a measure of noncompactness. (English) Zbl 1463.47154 Carpathian J. Math. 35, No. 2, 193-208 (2019). MSC: 47H08 47H10 45G15 PDF BibTeX XML Cite \textit{H. u. Rehman} et al., Carpathian J. Math. 35, No. 2, 193--208 (2019; Zbl 1463.47154) OpenURL
Sen, Mausumi; Saha, Dipankar; Agarwal, R. P. A Darbo fixed point theory approach towards the existence of a functional integral equation in a Banach algebra. (English) Zbl 1428.45006 Appl. Math. Comput. 358, 111-118 (2019). MSC: 45G10 47H09 PDF BibTeX XML Cite \textit{M. Sen} et al., Appl. Math. Comput. 358, 111--118 (2019; Zbl 1428.45006) Full Text: DOI OpenURL
Rehman, Habib ur; Gopal, Dhananjay; Kumam, Poom Generalizations of Darbo’s fixed point theorem for new condensing operators with application to a functional integral equation. (English) Zbl 1477.47040 Demonstr. Math. 52, 166-182 (2019). Reviewer: Jürgen Appell (Würzburg) MSC: 47H08 47H09 47H10 45G10 PDF BibTeX XML Cite \textit{H. u. Rehman} et al., Demonstr. Math. 52, 166--182 (2019; Zbl 1477.47040) Full Text: DOI OpenURL
Olszowy, Leszek Measures of noncompactness in the space of regulated functions. (English) Zbl 1486.47090 J. Math. Anal. Appl. 476, No. 2, 860-874 (2019). MSC: 47H08 47H30 PDF BibTeX XML Cite \textit{L. Olszowy}, J. Math. Anal. Appl. 476, No. 2, 860--874 (2019; Zbl 1486.47090) Full Text: DOI OpenURL
Petruşel, Adrian; Rus, Ioan A. A class of functional-integral equations via Picard operator technique. (English) Zbl 1438.45006 Ann. Acad. Rom. Sci., Math. Appl. 10, No. 1, 15-24 (2018). MSC: 45G10 47H10 47H30 45M10 45N05 PDF BibTeX XML Cite \textit{A. Petruşel} and \textit{I. A. Rus}, Ann. Acad. Rom. Sci., Math. Appl. 10, No. 1, 15--24 (2018; Zbl 1438.45006) Full Text: Link OpenURL
Keshi, Farzad Khane; Moghaddam, Behrouz Parsa; Aghili, Arman A numerical approach for solving a class of variable-order fractional functional integral equations. (English) Zbl 1432.65106 Comput. Appl. Math. 37, No. 4, 4821-4834 (2018). MSC: 65L12 34A08 45J05 46N20 65L70 PDF BibTeX XML Cite \textit{F. K. Keshi} et al., Comput. Appl. Math. 37, No. 4, 4821--4834 (2018; Zbl 1432.65106) Full Text: DOI OpenURL
Nashine, Hemant Kumar; Arab, Reza Existence of solutions to nonlinear functional-integral equations via the measure of noncompactness. (English) Zbl 1499.45012 J. Fixed Point Theory Appl. 20, No. 2, Paper No. 66, 17 p. (2018). MSC: 45G10 54H25 47H10 47N20 PDF BibTeX XML Cite \textit{H. K. Nashine} and \textit{R. Arab}, J. Fixed Point Theory Appl. 20, No. 2, Paper No. 66, 17 p. (2018; Zbl 1499.45012) Full Text: DOI OpenURL
Abbas, Saïd; Agarwal, Ravi P.; Benchohra, Mouffak; Berhoun, Farida Global attractivity for Volterra type Hadamard fractional integral equations in Fréchet spaces. (English) Zbl 1393.45003 Demonstr. Math. 51, 131-140 (2018). MSC: 45G05 26A33 45M10 PDF BibTeX XML Cite \textit{S. Abbas} et al., Demonstr. Math. 51, 131--140 (2018; Zbl 1393.45003) Full Text: DOI OpenURL
Gupta, Animesh; Maitra, Jitendra Kumar; Rai, Vandana Application of fixed point theorem for uniqueness and stability of solutions for a class of nonlinear integral equations. (English) Zbl 1391.58006 J. Appl. Math. Inform. 36, No. 1-2, 1-14 (2018). Reviewer: Dian K. Palagachev (Bari) MSC: 58E30 58E07 58C30 PDF BibTeX XML Cite \textit{A. Gupta} et al., J. Appl. Math. Inform. 36, No. 1--2, 1--14 (2018; Zbl 1391.58006) Full Text: DOI OpenURL
Reshetnyak, Alexander Generalization of Faddeev-Popov rules in Yang-Mills theories: \(N = 3, 4\) BRST symmetries. (English) Zbl 1431.81100 Int. J. Mod. Phys. A 33, No. 3, Article ID 1850006, 74 p. (2018). MSC: 81T13 81T70 81T60 81R05 81T18 PDF BibTeX XML Cite \textit{A. Reshetnyak}, Int. J. Mod. Phys. A 33, No. 3, Article ID 1850006, 74 p. (2018; Zbl 1431.81100) Full Text: DOI arXiv OpenURL
Mishra, Lakshmi Narayan; Sen, Mausumi; Mohapatra, Ram N. On existence theorems for some generalized nonlinear functional-integral equations with applications. (English) Zbl 1488.45056 Filomat 31, No. 7, 2081-2091 (2017). MSC: 45N05 47H08 47N20 PDF BibTeX XML Cite \textit{L. N. Mishra} et al., Filomat 31, No. 7, 2081--2091 (2017; Zbl 1488.45056) Full Text: DOI OpenURL
Abbas, Saïd; Benchohra, Mouffak; Henderson, Johnny; Lazreg, Jamal E. Weak solutions for a coupled system of partial Pettis Hadamard fractional integral equations. (English) Zbl 1415.45002 Adv. Theory Nonlinear Anal. Appl. 1, No. 2, 136-146 (2017). MSC: 45G05 45N05 PDF BibTeX XML Cite \textit{S. Abbas} et al., Adv. Theory Nonlinear Anal. Appl. 1, No. 2, 136--146 (2017; Zbl 1415.45002) Full Text: DOI OpenURL
Abbas, Saïda; Benchohra, Mouffak; Zhou, Yong; Alsaedi, Ahmed Weak solutions for a coupled system of Pettis-Hadamard fractional differential equations. (English) Zbl 1444.34089 Adv. Difference Equ. 2017, Paper No. 332, 11 p. (2017). MSC: 34K37 34A08 26A33 PDF BibTeX XML Cite \textit{S. Abbas} et al., Adv. Difference Equ. 2017, Paper No. 332, 11 p. (2017; Zbl 1444.34089) Full Text: DOI OpenURL
Aldashev, Serik Aĭmurzavich Well-posedness of the Dirichlet and Poincaré problems for one class of hyperbolic equations in a multidimensional domain. (Russian. English summary) Zbl 1413.35448 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 21, No. 2, 209-220 (2017). MSC: 35R25 35L10 PDF BibTeX XML Cite \textit{S. A. Aldashev}, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 21, No. 2, 209--220 (2017; Zbl 1413.35448) Full Text: DOI MNR OpenURL
Ilea, Veronica Ana; Otrocol, Diana An application of the Picard operator technique to functional integral equations. (English) Zbl 1467.47046 J. Nonlinear Convex Anal. 18, No. 3, 405-413 (2017). MSC: 47N20 45G10 47H10 34K05 PDF BibTeX XML Cite \textit{V. A. Ilea} and \textit{D. Otrocol}, J. Nonlinear Convex Anal. 18, No. 3, 405--413 (2017; Zbl 1467.47046) Full Text: Link OpenURL
Vetro, Calogero; Vetro, Francesca On the existence of at least a solution for functional integral equations via measure of noncompactness. (English) Zbl 06754300 Banach J. Math. Anal. 11, No. 3, 497-512 (2017). MSC: 47H08 45N05 54H25 PDF BibTeX XML Cite \textit{C. Vetro} and \textit{F. Vetro}, Banach J. Math. Anal. 11, No. 3, 497--512 (2017; Zbl 06754300) Full Text: DOI Euclid OpenURL
Rus, Ioan A. Relevant classes of weakly Picard operators. (English) Zbl 07644139 An. Univ. Vest Timiș., Ser. Mat.-Inform. 54, No. 2, 131-147 (2016). MSC: 47H10 65J15 34Kxx 45Gxx 45N05 PDF BibTeX XML Cite \textit{I. A. Rus}, An. Univ. Vest Timiș., Ser. Mat.-Inform. 54, No. 2, 131--147 (2016; Zbl 07644139) Full Text: DOI OpenURL
Abbas, Saïd; Albarakati, Wafaa; Benchohra, Mouffak; N’Guerekata, Gaston M. Existence and Ulam stabilities for Hadamard fractional integral equations in Fréchet spaces. (English) Zbl 1499.45033 J. Fract. Calc. Appl. 7, No. 2, 1-12 (2016). MSC: 45M10 47N20 26A33 PDF BibTeX XML Cite \textit{S. Abbas} et al., J. Fract. Calc. Appl. 7, No. 2, 1--12 (2016; Zbl 1499.45033) Full Text: Link OpenURL
Abdel Hamid, Haydar; Al Sayed, Waad Integrable solutions of a generalized mixed-type functional integral equation. (English) Zbl 1410.45010 Appl. Math. Comput. 276, 356-366 (2016). MSC: 45N05 47G10 47H10 47H30 PDF BibTeX XML Cite \textit{H. Abdel Hamid} and \textit{W. Al Sayed}, Appl. Math. Comput. 276, 356--366 (2016; Zbl 1410.45010) Full Text: DOI arXiv OpenURL
Mishra, Lakshmi Narayan; Srivastava, H. M.; Sen, Mausumi Existence results for some nonlinear functional-integral equations in Banach algebra with applications. (English) Zbl 1379.45005 Int. J. Anal. Appl. 11, No. 1, 1-10 (2016). MSC: 45G10 47H08 PDF BibTeX XML Cite \textit{L. N. Mishra} et al., Int. J. Anal. Appl. 11, No. 1, 1--10 (2016; Zbl 1379.45005) Full Text: Link OpenURL
Rus, Ioan A. Some variants of contraction principle, generalizations and applications. (English) Zbl 1389.54112 Stud. Univ. Babeș-Bolyai, Math. 61, No. 3, 343-358 (2016). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{I. A. Rus}, Stud. Univ. Babeș-Bolyai, Math. 61, No. 3, 343--358 (2016; Zbl 1389.54112) OpenURL
Le Khanh Hung; Kieu Phuong Chi; Tran Van An Fixed point theorems for (\(\alpha\)-\(\Psi\))-contractive type mappings in uniform spaces and applications. (English) Zbl 1462.54078 Filomat 30, No. 10, 2781-2794 (2016). MSC: 54H25 54E15 PDF BibTeX XML Cite \textit{Le Khanh Hung} et al., Filomat 30, No. 10, 2781--2794 (2016; Zbl 1462.54078) Full Text: DOI OpenURL
Özdemir, İsmet; Çakan, Ümit The solvability of some nonlinear functional integral equations. (English) Zbl 1374.45005 Stud. Sci. Math. Hung. 53, No. 1, 7-21 (2016). Reviewer: Rodica Luca (Iaşi) MSC: 45G10 47H08 47H10 PDF BibTeX XML Cite \textit{İ. Özdemir} and \textit{Ü. Çakan}, Stud. Sci. Math. Hung. 53, No. 1, 7--21 (2016; Zbl 1374.45005) Full Text: DOI OpenURL
Cai, Haotao; Qi, Jiafei A Legendre-Galerkin method for solving general Volterra functional integral equations. (English) Zbl 1361.65099 Numer. Algorithms 73, No. 4, 1159-1180 (2016). Reviewer: Alexander N. Tynda (Penza) MSC: 65R20 45G10 45D05 PDF BibTeX XML Cite \textit{H. Cai} and \textit{J. Qi}, Numer. Algorithms 73, No. 4, 1159--1180 (2016; Zbl 1361.65099) Full Text: DOI OpenURL
Benhamouche, Latifa; Djebali, Smaïl Solvability of functional integral equations in the Fréchet space \(C(\Omega)\). (English) Zbl 1355.45006 Mediterr. J. Math. 13, No. 6, 4805-4817 (2016). Reviewer: Seenith Sivasundaram (Daytona Beach) MSC: 45G10 45D05 47H08 47H10 45M10 PDF BibTeX XML Cite \textit{L. Benhamouche} and \textit{S. Djebali}, Mediterr. J. Math. 13, No. 6, 4805--4817 (2016; Zbl 1355.45006) Full Text: DOI OpenURL
Aghazadeh, Nasser; Fathi, Somayeh Convergence of an approach for solving Fredholm functional integral equations. (English) Zbl 1349.65704 Iran. J. Math. Sci. Inform. 11, No. 1, 35-46 (2016). MSC: 65R20 45B05 65D05 PDF BibTeX XML Cite \textit{N. Aghazadeh} and \textit{S. Fathi}, Iran. J. Math. Sci. Inform. 11, No. 1, 35--46 (2016; Zbl 1349.65704) Full Text: DOI OpenURL
Ngoc, Le Thi Phuong; Long, Nguyen Thanh A continuum of solutions in a Fréchet space of a nonlinear functional integral equation in \(N\) variables. (English) Zbl 1354.45009 Math. Nachr. 289, No. 13, 1665-1679 (2016). Reviewer: Stig-Olof Londen (Aalto) MSC: 45N05 47H10 45G10 47H30 45D05 PDF BibTeX XML Cite \textit{L. T. P. Ngoc} and \textit{N. T. Long}, Math. Nachr. 289, No. 13, 1665--1679 (2016; Zbl 1354.45009) Full Text: DOI OpenURL
Ilhan, Bekir; Ozdem, İsmet Existence and asymptotic behavior of solutions for some nonlinear integral equations on an unbounded interval. (English) Zbl 1353.45004 Electron. J. Differ. Equ. 2016, Paper No. 271, 15 p. (2016). MSC: 45G05 45M05 47H08 47H10 PDF BibTeX XML Cite \textit{B. Ilhan} and \textit{İ. Ozdem}, Electron. J. Differ. Equ. 2016, Paper No. 271, 15 p. (2016; Zbl 1353.45004) Full Text: Link OpenURL
Xia, Zhinan On existence and asymptotic behavior of solutions for functional integral equation of Volterra-Stieltjes type. (Chinese. English summary) Zbl 1363.45003 Acta Math. Sci., Ser. A, Chin. Ed. 36, No. 1, 130-143 (2016). MSC: 45G05 45D05 45M05 26A33 47H08 47H10 PDF BibTeX XML Cite \textit{Z. Xia}, Acta Math. Sci., Ser. A, Chin. Ed. 36, No. 1, 130--143 (2016; Zbl 1363.45003) OpenURL
Petruşel, Adrian; Rus, Ioan A.; Şerban, Marcel-Adrian Nonexpansive operators as graphic contractions. (English) Zbl 1362.47036 J. Nonlinear Convex Anal. 17, No. 7, 1409-1415 (2016). MSC: 47H09 47H10 45G10 PDF BibTeX XML Cite \textit{A. Petruşel} et al., J. Nonlinear Convex Anal. 17, No. 7, 1409--1415 (2016; Zbl 1362.47036) Full Text: Link OpenURL
Arab, Reza The existence of fixed points via the measure of noncompactness and its application to functional-integral equations. (English) Zbl 1348.47041 Mediterr. J. Math. 13, No. 2, 759-773 (2016). Reviewer: Stefan Czerwik (Łaziska Górne) MSC: 47H08 47N20 PDF BibTeX XML Cite \textit{R. Arab}, Mediterr. J. Math. 13, No. 2, 759--773 (2016; Zbl 1348.47041) Full Text: DOI OpenURL
Dhage, Bapurao C. Some generalizations of a hybrid fixed point theorem in partially ordered metric spaces and nonlinear functional integral equations. (English) Zbl 1442.54034 Differ. Equ. Appl. 8, No. 1, 77-97 (2016). Reviewer: Adrian Petruşel (Cluj-Napoca) MSC: 54H25 54E40 54F05 45G10 47H08 PDF BibTeX XML Cite \textit{B. C. Dhage}, Differ. Equ. Appl. 8, No. 1, 77--97 (2016; Zbl 1442.54034) Full Text: DOI Link OpenURL
Abbas, Saïd; Alaidarous, Eman; Albarakati, Wafaa; Benchohra, Mouffak Upper and lower solutions method for partial Hadamard fractional integral equations and inclusions. (English) Zbl 07594265 Discuss. Math., Differ. Incl. Control Optim. 35, No. 2, 105-122 (2015). MSC: 34A08 34K05 PDF BibTeX XML Cite \textit{S. Abbas} et al., Discuss. Math., Differ. Incl. Control Optim. 35, No. 2, 105--122 (2015; Zbl 07594265) Full Text: DOI OpenURL
Mollapourasl, R.; Ostadi, A. On solution of functional integral equation of fractional order. (English) Zbl 1410.45012 Appl. Math. Comput. 270, 631-643 (2015). MSC: 45N05 45G10 34A08 PDF BibTeX XML Cite \textit{R. Mollapourasl} and \textit{A. Ostadi}, Appl. Math. Comput. 270, 631--643 (2015; Zbl 1410.45012) Full Text: DOI OpenURL
Dhage, Bapurao C. Dhage iteration method for generalized quadratic functional integral equations. (English) Zbl 1379.65100 Int. J. Anal. Appl. 7, No. 1, 59-69 (2015). MSC: 65R20 45G10 PDF BibTeX XML Cite \textit{B. C. Dhage}, Int. J. Anal. Appl. 7, No. 1, 59--69 (2015; Zbl 1379.65100) Full Text: Link OpenURL
Ngo, Van Hoa Fuzzy fractional functional integral and differential equations. (English) Zbl 1377.45002 Fuzzy Sets Syst. 280, 58-90 (2015). MSC: 45G10 26A33 34K36 34K37 PDF BibTeX XML Cite \textit{V. H. Ngo}, Fuzzy Sets Syst. 280, 58--90 (2015; Zbl 1377.45002) Full Text: DOI OpenURL
Dhage, B. C.; Dhage, S. B.; Ntouyas, S. K.; Pathak, H. K. On local attractivity of nonlinear functional integral equations via measures of noncompactness. (English) Zbl 1371.45006 Malaya J. Mat. 3, No. 2, 191-201 (2015). MSC: 45G10 45G99 PDF BibTeX XML Cite \textit{B. C. Dhage} et al., Malaya J. Mat. 3, No. 2, 191--201 (2015; Zbl 1371.45006) Full Text: Link OpenURL
Dhage, Bapurao C. Nonlinear \(\mathcal{D}\)-set contraction mappings in partially ordered normed linear spaces and applications to functional hybrid integral equations. (English) Zbl 1371.45007 Malaya J. Mat. 3, No. 1, 62-85 (2015). MSC: 45G10 45M99 47H09 47H10 PDF BibTeX XML Cite \textit{B. C. Dhage}, Malaya J. Mat. 3, No. 1, 62--85 (2015; Zbl 1371.45007) Full Text: Link OpenURL
Latrach, Khalid An existence result for a class of nonlinear functional integral equations. (English) Zbl 1323.47083 J. Integral Equations Appl. 27, No. 2, 199-218 (2015). MSC: 47N20 47H10 47H30 47H08 PDF BibTeX XML Cite \textit{K. Latrach}, J. Integral Equations Appl. 27, No. 2, 199--218 (2015; Zbl 1323.47083) Full Text: DOI Euclid OpenURL
Pham Hong Danh; Le Thi Phuong Ngoc; Huynh Thi Hoang Dung; Nguyen Thanh Long Existence of a unique solution of a nonlinear functional integral equation. (English) Zbl 1334.47072 Nonlinear Funct. Anal. Appl. 20, No. 1, 109-119 (2015). Reviewer: Sotiris K. Ntouyas (Ioannina) MSC: 47N20 47H10 45G10 65J15 PDF BibTeX XML Cite \textit{Pham Hong Danh} et al., Nonlinear Funct. Anal. Appl. 20, No. 1, 109--119 (2015; Zbl 1334.47072) OpenURL
Ngoc, Le Thi Phuong; Long, Nguyen Thanh Existence of asymptotically stable solutions for a mixed functional nonlinear integral equation in \(N\) variables. (English) Zbl 1320.45002 Math. Nachr. 288, No. 5-6, 633-647 (2015). Reviewer: Seenith Sivasundaram (Daytona Beach) MSC: 45G10 47H10 65J15 47N20 PDF BibTeX XML Cite \textit{L. T. P. Ngoc} and \textit{N. T. Long}, Math. Nachr. 288, No. 5--6, 633--647 (2015; Zbl 1320.45002) Full Text: DOI OpenURL
Dhage, Bapurao C.; Dhage, Shyam B.; Pathak, Hemant K. A generalization of Darbo’s fixed point theorem and local attractivity of generalized nonlinear functional integral equations. (English) Zbl 1328.47056 Differ. Equ. Appl. 7, No. 1, 57-77 (2015). Reviewer: Shaochun Ji (Huaian) MSC: 47H08 47H10 45N05 PDF BibTeX XML Cite \textit{B. C. Dhage} et al., Differ. Equ. Appl. 7, No. 1, 57--77 (2015; Zbl 1328.47056) Full Text: DOI Link OpenURL
Darwish, Mohamed Abdalla; Sadarangani, Kishin Nonincreasing solutions of a functional integral equation with Carathéodory perturbed. (English) Zbl 1317.45004 Mediterr. J. Math. 12, No. 1, 63-76 (2015). Reviewer: Alexander N. Tynda (Penza) MSC: 45G10 45M99 47H08 47H30 PDF BibTeX XML Cite \textit{M. A. Darwish} and \textit{K. Sadarangani}, Mediterr. J. Math. 12, No. 1, 63--76 (2015; Zbl 1317.45004) Full Text: DOI OpenURL
Yuldashev, T. K. Inverse problem for a Fredholm third order partial integro-differential equation. (Russian. English summary) Zbl 1413.35456 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 2014, No. 1(34), 56-65 (2014). MSC: 35R30 35K70 35M12 PDF BibTeX XML Cite \textit{T. K. Yuldashev}, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 2014, No. 1(34), 56--65 (2014; Zbl 1413.35456) Full Text: DOI MNR OpenURL
Abbas, Saïd; Benchohra, Mouffak Fractional order integral equations of two independent variables. (English) Zbl 1364.45005 Appl. Math. Comput. 227, 755-761 (2014). MSC: 45G10 26A33 PDF BibTeX XML Cite \textit{S. Abbas} and \textit{M. Benchohra}, Appl. Math. Comput. 227, 755--761 (2014; Zbl 1364.45005) Full Text: DOI OpenURL
Özdemir, Ismet; Ilhan, Bekir; Çakan, Ümit On the solutions of a class of nonlinear integral equations in the Banach algebra of the continuous functions and some examples. (English) Zbl 1349.45007 An. Univ. Vest Timiș., Ser. Mat.-Inform. 52, No. 1, 121-140 (2014). MSC: 45G10 47H08 47H10 PDF BibTeX XML Cite \textit{I. Özdemir} et al., An. Univ. Vest Timiș., Ser. Mat.-Inform. 52, No. 1, 121--140 (2014; Zbl 1349.45007) OpenURL
Darwish, Mohamed Abdalla; Kashkari, Bothayna S.; Sadarangani, Kishin On a functional-integral equation with deviating arguments. (English) Zbl 1338.45012 Appl. Math. Comput. 246, 64-70 (2014). MSC: 45N05 39B05 PDF BibTeX XML Cite \textit{M. A. Darwish} et al., Appl. Math. Comput. 246, 64--70 (2014; Zbl 1338.45012) Full Text: DOI OpenURL
Lauran, Monica The estimation of solution of Fredholm integral equation in three variables. (English) Zbl 1349.45005 Creat. Math. Inform. 23, No. 2, 209-213 (2014). MSC: 45G10 45B05 PDF BibTeX XML Cite \textit{M. Lauran}, Creat. Math. Inform. 23, No. 2, 209--213 (2014; Zbl 1349.45005) OpenURL
Mureşan, Viorica A Volterra functional-integral equation, via weakly Picard operators’ technique. (English) Zbl 1349.34251 Carpathian J. Math. 30, No. 3, 369-375 (2014). MSC: 34K05 47H10 PDF BibTeX XML Cite \textit{V. Mureşan}, Carpathian J. Math. 30, No. 3, 369--375 (2014; Zbl 1349.34251) OpenURL
Petruşel, Adrian; Rus, Ioan A. A class of functional-integral equations with applications to a bilocal problem. (English) Zbl 1327.45005 Rassias, Themistocles M. (ed.) et al., Topics in mathematical analysis and applications. Cham: Springer (ISBN 978-3-319-06553-3/hbk; 978-3-319-06554-0/ebook). Springer Optimization and Its Applications 94, 609-631 (2014). Reviewer: Alexander N. Tynda (Penza) MSC: 45G15 45M10 34B15 45B05 PDF BibTeX XML Cite \textit{A. Petruşel} and \textit{I. A. Rus}, Springer Optim. Appl. 94, 609--631 (2014; Zbl 1327.45005) Full Text: DOI OpenURL
Pham Hong Danh; Le Thi Phuong Ngoc; Nguyen Thanh Long Solvability and asymptotically stable of a mixed functional integral equation in \(N\) variables. (English) Zbl 1328.47085 Nonlinear Funct. Anal. Appl. 19, No. 3, 433-454 (2014). Reviewer: Ioan A. Rus (Cluj-Napoca) MSC: 47N20 45G10 47J05 65J15 47H10 PDF BibTeX XML Cite \textit{Pham Hong Danh} et al., Nonlinear Funct. Anal. Appl. 19, No. 3, 433--454 (2014; Zbl 1328.47085) OpenURL
Dhage, Bapurao C.; Dhage, Shyam B.; Mule, Dnyaneshwar V. Local attractivity and stability results for hybrid functional nonlinear fractional integral equations. (English) Zbl 1347.45005 Nonlinear Funct. Anal. Appl. 19, No. 3, 413-431 (2014). Reviewer: Ilia V. Boikov (Penza) MSC: 45M10 45G10 26A33 45M05 PDF BibTeX XML Cite \textit{B. C. Dhage} et al., Nonlinear Funct. Anal. Appl. 19, No. 3, 413--431 (2014; Zbl 1347.45005) OpenURL
El-Sayed, A. M. A.; Hamdallah, E. M.; Elkadeky, Kh. W. Solutions of a class of internal nonlocal Cauchy problems for the differential equation \(x'(t) = f(t, x(t), x'(t))\). (English) Zbl 1307.34037 Fixed Point Theory 15, No. 2, 441-448 (2014). MSC: 34B10 47N20 47H10 PDF BibTeX XML Cite \textit{A. M. A. El-Sayed} et al., Fixed Point Theory 15, No. 2, 441--448 (2014; Zbl 1307.34037) Full Text: Link OpenURL
Le Thi Phuong Ngoc; Nguyen Thanh Long On the existence of asymptotically stable solutions for a mixed functional integral equation in \(N\) variables. (English) Zbl 1321.47161 Differ. Equ. Appl. 6, No. 2, 187-208 (2014). Reviewer: Shaochun Ji (Huaian) MSC: 47N20 47H10 45G10 65J15 PDF BibTeX XML Cite \textit{Le Thi Phuong Ngoc} and \textit{Nguyen Thanh Long}, Differ. Equ. Appl. 6, No. 2, 187--208 (2014; Zbl 1321.47161) Full Text: Link OpenURL
Abouelfarag, Ibrahim; Awad, Asmaa M. Existence theorem for an initial value problem of fractional order in \(L_{1}\left( 0,1\right) \). (English) Zbl 1295.45002 Int. J. Pure Appl. Math. 93, No. 3, 325-337 (2014). MSC: 45G10 PDF BibTeX XML Cite \textit{I. Abouelfarag} and \textit{A. M. Awad}, Int. J. Pure Appl. Math. 93, No. 3, 325--337 (2014; Zbl 1295.45002) Full Text: DOI Link OpenURL
Chlebowicz, Agnieszka; Darwish, Mohamed Abdalla; Sadarangani, Kishin Existence and asymptotic stability of solutions of a functional integral equation via a consequence of Sadovskii’s theorem. (English) Zbl 1297.45007 J. Funct. Spaces 2014, Article ID 324082, 9 p. (2014). MSC: 45G10 45M05 45M10 47H08 47H10 PDF BibTeX XML Cite \textit{A. Chlebowicz} et al., J. Funct. Spaces 2014, Article ID 324082, 9 p. (2014; Zbl 1297.45007) Full Text: DOI OpenURL
Darwish, Mohamed Abdalla; Rzepka, Beata Asymptotically stable solutions of a generalized fractional quadratic functional-integral equation of Erdélyi-Kober type. (English) Zbl 1293.45010 J. Funct. Spaces 2014, Article ID 192542, 9 p. (2014). MSC: 45N05 45J05 45M05 45M10 26A33 PDF BibTeX XML Cite \textit{M. A. Darwish} and \textit{B. Rzepka}, J. Funct. Spaces 2014, Article ID 192542, 9 p. (2014; Zbl 1293.45010) Full Text: DOI OpenURL
Lauran, Monica On a functional Fredholm integral equation, via the technique of nonexpansive operators. (English) Zbl 1313.45005 Creat. Math. Inform. 22, No. 2, 193-198 (2013). MSC: 45G10 45B05 45D05 45N05 47H09 PDF BibTeX XML Cite \textit{M. Lauran}, Creat. Math. Inform. 22, No. 2, 193--198 (2013; Zbl 1313.45005) OpenURL
Darwish, Mohamed Abdalla Monotonic solutions of a convolution functional-integral equation. (English) Zbl 1298.45016 Appl. Math. Comput. 219, No. 22, 10777-10782 (2013). MSC: 45N05 45G10 PDF BibTeX XML Cite \textit{M. A. Darwish}, Appl. Math. Comput. 219, No. 22, 10777--10782 (2013; Zbl 1298.45016) Full Text: DOI OpenURL
Abbas, Said; Benchohra, Mouffak; Henderson, Johnny Asymptotic attractive nonlinear fractional order Riemann-Liouville integral equations in Banach algebras. (English) Zbl 1305.45005 Nonlinear Stud. 20, No. 1, 94-104 (2013). MSC: 45N05 34A08 PDF BibTeX XML Cite \textit{S. Abbas} et al., Nonlinear Stud. 20, No. 1, 94--104 (2013; Zbl 1305.45005) Full Text: Link OpenURL
Çakan, Ümit; Özdemir, İsmet An application of the measure of noncompactness to some nonlinear functional integral equations in space \(C [0, a]\). (English) Zbl 1310.45004 Adv. Math. Sci. Appl. 23, No. 2, 575-584 (2013). Reviewer: Hui-Sheng Ding (Jiangxi) MSC: 45G10 47H08 47H10 PDF BibTeX XML Cite \textit{Ü. Çakan} and \textit{İ. Özdemir}, Adv. Math. Sci. Appl. 23, No. 2, 575--584 (2013; Zbl 1310.45004) OpenURL
Abbas, Saïd; Benchohra, Mouffak Qualitative theory for fractional order Riemann-Liouville integral equations in two independent variables. (English) Zbl 1296.26024 Tamsui Oxf. J. Inf. Math. Sci. 29, No. 2, 239-255 (2013). MSC: 26A33 45G05 PDF BibTeX XML Cite \textit{S. Abbas} and \textit{M. Benchohra}, Tamsui Oxf. J. Inf. Math. Sci. 29, No. 2, 239--255 (2013; Zbl 1296.26024) OpenURL
Deepmala; Pathak, H. K. A study on some problems on existence of solutions for nonlinear functional-integral equations. (English) Zbl 1299.47108 Acta Math. Sci., Ser. B, Engl. Ed. 33, No. 5, 1305-1313 (2013). MSC: 47H10 47N20 45G10 PDF BibTeX XML Cite \textit{Deepmala} and \textit{H. K. Pathak}, Acta Math. Sci., Ser. B, Engl. Ed. 33, No. 5, 1305--1313 (2013; Zbl 1299.47108) Full Text: DOI OpenURL
Heikkila, S.; Kumpulainen, M. Monotone convergence theorems for pointwise Henstock-Kurzweil integrable operator-valued functions and applications. (English) Zbl 1308.47058 Nonlinear Stud. 20, No. 3, 427-443 (2013). Reviewer: K. C. Sivakumar (Chennai) MSC: 47H07 47A56 26A39 28B15 45N05 46E40 47H10 PDF BibTeX XML Cite \textit{S. Heikkila} and \textit{M. Kumpulainen}, Nonlinear Stud. 20, No. 3, 427--443 (2013; Zbl 1308.47058) OpenURL
Honkonen, J. Contour-ordered Green’s functions in stochastic field theory. (English. Russian original) Zbl 1286.81134 Theor. Math. Phys. 175, No. 3, 827-834 (2013); translation from Teor. Mat. Fiz. 175, No. 3, 455-464 (2013). MSC: 81T10 35J08 PDF BibTeX XML Cite \textit{J. Honkonen}, Theor. Math. Phys. 175, No. 3, 827--834 (2013; Zbl 1286.81134); translation from Teor. Mat. Fiz. 175, No. 3, 455--464 (2013) Full Text: DOI OpenURL
El-Sayed, A. M. A.; Hashem, H. H. G. Existence results for nonlinear quadratic functional integral equations of fractional orders. (English) Zbl 1299.45017 Miskolc Math. Notes 14, No. 1, 79-88 (2013). MSC: 45N05 26A33 45G10 PDF BibTeX XML Cite \textit{A. M. A. El-Sayed} and \textit{H. H. G. Hashem}, Miskolc Math. Notes 14, No. 1, 79--88 (2013; Zbl 1299.45017) OpenURL
Ding, Hui-Sheng; Liu, Qing-Long; N’Guérékata, Gaston M. Equi-asymptotically almost periodic functions and applications to functional integral equations. (English) Zbl 1287.45004 Electron. J. Differ. Equ. 2013, Paper No. 103, 16 p. (2013). MSC: 45G10 45M15 PDF BibTeX XML Cite \textit{H.-S. Ding} et al., Electron. J. Differ. Equ. 2013, Paper No. 103, 16 p. (2013; Zbl 1287.45004) Full Text: EMIS OpenURL
Yang, Jun; Ge, Yanfang; Zhao, Shuo; Zhang, Bo Existence and attractiveness of solutions of a functional integral equation of fractional order. (Chinese. English summary) Zbl 1289.45007 J. Zhengzhou Univ., Nat. Sci. Ed. 45, No. 3, 5-9 (2013). MSC: 45G10 26A33 47H08 PDF BibTeX XML Cite \textit{J. Yang} et al., J. Zhengzhou Univ., Nat. Sci. Ed. 45, No. 3, 5--9 (2013; Zbl 1289.45007) OpenURL
Yang, Lijuan; Wang, Jing; Yang, Ganshan Study on the existence of solutions for a generalized functional integral equation in \(L^1\) spaces. (English) Zbl 1284.45003 J. Inequal. Appl. 2013, Paper No. 235, 10 p. (2013). MSC: 45G10 45N05 47H08 47H30 PDF BibTeX XML Cite \textit{L. Yang} et al., J. Inequal. Appl. 2013, Paper No. 235, 10 p. (2013; Zbl 1284.45003) Full Text: DOI OpenURL
Abbas, Saïd; Benchohra, Mouffak Existence and attractivity for fractional order integral equations in Fréchet spaces. (English) Zbl 1296.26023 Discuss. Math., Differ. Incl. Control Optim. 33, No. 1, 47-63 (2013). MSC: 26A33 PDF BibTeX XML Cite \textit{S. Abbas} and \textit{M. Benchohra}, Discuss. Math., Differ. Incl. Control Optim. 33, No. 1, 47--63 (2013; Zbl 1296.26023) Full Text: DOI OpenURL
Deepmala; Pathak, Hemant Kumar Study on existence of solutions for some nonlinear functional-integral equations with applications. (English) Zbl 1292.47063 Math. Commun. 18, No. 1, 97-107 (2013). Reviewer: Qingkai Kong (DeKalb) MSC: 47N20 47H08 39B99 PDF BibTeX XML Cite \textit{Deepmala} and \textit{H. K. Pathak}, Math. Commun. 18, No. 1, 97--107 (2013; Zbl 1292.47063) Full Text: Link OpenURL
Aghajani, Asadollah; Banaś, Józef; Sabzali, Navid Some generalizations of Darbo fixed point theorem and applications. (English) Zbl 1290.47053 Bull. Belg. Math. Soc. - Simon Stevin 20, No. 2, 345-358 (2013). Reviewer: Dariusz Bugajewski (Poznań) MSC: 47H10 47H08 34A12 PDF BibTeX XML Cite \textit{A. Aghajani} et al., Bull. Belg. Math. Soc. - Simon Stevin 20, No. 2, 345--358 (2013; Zbl 1290.47053) Full Text: Euclid OpenURL
Cichoń, Mieczysław; Metwali, Mohamed M. A. On monotonic integrable solutions for quadratic functional integral equations. (English) Zbl 1279.45007 Mediterr. J. Math. 10, No. 2, 909-926 (2013). Reviewer: Stefan Balint (Timişoara) MSC: 45G10 47H30 45M10 47H08 PDF BibTeX XML Cite \textit{M. Cichoń} and \textit{M. M. A. Metwali}, Mediterr. J. Math. 10, No. 2, 909--926 (2013; Zbl 1279.45007) Full Text: DOI OpenURL
Firouzdor, R.; Khoob, A. Heidarnejad; Mollaramezani, Z. Numerical solution of functional integral equations by using B-splines. (English) Zbl 1415.65284 J. Linear Topol. Algebra 1, No. 1, 45-53 (2012). MSC: 65R20 45B05 45D05 PDF BibTeX XML Cite \textit{R. Firouzdor} et al., J. Linear Topol. Algebra 1, No. 1, 45--53 (2012; Zbl 1415.65284) Full Text: Link OpenURL