Chems-Eddin, Mohamed Mahmoud On units of some fields of the form \(\mathbb{Q}\big (\sqrt{2},\sqrt{p},\sqrt{q},\sqrt{-l}\big)\). (English) Zbl 07729575 Math. Bohem. 148, No. 2, 237-242 (2023). MSC: 11R04 11R27 11R29 11R37 PDF BibTeX XML Cite \textit{M. M. Chems-Eddin}, Math. Bohem. 148, No. 2, 237--242 (2023; Zbl 07729575) Full Text: DOI
Capuñay, Alex Shintani cones for complex cubic number fields. (English) Zbl 1514.11068 Int. J. Number Theory 19, No. 3, 467-479 (2023). Reviewer: Władysław Narkiewicz (Wrocław) MSC: 11R04 11R16 11R27 PDF BibTeX XML Cite \textit{A. Capuñay}, Int. J. Number Theory 19, No. 3, 467--479 (2023; Zbl 1514.11068) Full Text: DOI
Mayer, Daniel C.; Soullami, Abderazak Algebraic number fields generated by an infinite family of monogenic trinomials. (English) Zbl 1498.11215 Bol. Soc. Mat. Mex., III. Ser. 29, No. 1, Paper No. 1, 38 p. (2023). MSC: 11R04 11R16 11R20 11R21 11R27 11R29 11R37 11Y40 PDF BibTeX XML Cite \textit{D. C. Mayer} and \textit{A. Soullami}, Bol. Soc. Mat. Mex., III. Ser. 29, No. 1, Paper No. 1, 38 p. (2023; Zbl 1498.11215) Full Text: DOI arXiv
Platonov, V. P.; Fedorov, G. V. Periodicity criterion for continued fractions of key elements in hyperelliptic fields. (English. Russian original) Zbl 1517.11142 Dokl. Math. 106, Part Suppl. 2, S262-S269 (2022); translation from Chebyshevskiĭ Sb. 20, No. 1(69), 248-260 (2019). MSC: 11R58 11G16 11J70 PDF BibTeX XML Cite \textit{V. P. Platonov} and \textit{G. V. Fedorov}, Dokl. Math. 106, Part Suppl. 2, S262--S269 (2022; Zbl 1517.11142); translation from Chebyshevskiĭ Sb. 20, No. 1(69), 248--260 (2019) Full Text: DOI
Azizi, Abdelmalek; Chems-Eddin, Mohamed Mahmoud; Zekhnini, Abdelkader Note on the Hilbert 2-class field tower. (English) Zbl 07655824 Math. Bohem. 147, No. 4, 513-524 (2022). MSC: 11R11 11R16 11R20 11R27 11R29 11R37 PDF BibTeX XML Cite \textit{A. Azizi} et al., Math. Bohem. 147, No. 4, 513--524 (2022; Zbl 07655824) Full Text: DOI
Fedorov, G. V. On the problem of describing elements of elliptic fields with a periodic expansion into a continued fraction over quadratic fields. (English. Russian original) Zbl 1503.11102 Dokl. Math. 106, No. 1, 259-264 (2022); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 505, 56-62 (2022). MSC: 11J70 11R58 11R27 PDF BibTeX XML Cite \textit{G. V. Fedorov}, Dokl. Math. 106, No. 1, 259--264 (2022; Zbl 1503.11102); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 505, 56--62 (2022) Full Text: DOI
Lee, Jun Ho Existence of the continued fractions of \(\sqrt{d}\) and its applications. (English) Zbl 1501.11020 Bull. Korean Math. Soc. 59, No. 3, 697-707 (2022). Reviewer: Isabelle Dubois (Metz) MSC: 11A55 11R11 11R27 PDF BibTeX XML Cite \textit{J. H. Lee}, Bull. Korean Math. Soc. 59, No. 3, 697--707 (2022; Zbl 1501.11020) Full Text: DOI
Wu, Hai-Liang; She, Yue-Feng On a polynomial involving roots of unity and its applications. (English) Zbl 1500.11077 Int. J. Number Theory 18, No. 8, 1749-1763 (2022). Reviewer: Abdelmalek Azizi (Oujda) MSC: 11R18 11R11 11R27 PDF BibTeX XML Cite \textit{H.-L. Wu} and \textit{Y.-F. She}, Int. J. Number Theory 18, No. 8, 1749--1763 (2022; Zbl 1500.11077) Full Text: DOI arXiv
Işıkay, Sevcan; Pekin, Ayten On Yokoi’s invariants and the Ankeny-Artin-Chowla conjecture. (English) Zbl 1510.11156 Int. J. Number Theory 18, No. 3, 473-484 (2022). Reviewer: Abdelmalek Azizi (Oujda) MSC: 11R27 11R29 11R11 11A55 PDF BibTeX XML Cite \textit{S. Işıkay} and \textit{A. Pekin}, Int. J. Number Theory 18, No. 3, 473--484 (2022; Zbl 1510.11156) Full Text: DOI
Bennett, Michael A.; Walsh, Gary A note on power integral bases in pure quartic number fields. (English) Zbl 1499.11164 Publ. Math. Debr. 100, No. 1-2, 233-239 (2022). Reviewer: István Gaál (Debrecen) MSC: 11D25 11R16 PDF BibTeX XML Cite \textit{M. A. Bennett} and \textit{G. Walsh}, Publ. Math. Debr. 100, No. 1--2, 233--239 (2022; Zbl 1499.11164) Full Text: DOI
Lee, Jun Ho Relative class number one problem of real quadratic fields and continued fraction of \(\sqrt{m}\) with period 6. (English) Zbl 1497.11263 East Asian Math. J. 37, No. 5, 613-617 (2021). MSC: 11R11 11R65 PDF BibTeX XML Cite \textit{J. H. Lee}, East Asian Math. J. 37, No. 5, 613--617 (2021; Zbl 1497.11263) Full Text: DOI
Işikay, Sevcan; Pekin, Ayten New bounds for fundamental units and class numbers of real quadratic fields. (English) Zbl 1493.11147 Bull. Korean Math. Soc. 58, No. 5, 1149-1161 (2021). Reviewer: Abdelmalek Azizi (Oujda) MSC: 11R27 11R29 11R11 11A55 PDF BibTeX XML Cite \textit{S. Işikay} and \textit{A. Pekin}, Bull. Korean Math. Soc. 58, No. 5, 1149--1161 (2021; Zbl 1493.11147) Full Text: DOI
Fedorov, G. V. On fundamental \(S\)-units and continued fractions constructed in hyperelliptic fields using two linear valuations. (English. Russian original) Zbl 1475.11133 Dokl. Math. 103, No. 3, 151-156 (2021); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 498, 65-70 (2021). MSC: 11J70 11R58 11R27 PDF BibTeX XML Cite \textit{G. V. Fedorov}, Dokl. Math. 103, No. 3, 151--156 (2021; Zbl 1475.11133); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 498, 65--70 (2021) Full Text: DOI
Louboutin, Stéphane R. On Ennola’s conjecture on non-Galois cubic number fields with exceptional units. (English) Zbl 1480.11138 Mosc. Math. J. 21, No. 4, 789-805 (2021). Reviewer: Balasubramanian Sury (Bangalore) MSC: 11R16 11R27 PDF BibTeX XML Cite \textit{S. R. Louboutin}, Mosc. Math. J. 21, No. 4, 789--805 (2021; Zbl 1480.11138) Full Text: Link
Özer, Özen A handy technique for fundamental unit in specific type of real quadratic fields. (English) Zbl 07664156 Appl. Math. Nonlinear Sci. 5, No. 1, 495-498 (2020). MSC: 11R11 11A55 11R27 11K31 PDF BibTeX XML Cite \textit{Ö. Özer}, Appl. Math. Nonlinear Sci. 5, No. 1, 495--498 (2020; Zbl 07664156) Full Text: DOI
Özer, Özen Fundamental units for real quadratic fields determined by continued fraction conditions. (English) Zbl 1484.11208 AIMS Math. 5, No. 4, 2899-2908 (2020). MSC: 11R27 11A55 11R11 PDF BibTeX XML Cite \textit{Ö. Özer}, AIMS Math. 5, No. 4, 2899--2908 (2020; Zbl 1484.11208) Full Text: DOI
Fedorov, Gleb Vladimirovich On families of hyperelliptic curves over the field of rational numbers, whose Jacobian contains torsion points of given orders. (Russian. English summary) Zbl 1455.11089 Chebyshevskiĭ Sb. 21, No. 1(73), 301-319 (2020). MSC: 11G30 11A55 14H40 14H45 PDF BibTeX XML Cite \textit{G. V. Fedorov}, Chebyshevskiĭ Sb. 21, No. 1(73), 301--319 (2020; Zbl 1455.11089) Full Text: MNR
Platonov, Vladimir Petrovich; Petrunin, Maksim Maksimovich; Shteĭnikov, Yuriĭ Nikolaevich Periodic elements \(\sqrt{f}\) in elliptic fields with a field of constants of zero characteristic. (Russian. English summary) Zbl 1455.11155 Chebyshevskiĭ Sb. 21, No. 1(73), 252-275 (2020). MSC: 11R58 11J70 11R27 PDF BibTeX XML Cite \textit{V. P. Platonov} et al., Chebyshevskiĭ Sb. 21, No. 1(73), 252--275 (2020; Zbl 1455.11155) Full Text: MNR
Galyautdinov, I. G.; Lavrentyeva, E. E. Diophantine equation generated by the maximal subfield of a circular field. (English. Russian original) Zbl 1456.11203 Russ. Math. 64, No. 7, 38-47 (2020); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 7, 45-55 (2020). MSC: 11R04 11R16 11D25 PDF BibTeX XML Cite \textit{I. G. Galyautdinov} and \textit{E. E. Lavrentyeva}, Russ. Math. 64, No. 7, 38--47 (2020; Zbl 1456.11203); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 7, 45--55 (2020) Full Text: DOI
Das, Shamik; Chakraborty, Debopam; Saikia, Anupam On the period of the continued fraction of \(\sqrt{pq}\). (English) Zbl 1465.11043 Acta Arith. 196, No. 3, 291-302 (2020). Reviewer: Michael M. Pahirya (Mukachevo) MSC: 11A55 11R11 11R27 11R29 PDF BibTeX XML Cite \textit{S. Das} et al., Acta Arith. 196, No. 3, 291--302 (2020; Zbl 1465.11043) Full Text: DOI
Saikia, Anupam Divisibility of class number of a real cubic or quadratic field and its fundamental unit. (English) Zbl 1444.11221 Chakraborty, Kalyan (ed.) et al., Class groups of number fields and related topics. Collected papers presented at the first international conference, ICCGNFRT, Harish-Chandra Research Institute, Allahabad, India, September 4–7, 2017. Singapore: Springer. 67-72 (2020). MSC: 11R29 11R27 11R11 11R16 PDF BibTeX XML Cite \textit{A. Saikia}, in: Class groups of number fields and related topics. Collected papers presented at the first international conference, ICCGNFRT, Harish-Chandra Research Institute, Allahabad, India, September 4--7, 2017. Singapore: Springer. 67--72 (2020; Zbl 1444.11221) Full Text: DOI
Fedorov, Gleb V. On \(S\)-units for valuations of the second degree in hyperelliptic fields. (English. Russian original) Zbl 1457.11159 Izv. Math. 84, No. 2, 392-435 (2020); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 84, No. 2, 197-242 (2020). MSC: 11R58 11J70 11R27 PDF BibTeX XML Cite \textit{G. V. Fedorov}, Izv. Math. 84, No. 2, 392--435 (2020; Zbl 1457.11159); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 84, No. 2, 197--242 (2020) Full Text: DOI
Aoki, Miho; Kishi, Yasuhiro A family of pairs of imaginary cyclic fields of degree \((p-1)/2\) with both class numbers divisible by \(p\). (English) Zbl 1447.11113 Ramanujan J. 52, No. 1, 133-161 (2020). Reviewer: James E. Carter (Charleston) MSC: 11R11 11R16 11R29 PDF BibTeX XML Cite \textit{M. Aoki} and \textit{Y. Kishi}, Ramanujan J. 52, No. 1, 133--161 (2020; Zbl 1447.11113) Full Text: DOI arXiv
Azizi, Abdelmalek; Zekhnini, Abdelkader; Taous, Mohammed On the capitulation of the 2-ideal classes of the field \(\mathbb{Q}(\sqrt{p_1p_2q},i)\) of type \((2,2,2)\). (English) Zbl 1431.11118 Bol. Soc. Parana. Mat. (3) 38, No. 4, 127-135 (2020). MSC: 11R11 11R16 11R20 11R27 11R29 PDF BibTeX XML Cite \textit{A. Azizi} et al., Bol. Soc. Parana. Mat. (3) 38, No. 4, 127--135 (2020; Zbl 1431.11118) Full Text: Link
Panda, Corina B. A generalization of a theorem of Hecke for \(\mathrm{SL}_2(\mathbb{F}_p)\) to fundamental discriminants. (English) Zbl 1466.11025 J. Number Theory 207, 83-109 (2020). MSC: 11F70 11R27 11R29 11R11 14G35 PDF BibTeX XML Cite \textit{C. B. Panda}, J. Number Theory 207, 83--109 (2020; Zbl 1466.11025) Full Text: DOI
Fedorov, Gleb Vladimirovich On boundedness of period lengths of continued fractions of key elements hyperelliptic fields over the field of rational numbers. (Russian. English summary) Zbl 1455.11098 Chebyshevskiĭ Sb. 20, No. 4(72), 357-370 (2019). MSC: 11J70 11R58 11G20 11J61 PDF BibTeX XML Cite \textit{G. V. Fedorov}, Chebyshevskiĭ Sb. 20, No. 4(72), 357--370 (2019; Zbl 1455.11098) Full Text: MNR
Platonov, Vladimir Petrovich; Fedorov, Gleb Vladimirovich The criterion of periodicity of continued fractions of key elements in hyperelliptic fields. (Russian. English summary) Zbl 1439.11286 Chebyshevskiĭ Sb. 20, No. 1(69), 248-260 (2019); translation in Dokl. Math. 106, Suppl. 2, S262-S269 (2022). MSC: 11R58 11G16 11J70 PDF BibTeX XML Cite \textit{V. P. Platonov} and \textit{G. V. Fedorov}, Chebyshevskiĭ Sb. 20, No. 1(69), 248--260 (2019; Zbl 1439.11286); translation in Dokl. Math. 106, Suppl. 2, S262--S269 (2022) Full Text: MNR
Taljaoui, Mouhcine; Bouhamza, Mostapha Periodic Jacobi-Perron algorithms in cubic fields and fundamental units. (English) Zbl 1431.11121 \(p\)-Adic Numbers Ultrametric Anal. Appl. 11, No. 3, 248-254 (2019). MSC: 11R16 11R27 11A55 PDF BibTeX XML Cite \textit{M. Taljaoui} and \textit{M. Bouhamza}, \(p\)-Adic Numbers Ultrametric Anal. Appl. 11, No. 3, 248--254 (2019; Zbl 1431.11121) Full Text: DOI
Chakraborty, Debopam; Saikia, Anupam On a conjecture of Mordell. (English) Zbl 1452.11030 Rocky Mt. J. Math. 49, No. 8, 2545-2556 (2019). Reviewer: Mahadi Ddamulira (Saarbrücken) MSC: 11D09 11A55 11J70 11R11 11R27 PDF BibTeX XML Cite \textit{D. Chakraborty} and \textit{A. Saikia}, Rocky Mt. J. Math. 49, No. 8, 2545--2556 (2019; Zbl 1452.11030) Full Text: DOI arXiv Euclid
Kawamoto, Fuminori; Kishi, Yasuhiro; Suzuki, Hiroshi; Tomita, Koshi Real quadratic fields, continued fractions, and a construction of primary symmetric parts of ELE type. (English) Zbl 1457.11148 Kyushu J. Math. 73, No. 1, 165-187 (2019). MSC: 11R11 11R29 11A55 11R27 PDF BibTeX XML Cite \textit{F. Kawamoto} et al., Kyushu J. Math. 73, No. 1, 165--187 (2019; Zbl 1457.11148) Full Text: DOI
Balady, Steve; Washington, Lawrence C. A family of cyclic quartic fields with explicit fundamental units. (English) Zbl 1442.11141 Acta Arith. 187, No. 1, 43-57 (2019). Reviewer: Abdelmalek Azizi (Oujda) MSC: 11R16 11R27 PDF BibTeX XML Cite \textit{S. Balady} and \textit{L. C. Washington}, Acta Arith. 187, No. 1, 43--57 (2019; Zbl 1442.11141) Full Text: DOI arXiv
Fedorov, Gleb Vladimirovich Periodic continued fractions and \(S\)-units with second degree valuations in hyperelliptic fields. (Russian. English summary) Zbl 1434.11130 Chebyshevskiĭ Sb. 19, No. 3(67), 282-297 (2018). MSC: 11J70 11G16 PDF BibTeX XML Cite \textit{G. V. Fedorov}, Chebyshevskiĭ Sb. 19, No. 3(67), 282--297 (2018; Zbl 1434.11130) Full Text: DOI MNR
Azizi, Abdelmalek; Zekhnini, Abdelkader; Taous, Mohammed On the unit index of some real biquadratic number fields. (English) Zbl 1424.11156 Turk. J. Math. 42, No. 2, 703-715 (2018). MSC: 11R27 11R21 11R29 11R11 PDF BibTeX XML Cite \textit{A. Azizi} et al., Turk. J. Math. 42, No. 2, 703--715 (2018; Zbl 1424.11156) Full Text: DOI
Harrington, Joshua; Jones, Lenny A new condition equivalent to the Ankeny-Artin-Chowla conjecture. (English) Zbl 1460.11130 J. Number Theory 192, 240-250 (2018). Reviewer: Alessandro Cobbe (Neubiberg) MSC: 11R27 11R11 11B39 11B68 PDF BibTeX XML Cite \textit{J. Harrington} and \textit{L. Jones}, J. Number Theory 192, 240--250 (2018; Zbl 1460.11130) Full Text: DOI
Samuels, C. L. Metric Mahler measures over number fields. (English) Zbl 1413.11085 Acta Math. Hung. 154, No. 1, 105-123 (2018). MSC: 11G50 11R04 11R11 11R27 11R29 PDF BibTeX XML Cite \textit{C. L. Samuels}, Acta Math. Hung. 154, No. 1, 105--123 (2018; Zbl 1413.11085) Full Text: DOI arXiv
Özer, Özen Fibonacci sequence and continued fraction expansions in real quadratic number fields. (English) Zbl 1433.11012 Malays. J. Math. Sci. 11, No. 1, 97-118 (2017). MSC: 11B39 11R11 11A55 11R27 PDF BibTeX XML Cite \textit{Ö. Özer}, Malays. J. Math. Sci. 11, No. 1, 97--118 (2017; Zbl 1433.11012) Full Text: Link
Özer, Özen A note on the structure of certain real quadratic number fields. (English) Zbl 1391.11148 Iran. J. Sci. Technol., Trans. A, Sci. 41, No. 3, 759-769 (2017). MSC: 11R11 11R27 11R29 11A55 PDF BibTeX XML Cite \textit{Ö. Özer}, Iran. J. Sci. Technol., Trans. A, Sci. 41, No. 3, 759--769 (2017; Zbl 1391.11148) Full Text: DOI
Louboutin, Stéphane R. Non-{G}alois cubic number fields with exceptional units. (English) Zbl 1399.11172 Publ. Math. Debr. 91, No. 1-2, 153-170 (2017). Reviewer: Władysław Narkiewicz (Wrocław) MSC: 11R16 11R27 PDF BibTeX XML Cite \textit{S. R. Louboutin}, Publ. Math. Debr. 91, No. 1--2, 153--170 (2017; Zbl 1399.11172) Full Text: DOI
Özer, Özen; Khammas, Ahmed On the real quadratic fields with certain continued fraction expansions and fundamental units. (English) Zbl 1427.11112 Int. J. Nonlinear Anal. Appl. 8, No. 1, 197-208 (2017). MSC: 11R11 11R27 11A55 11R29 PDF BibTeX XML Cite \textit{Ö. Özer} and \textit{A. Khammas}, Int. J. Nonlinear Anal. Appl. 8, No. 1, 197--208 (2017; Zbl 1427.11112) Full Text: DOI
Azizi, Abdelmalek; Zekhnini, Abdelkader; Taous, Mohammed Capitulation in the absolutely abelian extensions of some number fields. II. (English) Zbl 1422.11228 Acta Math. Vietnam. 42, No. 1, 81-97 (2017). MSC: 11R37 11R11 11R16 11R20 11R27 11R29 PDF BibTeX XML Cite \textit{A. Azizi} et al., Acta Math. Vietnam. 42, No. 1, 81--97 (2017; Zbl 1422.11228) Full Text: DOI arXiv
Aktaş, Kevser; Murty, M. Ram Fundamental units and consecutive squarefull numbers. (English) Zbl 1419.11006 Int. J. Number Theory 13, No. 1, 243-252 (2017). MSC: 11A25 11D09 PDF BibTeX XML Cite \textit{K. Aktaş} and \textit{M. R. Murty}, Int. J. Number Theory 13, No. 1, 243--252 (2017; Zbl 1419.11006) Full Text: DOI
Bruno, A. D. From Diophantine approximations to Diophantine equations. (Russian. English summary) Zbl 1435.11089 Chebyshevskiĭ Sb. 17, No. 3(59), 38-52 (2016). MSC: 11H55 11J70 PDF BibTeX XML Cite \textit{A. D. Bruno}, Chebyshevskiĭ Sb. 17, No. 3(59), 38--52 (2016; Zbl 1435.11089) Full Text: MNR
Blomer, Valentin A note on the negative Pell equation. (English) Zbl 1407.11127 Sander, Jürgen (ed.) et al., From arithmetic to zeta-functions. Number theory in memory of Wolfgang Schwarz. Cham: Springer. 31-40 (2016). MSC: 11R29 11R27 11D09 PDF BibTeX XML Cite \textit{V. Blomer}, in: From arithmetic to zeta-functions. Number theory in memory of Wolfgang Schwarz. Cham: Springer. 31--40 (2016; Zbl 1407.11127) Full Text: DOI
Azizi, Abdelmalek; Zekhnini, Abdelkader; Taous, Mohammed On the strongly ambiguous classes of some biquadratic number fields. (English) Zbl 1413.11120 Math. Bohem. 141, No. 3, 363-384 (2016). Reviewer: Elliot Benjamin (Winterport) MSC: 11R11 11R16 11R20 11R27 11R29 11R37 PDF BibTeX XML Cite \textit{A. Azizi} et al., Math. Bohem. 141, No. 3, 363--384 (2016; Zbl 1413.11120) Full Text: DOI arXiv
Louboutin, Stéphane R. Fundamental units for orders of unit rank 1 and generated by a unit. (English) Zbl 1411.11107 Gładki, Paweł (ed.) et al., Algebra, logic and number theory. Proceedings of the 3rd joint conferences on algebra, logic and number theory, Bȩdlewo, Poland, June 8–13, 2014. Warsaw: Polish Academy of Sciences, Institute of Mathematics (ISBN 978-83-86806-31-7/pbk). Banach Center Publications 108, 173-189 (2016). MSC: 11R27 11R54 11R16 PDF BibTeX XML Cite \textit{S. R. Louboutin}, Banach Cent. Publ. 108, 173--189 (2016; Zbl 1411.11107) Full Text: DOI
Jespers, E.; Kiefer, A.; del Río, Á. Presentations of groups acting discontinuously on direct products of hyperbolic spaces. (English) Zbl 1377.20035 Math. Comput. 85, No. 301, 2515-2552 (2016). Reviewer: Sangjib Kim (Seoul) MSC: 20G20 22E40 16S34 16U60 PDF BibTeX XML Cite \textit{E. Jespers} et al., Math. Comput. 85, No. 301, 2515--2552 (2016; Zbl 1377.20035) Full Text: DOI arXiv
Balady, Steve Families of cyclic cubic fields. (English) Zbl 1414.11132 J. Number Theory 167, 394-406 (2016). MSC: 11R16 11R27 PDF BibTeX XML Cite \textit{S. Balady}, J. Number Theory 167, 394--406 (2016; Zbl 1414.11132) Full Text: DOI arXiv
Chakraborty, Debopam; Saikia, Anupam Congruence relations for the fundamental unit of a pure cubic field and its class number. (English) Zbl 1414.11133 J. Number Theory 166, 76-84 (2016). MSC: 11R16 11R27 11R29 11R11 PDF BibTeX XML Cite \textit{D. Chakraborty} and \textit{A. Saikia}, J. Number Theory 166, 76--84 (2016; Zbl 1414.11133) Full Text: DOI
Jespers, Eric; del Río, Ángel Group ring groups. Volume 2: Structure theorems of unit groups. (English) Zbl 1338.16002 De Gruyter Textbook. Berlin: De Gruyter (ISBN 978-3-11-041149-2/pbk; 978-3-11-041150-8/ebook). x, 217 p. (2016). Reviewer: János Kurdics (Nyíregyháza) MSC: 16-02 20-02 16U60 16S34 20C05 16H10 PDF BibTeX XML Cite \textit{E. Jespers} and \textit{Á. del Río}, Group ring groups. Volume 2: Structure theorems of unit groups. Berlin: De Gruyter (2016; Zbl 1338.16002) Full Text: DOI
Özer, Özen; Pekin, Ayten An algorithm for explicit form of fundamental units of certain real quadratic fields and period eight. (English) Zbl 1389.11015 Eur. J. Pure Appl. Math. 8, No. 3, 343-356 (2015). MSC: 11A55 11R27 PDF BibTeX XML Cite \textit{Ö. Özer} and \textit{A. Pekin}, Eur. J. Pure Appl. Math. 8, No. 3, 343--356 (2015; Zbl 1389.11015) Full Text: Link
Wang, Bing; Zhang, Zhe Ramification in relative quadratic extensions and fundamental units of real quadratic fields. (English) Zbl 1349.11135 J. Univ. Sci. Technol. China 45, No. 8, 623-626 (2015). MSC: 11R11 11R27 PDF BibTeX XML Cite \textit{B. Wang} and \textit{Z. Zhang}, J. Univ. Sci. Technol. China 45, No. 8, 623--626 (2015; Zbl 1349.11135) Full Text: DOI
Fomenko, O. M. On the Dedekind zeta function. II. (English. Russian original) Zbl 1360.11123 J. Math. Sci., New York 207, No. 6, 923-933 (2015); translation from Zap. Nauchn. Semin. POMI 429, 178-192 (2014). MSC: 11R42 11R44 PDF BibTeX XML Cite \textit{O. M. Fomenko}, J. Math. Sci., New York 207, No. 6, 923--933 (2015; Zbl 1360.11123); translation from Zap. Nauchn. Semin. POMI 429, 178--192 (2014) Full Text: DOI
Aoki, Miho; Kishi, Yasuhiro On systems of fundamental units of certain quartic fields. (English) Zbl 1331.11099 Int. J. Number Theory 11, No. 7, 2019-2035 (2015). Reviewer: Abdelmalek Azizi (Oujda) MSC: 11R27 11R16 11R29 PDF BibTeX XML Cite \textit{M. Aoki} and \textit{Y. Kishi}, Int. J. Number Theory 11, No. 7, 2019--2035 (2015; Zbl 1331.11099) Full Text: DOI
Jespers, E.; Juriaans, S. O.; Kiefer, A.; de A. e Silva, A.; Souza Filho, A. C. From the Poincaré theorem to generators of the unit group of integral group rings of finite groups. (English) Zbl 1326.16034 Math. Comput. 84, No. 293, 1489-1520 (2015). Reviewer: Wolfgang Rump (Stuttgart) MSC: 16U60 20C05 16S34 20F05 PDF BibTeX XML Cite \textit{E. Jespers} et al., Math. Comput. 84, No. 293, 1489--1520 (2015; Zbl 1326.16034) Full Text: DOI arXiv
Lee, Jun Ho; Louboutin, Stéphane R. Determination of the orders generated by a cyclic cubic unit that are Galois invariant. (English) Zbl 1394.11073 J. Number Theory 148, 33-39 (2015). MSC: 11R16 11R27 PDF BibTeX XML Cite \textit{J. H. Lee} and \textit{S. R. Louboutin}, J. Number Theory 148, 33--39 (2015; Zbl 1394.11073) Full Text: DOI
Karadeniz Gözeri, Gül; Pekin, Ayten Explicit form of fundamental units of certain real quadratic fields. (English) Zbl 1389.11014 Eur. J. Pure Appl. Math. 7, No. 1, 55-64 (2014). MSC: 11A55 11R11 11R27 PDF BibTeX XML Cite \textit{G. Karadeniz Gözeri} and \textit{A. Pekin}, Eur. J. Pure Appl. Math. 7, No. 1, 55--64 (2014; Zbl 1389.11014) Full Text: Link
Weiß, Christian A note on modular curves and fundamental units of negative norm. (English) Zbl 1367.11078 Mat. Vesn. 66, No. 3, 315-316 (2014). MSC: 11R27 11F41 PDF BibTeX XML Cite \textit{C. Weiß}, Mat. Vesn. 66, No. 3, 315--316 (2014; Zbl 1367.11078) Full Text: EMIS
Kaneko, Kan On units of a family of cubic number fields. (English) Zbl 1358.11123 SUT J. Math. 50, No. 1, 19-24 (2014). MSC: 11R27 11R16 11R37 PDF BibTeX XML Cite \textit{K. Kaneko}, SUT J. Math. 50, No. 1, 19--24 (2014; Zbl 1358.11123)
Kaneko, Kan A method for finding a minimal point of the lattice in cubic number fields. II. (English) Zbl 1311.11101 Tsukuba J. Math. 38, No. 2, 227-237 (2014). Reviewer: Władysław Narkiewicz (Wrocław) MSC: 11R16 11R27 PDF BibTeX XML Cite \textit{K. Kaneko}, Tsukuba J. Math. 38, No. 2, 227--237 (2014; Zbl 1311.11101) Full Text: DOI Euclid
Lee, Jun Ho; Louboutin, Stéphane R. On the fundamental units of some cubic orders generated by units. (English) Zbl 1307.11120 Acta Arith. 165, No. 3, 283-299 (2014). Reviewer: Abdelmalek Azizi (Oujda) MSC: 11R27 11R16 PDF BibTeX XML Cite \textit{J. H. Lee} and \textit{S. R. Louboutin}, Acta Arith. 165, No. 3, 283--299 (2014; Zbl 1307.11120) Full Text: DOI
Espinoza, Milton Signed Shintani cones for number fields with one complex place. (English) Zbl 1307.11119 J. Number Theory 145, 496-539 (2014). Reviewer: Roland Quême (Brax) MSC: 11R27 11R42 11Y40 PDF BibTeX XML Cite \textit{M. Espinoza}, J. Number Theory 145, 496--539 (2014; Zbl 1307.11119) Full Text: DOI arXiv
Kaneko, Kan A method for finding a minimal point of the lattice in cubic number fields. (English) Zbl 1305.11092 Tsukuba J. Math. 38, No. 1, 85-121 (2014). Reviewer: Władysław Narkiewicz (Wrocław) MSC: 11R16 11R27 PDF BibTeX XML Cite \textit{K. Kaneko}, Tsukuba J. Math. 38, No. 1, 85--121 (2014; Zbl 1305.11092) Full Text: DOI Euclid Link
Platonov, V. P. Number-theoretic properties of hyperelliptic fields and the torsion problem in Jacobians of hyperelliptic curves over the rational number field. (English. Russian original) Zbl 1305.11096 Russ. Math. Surv. 69, No. 1, 1-34 (2014); translation from Usp. Mat. Nauk 69, No. 1, 3-38 (2014). Reviewer: Gabriel D. Villa-Salvador (México D. F.) MSC: 11R27 11G30 11R58 14H40 PDF BibTeX XML Cite \textit{V. P. Platonov}, Russ. Math. Surv. 69, No. 1, 1--34 (2014; Zbl 1305.11096); translation from Usp. Mat. Nauk 69, No. 1, 3--38 (2014) Full Text: DOI
Diaz y Diaz, Francisco; Friedman, Eduardo Signed fundamental domains for totally real number fields. (English) Zbl 1325.11117 Proc. Lond. Math. Soc. (3) 108, No. 4, 965-988 (2014). Reviewer: Abdelmalek Azizi (Oujda) MSC: 11R27 11Y40 11R42 11R80 PDF BibTeX XML Cite \textit{F. Diaz y Diaz} and \textit{E. Friedman}, Proc. Lond. Math. Soc. (3) 108, No. 4, 965--988 (2014; Zbl 1325.11117) Full Text: DOI arXiv Link
Zhang, Zhe; Yue, Qin Fundamental units of real quadratic fields of odd class number. (English) Zbl 1310.11110 J. Number Theory 137, 122-129 (2014). Reviewer: Claude Levesque (Québec) MSC: 11R27 11D09 PDF BibTeX XML Cite \textit{Z. Zhang} and \textit{Q. Yue}, J. Number Theory 137, 122--129 (2014; Zbl 1310.11110) Full Text: DOI
Nakamura, Hiroaki On arithmetic monodromy representations of Eisenstein type in fundamental groups of once punctured elliptic curves. (English) Zbl 1330.14048 Publ. Res. Inst. Math. Sci. 49, No. 3, 413-496 (2013). Reviewer: Aristides Kontogeorgis (Panepistimiopolis) MSC: 14H30 11G16 11F20 PDF BibTeX XML Cite \textit{H. Nakamura}, Publ. Res. Inst. Math. Sci. 49, No. 3, 413--496 (2013; Zbl 1330.14048) Full Text: DOI
Trifković, Mak Algebraic theory of quadratic numbers. (English) Zbl 1280.11002 Universitext. New York, NY: Springer (ISBN 978-1-4614-7716-7/pbk; 978-1-4614-7717-4/ebook). xi, 197 p. (2013). Reviewer: Franz Lemmermeyer (Jagstzell) MSC: 11-01 11R11 11A55 11E16 11Rxx PDF BibTeX XML Cite \textit{M. Trifković}, Algebraic theory of quadratic numbers. New York, NY: Springer (2013; Zbl 1280.11002) Full Text: DOI
Platonov, B. P.; Petrunin, M. M. On the torsion problem in Jacobians of curves of genus 2 over the rational number field. (English. Russian original) Zbl 1345.11045 Dokl. Math. 86, No. 2, 642-643 (2012); translation from Dokl. Akad. Nauk. 446, No. 3, 263-264 (2012). MSC: 11G30 14H40 14H25 PDF BibTeX XML Cite \textit{B. P. Platonov} and \textit{M. M. Petrunin}, Dokl. Math. 86, No. 2, 642--643 (2012; Zbl 1345.11045); translation from Dokl. Akad. Nauk. 446, No. 3, 263--264 (2012) Full Text: DOI
Kim, Jae Moon; Ryu, Jado On the class number and the fundamental unit of the real quadratic field \(k = \mathbb Q (\sqrt {pq})\). (English) Zbl 1294.11189 Bull. Aust. Math. Soc. 85, No. 3, 359-370 (2012). MSC: 11R11 11R27 11R29 PDF BibTeX XML Cite \textit{J. M. Kim} and \textit{J. Ryu}, Bull. Aust. Math. Soc. 85, No. 3, 359--370 (2012; Zbl 1294.11189) Full Text: DOI
Diaz y Diaz, Francisco; Friedman, Eduardo Colmez cones for fundamental units of totally real cubic fields. (English) Zbl 1257.11097 J. Number Theory 132, No. 8, 1653-1663 (2012). Reviewer: Franz Lemmermeyer (Jagstzell) MSC: 11R16 11R27 PDF BibTeX XML Cite \textit{F. Diaz y Diaz} and \textit{E. Friedman}, J. Number Theory 132, No. 8, 1653--1663 (2012; Zbl 1257.11097) Full Text: DOI
Louboutin, Stéphane R. On the fundamental units of a totally real cubic order generated by a unit. (English) Zbl 1283.11152 Proc. Am. Math. Soc. 140, No. 2, 429-436 (2012). MSC: 11R16 11R27 PDF BibTeX XML Cite \textit{S. R. Louboutin}, Proc. Am. Math. Soc. 140, No. 2, 429--436 (2012; Zbl 1283.11152) Full Text: DOI
Hashimoto, Ryūta Searching discriminants with large fundamental units via continued fraction expansion. (English) Zbl 1307.11012 Amou, Masaaki (ed.) et al., Diophantine analysis and related fields 2011, DARF–2011. Proceedings of the conference, Musashino, Tokyo, Japan, March 3–5, 2011. Melville, NY: American Institute of Physics (AIP) (ISBN 978-0-7354-0947-7/pbk). AIP Conference Proceedings 1385, 38-41 (2011). Reviewer: Anitha Srinivasan (Madrid) MSC: 11A55 11D09 11R27 11R11 PDF BibTeX XML Cite \textit{R. Hashimoto}, AIP Conf. Proc. 1385, 38--41 (2011; Zbl 1307.11012) Full Text: DOI
Özer, Özen; Telci, Fitnat Karaali On continued fractions of real quadratic fields with period six. (English) Zbl 1248.11086 Int. J. Contemp. Math. Sci. 6, No. 17-20, 833-840 (2011). Reviewer: Abdelmalek Azizi (Oujda) MSC: 11R27 11R11 11A55 PDF BibTeX XML Cite \textit{Ö. Özer} and \textit{F. K. Telci}, Int. J. Contemp. Math. Sci. 6, No. 17--20, 833--840 (2011; Zbl 1248.11086) Full Text: Link
Kochetkov, Yu. Yu. On the geometry of Galois cubic fields. (English. Russian original) Zbl 1273.11154 Math. Notes 89, No. 1, 150-155 (2011); translation from Mat. Zametki 89, No. 1, 139-144 (2011). Reviewer: Mowaffaq Hajja (Irbid) MSC: 11R16 12F10 PDF BibTeX XML Cite \textit{Yu. Yu. Kochetkov}, Math. Notes 89, No. 1, 150--155 (2011; Zbl 1273.11154); translation from Mat. Zametki 89, No. 1, 139--144 (2011) Full Text: DOI
Fontein, Felix The infrastructure of a global field of arbitrary unit rank. (English) Zbl 1267.11129 Math. Comput. 80, No. 276, 2325-2357 (2011). MSC: 11Y40 14H05 11R27 11R65 PDF BibTeX XML Cite \textit{F. Fontein}, Math. Comput. 80, No. 276, 2325--2357 (2011; Zbl 1267.11129) Full Text: DOI arXiv
Gómez-Molleda, Mariángeles; Lario, Joan-C. Deconstruction of a Dirichlet-Nazimow formula. (English) Zbl 1287.11126 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 105, No. 1, 109-117 (2011). Reviewer: Franz Lemmermeyer (Jagstzell) MSC: 11R29 11R37 11R42 PDF BibTeX XML Cite \textit{M. Gómez-Molleda} and \textit{J.-C. Lario}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 105, No. 1, 109--117 (2011; Zbl 1287.11126) Full Text: DOI
Beers, J.; Henshaw, D.; McCall, C. K.; Mulay, S. B.; Spindler, M. Fundamentality of a cubic unit \(u\) for \(\mathbb{Z}[u]\). (English) Zbl 1231.11128 Math. Comput. 80, No. 273, 563-578 (2011). Reviewer: Florin Nicolae (Berlin) MSC: 11R27 11R16 PDF BibTeX XML Cite \textit{J. Beers} et al., Math. Comput. 80, No. 273, 563--578 (2011; Zbl 1231.11128) Full Text: DOI
Mulay, S. B.; Spindler, Mark The positive discriminant case of Nagell’s theorem for certain cubic orders. (English) Zbl 1219.11163 J. Number Theory 131, No. 3, 470-486 (2011). Reviewer: Abdelmalek Azizi (Oujda) MSC: 11R27 11R16 11R09 11R29 PDF BibTeX XML Cite \textit{S. B. Mulay} and \textit{M. Spindler}, J. Number Theory 131, No. 3, 470--486 (2011; Zbl 1219.11163) Full Text: DOI
Benyash-Krivets, V. V.; Platonov, V. P. A new local-global principle for quadratic function fields. (English. Russian original) Zbl 1244.11093 Dokl. Math. 82, No. 1, 531-534 (2010); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 433, No. 2, 154-157 (2010). Reviewer: Gabriel D. Villa-Salvador (México City) MSC: 11R58 11R27 PDF BibTeX XML Cite \textit{V. V. Benyash-Krivets} and \textit{V. P. Platonov}, Dokl. Math. 82, No. 1, 531--534 (2010; Zbl 1244.11093); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 433, No. 2, 154--157 (2010) Full Text: DOI
Hajdu, Lajos Optimal systems of fundamental \(S\)-units for LLL-reduction. (English) Zbl 1199.11135 Period. Math. Hung. 59, No. 1, 53-79 (2009). Reviewer: Péter Olajos (Miskolc) MSC: 11R27 11D61 11Y50 PDF BibTeX XML Cite \textit{L. Hajdu}, Period. Math. Hung. 59, No. 1, 53--79 (2009; Zbl 1199.11135) Full Text: DOI arXiv
Özer, Özen; Telci, Fitnat Karaali; İşcan, H. On some real quadratic fields with period 4. (English) Zbl 1197.11147 Int. J. Contemp. Math. Sci. 4, No. 25-28, 1389-1396 (2009). Reviewer: Abdelmalek Azizi (Oujda) MSC: 11R27 11A55 11R11 11R29 PDF BibTeX XML Cite \textit{Ö. Özer} et al., Int. J. Contemp. Math. Sci. 4, No. 25--28, 1389--1396 (2009; Zbl 1197.11147) Full Text: Link
Mollin, R. A. Central norms and continued fractions. (English) Zbl 1254.11007 Int. J. Pure Appl. Math. 55, No. 1, 1-8 (2009). Reviewer: Nikos Tzanakis (Iraklion) MSC: 11A55 11D09 11R11 PDF BibTeX XML Cite \textit{R. A. Mollin}, Int. J. Pure Appl. Math. 55, No. 1, 1--8 (2009; Zbl 1254.11007)
Pekin, Ayten; Carus, Aydin Some results on the class numbers of certain real quadratic fields. (English) Zbl 1198.11084 JP J. Algebra Number Theory Appl. 13, No. 1, 41-47 (2009). Reviewer: Richard A. Mollin (Calgary) MSC: 11R11 11R29 11R27 PDF BibTeX XML Cite \textit{A. Pekin} and \textit{A. Carus}, JP J. Algebra Number Theory Appl. 13, No. 1, 41--47 (2009; Zbl 1198.11084) Full Text: Link
Park, S.-M.; Lee, G.-N. The class number one problem for some totally complex quartic number fields. (English) Zbl 1167.11040 J. Number Theory 129, No. 6, 1338-1349 (2009). Reviewer: Abdelmalek Azizi (Oujda) MSC: 11R29 11R27 11R16 PDF BibTeX XML Cite \textit{S. M. Park} and \textit{G. N. Lee}, J. Number Theory 129, No. 6, 1338--1349 (2009; Zbl 1167.11040) Full Text: DOI
Pekin, Aỵten; Carus, Aydin A computational approximation to class numbers of certain real quadratic fields. (English) Zbl 1190.11059 Int. J. Math. Sci. Eng. Appl. 2, No. 3, 1-9 (2008). Reviewer: Florin Nicolae (Berlin) MSC: 11R29 11R27 11R11 11-04 11Y40 PDF BibTeX XML Cite \textit{A. Pekin} and \textit{A. Carus}, Int. J. Math. Sci. Eng. Appl. 2, No. 3, 1--9 (2008; Zbl 1190.11059) Full Text: Link
Köklüce, Bülent; Kelebek, Ismail Gokhan A different characterization of \(U_1(\mathbb Z C_7)\) and \(U_1(\mathbb Z C_9)\). (English) Zbl 1165.16301 Int. J. Algebra 2, No. 13-16, 701-706 (2008). MSC: 16U60 20C05 16S34 11R27 11Y40 PDF BibTeX XML Cite \textit{B. Köklüce} and \textit{I. G. Kelebek}, Int. J. Algebra 2, No. 13--16, 701--706 (2008; Zbl 1165.16301) Full Text: Link
Bilgin, Tevfik; Gorentas, Necat A note on characterization of \(\mathcal N_{\mathcal U}(D_n)\). (English) Zbl 1163.16303 Int. Electron. J. Algebra 3, 135-140 (2008). MSC: 16U60 20C05 16S34 PDF BibTeX XML Cite \textit{T. Bilgin} and \textit{N. Gorentas}, Int. Electron. J. Algebra 3, 135--140 (2008; Zbl 1163.16303)
Wu, Qingquan Computing fundamental units in bicyclic biquadratic global fields. (English) Zbl 1173.11057 J. Ramanujan Math. Soc. 23, No. 4, 357-380 (2008). Reviewer: Michael Pohst (Berlin) MSC: 11R16 11R27 PDF BibTeX XML Cite \textit{Q. Wu}, J. Ramanujan Math. Soc. 23, No. 4, 357--380 (2008; Zbl 1173.11057)
Louboutin, Stéphane R. The fundamental unit of some quadratic, cubic or quartic orders. (English) Zbl 1165.11076 J. Ramanujan Math. Soc. 23, No. 2, 191-210 (2008). Reviewer: Abdelmalek Azizi (Oujda) MSC: 11R16 11R27 11R09 11R11 PDF BibTeX XML Cite \textit{S. R. Louboutin}, J. Ramanujan Math. Soc. 23, No. 2, 191--210 (2008; Zbl 1165.11076)
Ziane, M’hammed On the group of units of number fields of degree 2 and 4. (Sur le groupe des unités de corps de nombres de degré 2 et 4.) (French. English summary) Zbl 1196.11150 J. Théor. Nombres Bordx. 19, No. 3, 799-808 (2007). MSC: 11R27 11R11 11R16 11R04 PDF BibTeX XML Cite \textit{M. Ziane}, J. Théor. Nombres Bordx. 19, No. 3, 799--808 (2007; Zbl 1196.11150) Full Text: DOI EuDML
Yang, Shichun Upper bounds of the class number and the fundamental unit of real quadratic field \(\mathbb{Q}(\sqrt p)\). (Chinese. English summary) Zbl 1131.11350 J. Math. Res. Expo. 27, No. 2, 408-412 (2007). MSC: 11R11 11R27 11R29 PDF BibTeX XML Cite \textit{S. Yang}, J. Math. Res. Expo. 27, No. 2, 408--412 (2007; Zbl 1131.11350)
Alperin, Roger C. Remarks on a problem of Eisenstein. (English) Zbl 1128.11048 JP J. Algebra Number Theory Appl. 7, No. 1, 97-102 (2007). Reviewer: Franz Lemmermeyer (Jagstzell) MSC: 11R11 11R27 PDF BibTeX XML Cite \textit{R. C. Alperin}, JP J. Algebra Number Theory Appl. 7, No. 1, 97--102 (2007; Zbl 1128.11048) Full Text: arXiv
Mollin, R. A. Diophantine equations and congruences. (English) Zbl 1159.11011 Int. J. Algebra 1, No. 5-8, 293-302 (2007). Reviewer: Michael J. Jacobson jun. (Calgary) MSC: 11D09 11R11 11A55 11R29 PDF BibTeX XML Cite \textit{R. A. Mollin}, Int. J. Algebra 1, No. 5--8, 293--302 (2007; Zbl 1159.11011) Full Text: DOI Link
Leprévost, Franck; Pohst, Michael; Schöpp, Andreas Units in some parametric families of quartic fields. (English) Zbl 1116.11090 Acta Arith. 127, No. 3, 205-216 (2007). Reviewer: Günter Lettl (Graz) MSC: 11R27 11R16 PDF BibTeX XML Cite \textit{F. Leprévost} et al., Acta Arith. 127, No. 3, 205--216 (2007; Zbl 1116.11090) Full Text: DOI
Schöpp, Andreas M. Fundamental units in a parametric family of not totally real quintic number fields. (English) Zbl 1119.11065 J. Théor. Nombres Bordx. 18, No. 3, 693-706 (2006). Reviewer: Abdelmalek Azizi (Oujda) MSC: 11R27 11R21 PDF BibTeX XML Cite \textit{A. M. Schöpp}, J. Théor. Nombres Bordx. 18, No. 3, 693--706 (2006; Zbl 1119.11065) Full Text: DOI Numdam EuDML EMIS Link
Kim, Sey On congruence relations between the fundamental units of biquadratic fields. (English) Zbl 1171.11327 J. Number Theory 121, No. 1, 7-29 (2006). MSC: 11R16 11R27 11R42 PDF BibTeX XML Cite \textit{S. Kim}, J. Number Theory 121, No. 1, 7--29 (2006; Zbl 1171.11327) Full Text: DOI
Karaali Telci, Fitnat A note on Yokoi’s \(D\)-invariants. (English) Zbl 1094.11040 Int. J. Pure Appl. Math. 26, No. 3, 375-378 (2006). Reviewer: Abdelmalek Azizi (Oujda) MSC: 11R27 11R11 11D09 PDF BibTeX XML Cite \textit{F. Karaali Telci}, Int. J. Pure Appl. Math. 26, No. 3, 375--378 (2006; Zbl 1094.11040)
Ishii, Hidenori Congruences between cusp forms and fundamental units. (Japanese. English summary) Zbl 1390.11085 Mem. Inst. Sci. Eng., Ritsumeikan Univ. 64, 9-11 (2005). MSC: 11F33 11R27 11B68 PDF BibTeX XML Cite \textit{H. Ishii}, Mem. Inst. Sci. Eng., Ritsumeikan Univ. 64, 9--11 (2005; Zbl 1390.11085) Full Text: Link
Azizi, Abdelmalek On the units of certain number fields of degree 8 over \(\mathbb Q\). (Sur les unités de certains corps de nombres de degré 8 sur \(\mathbb Q\).) (French) Zbl 1188.11056 Ann. Sci. Math. Qué. 29, No. 2, 111-129 (2005). MSC: 11R27 11R21 PDF BibTeX XML Cite \textit{A. Azizi}, Ann. Sci. Math. Qué. 29, No. 2, 111--129 (2005; Zbl 1188.11056) Full Text: Link
Cheng, Kell; Williams, Hugh Some results concerning certain periodic continued fractions. (English) Zbl 1080.11008 Acta Arith. 117, No. 3, 247-264 (2005). Reviewer: Claude Levesque (Québec) MSC: 11A55 11R27 11Y11 11Y65 PDF BibTeX XML Cite \textit{K. Cheng} and \textit{H. Williams}, Acta Arith. 117, No. 3, 247--264 (2005; Zbl 1080.11008) Full Text: DOI