Terchi, Messaouda.; Hassouna, Houda The blow-up solutions to nonlinear fractional differential Caputo-system. (English) Zbl 07293375 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 13, No. 1, 52-63 (2020). MSC: 34A08 34A34 34C11 PDF BibTeX XML Cite \textit{Messaouda. Terchi} and \textit{H. Hassouna}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 13, No. 1, 52--63 (2020; Zbl 07293375) Full Text: DOI MNR
Spigler, Renato On a quantitative theory of limits: estimating the speed of convergence. (English) Zbl 07268217 Fract. Calc. Appl. Anal. 23, No. 4, 1013-1024 (2020). MSC: 00A05 00A69 PDF BibTeX XML Cite \textit{R. Spigler}, Fract. Calc. Appl. Anal. 23, No. 4, 1013--1024 (2020; Zbl 07268217) Full Text: DOI
Stefański, Tomasz P.; Gulgowski, Jacek Signal propagation in electromagnetic media described by fractional-order models. (English) Zbl 1451.78013 Commun. Nonlinear Sci. Numer. Simul. 82, Article ID 105029, 16 p. (2020). MSC: 78A25 78A40 35R11 26A33 78M99 65T50 PDF BibTeX XML Cite \textit{T. P. Stefański} and \textit{J. Gulgowski}, Commun. Nonlinear Sci. Numer. Simul. 82, Article ID 105029, 16 p. (2020; Zbl 1451.78013) Full Text: DOI
Agarwal, Ravi P.; Hristova, Snezhana; O’Regan, Donal Exact solutions of linear Riemann-Liouville fractional differential equations with impulses. (English) Zbl 1448.34008 Rocky Mt. J. Math. 50, No. 3, 779-791 (2020). MSC: 34A08 34A05 34A37 34A30 34A12 PDF BibTeX XML Cite \textit{R. P. Agarwal} et al., Rocky Mt. J. Math. 50, No. 3, 779--791 (2020; Zbl 1448.34008) Full Text: DOI Euclid
Bourdin, Loïc Weighted Hölder continuity of Riemann-Liouville fractional integrals – application to regularity of solutions to fractional Cauchy problems with Carathéodory dynamics. (English) Zbl 1428.34009 Fract. Calc. Appl. Anal. 22, No. 3, 722-749 (2019). MSC: 34A08 26A33 34A12 34A34 PDF BibTeX XML Cite \textit{L. Bourdin}, Fract. Calc. Appl. Anal. 22, No. 3, 722--749 (2019; Zbl 1428.34009) Full Text: DOI
Kolokoltsov, Vassili N. The probabilistic point of view on the generalized fractional partial differential equations. (English) Zbl 07115448 Fract. Calc. Appl. Anal. 22, No. 3, 543-600 (2019). MSC: 34A08 35S05 35S11 35S15 60J25 60J35 60J50 60J75 PDF BibTeX XML Cite \textit{V. N. Kolokoltsov}, Fract. Calc. Appl. Anal. 22, No. 3, 543--600 (2019; Zbl 07115448) Full Text: DOI
Han, Xuemei; Zhang, Yi Conformal invariance and conserved quantity of a fractional Lagrange system. (Chinese. English summary) Zbl 1438.37031 J. Yunnan Univ., Nat. Sci. 41, No. 2, 298-308 (2019). MSC: 37J06 37J51 34A08 26A33 PDF BibTeX XML Cite \textit{X. Han} and \textit{Y. Zhang}, J. Yunnan Univ., Nat. Sci. 41, No. 2, 298--308 (2019; Zbl 1438.37031) Full Text: DOI
Yakar, Coşkun; Arslan, Mehmet Quasilinearization method for causal terminal value problems involving Riemann-Liouville fractional derivatives. (English) Zbl 1406.34025 Electron. J. Differ. Equ. 2019, Paper No. 11, 11 p. (2019). MSC: 34A08 34A34 34A45 34A99 PDF BibTeX XML Cite \textit{C. Yakar} and \textit{M. Arslan}, Electron. J. Differ. Equ. 2019, Paper No. 11, 11 p. (2019; Zbl 1406.34025) Full Text: Link
Samraiz, Muhammad; Iqbal, Sajid; Pečarić, Josip Generalized integral inequalities for fractional calculus. (English) Zbl 1438.26090 Cogent Math. Stat. 5, Article ID 1426205, 10 p. (2018). MSC: 26D15 26A24 26D10 26A33 33E12 PDF BibTeX XML Cite \textit{M. Samraiz} et al., Cogent Math. Stat. 5, Article ID 1426205, 10 p. (2018; Zbl 1438.26090) Full Text: DOI
Zhukovskaya, N. V.; Sitnik, S. M. Applying Liénard-Chipart’s method to solving homogeneous fractional differential Euler-type equations on an interval. (Russian) Zbl 1438.34067 Mat. Zamet. SVFU 25, No. 3, 33-42 (2018). MSC: 34A08 34A30 34A05 PDF BibTeX XML Cite \textit{N. V. Zhukovskaya} and \textit{S. M. Sitnik}, Mat. Zamet. SVFU 25, No. 3, 33--42 (2018; Zbl 1438.34067) Full Text: DOI
Turmetov, Batirkhan Kh. Operator method for constructing a solution of a class of linear differential equations of fractional order. (English) Zbl 1403.34008 Kalmenov, Tynysbek Sh. (ed.) et al., Functional analysis in interdisciplinary applications, Astana, Kazakhstan, October 2–5, 2017. Cham: Springer (ISBN 978-3-319-67052-2/hbk; 978-3-319-67053-9/ebook). Springer Proceedings in Mathematics & Statistics 216, 179-193 (2017). MSC: 34A08 34A09 34A30 PDF BibTeX XML Cite \textit{B. Kh. Turmetov}, in: Functional analysis in interdisciplinary applications, Astana, Kazakhstan, October 2--5, 2017. Cham: Springer. 179--193 (2017; Zbl 1403.34008) Full Text: DOI
Sousa, J. Vanterler da C.; de Oliveira, E. Capelas Mittag-Leffler functions and the truncated \(\mathcal {V}\)-fractional derivative. (English) Zbl 1381.26007 Mediterr. J. Math. 14, No. 6, Paper No. 244, 26 p. (2017). MSC: 26A33 26A24 33E12 PDF BibTeX XML Cite \textit{J. V. da C. Sousa} and \textit{E. C. de Oliveira}, Mediterr. J. Math. 14, No. 6, Paper No. 244, 26 p. (2017; Zbl 1381.26007) Full Text: DOI arXiv
Khalaf, Sanaa L.; Khudair, Ayad R. Particular solution of linear sequential fractional differential equation with constant coefficients by inverse fractional differential operators. (English) Zbl 1378.34013 Differ. Equ. Dyn. Syst. 25, No. 3, 373-383 (2017). MSC: 34A08 34A30 34A05 34A25 PDF BibTeX XML Cite \textit{S. L. Khalaf} and \textit{A. R. Khudair}, Differ. Equ. Dyn. Syst. 25, No. 3, 373--383 (2017; Zbl 1378.34013) Full Text: DOI
Srivastava, H. M. Remarks on some families of fractional-order differential equations. (English) Zbl 1375.26019 Integral Transforms Spec. Funct. 28, No. 7, 560-564 (2017). Reviewer: James Adedayo Oguntuase (Abeokuta) MSC: 26A33 34A08 33C20 33E12 47B38 47G10 PDF BibTeX XML Cite \textit{H. M. Srivastava}, Integral Transforms Spec. Funct. 28, No. 7, 560--564 (2017; Zbl 1375.26019) Full Text: DOI
Ibrahim, Badawi Hamza Elbadawi; Fan, Zhenbin; Li, Gang Approximate controllability for functional equations with Riemann-Liouville derivative by iterative and approximate method. (English) Zbl 1366.93053 J. Funct. Spaces 2017, Article ID 2508165, 7 p. (2017). MSC: 93B05 93C25 34A08 47N70 PDF BibTeX XML Cite \textit{B. H. E. Ibrahim} et al., J. Funct. Spaces 2017, Article ID 2508165, 7 p. (2017; Zbl 1366.93053) Full Text: DOI
Srivastava, H. M. Some families of Mittag-Leffler type functions and associated operators of fractional calculus (survey). (English) Zbl 1371.26010 TWMS J. Pure Appl. Math. 7, No. 2, 123-145 (2016). MSC: 26A33 33C20 33E12 47B38 47G10 PDF BibTeX XML Cite \textit{H. M. Srivastava}, TWMS J. Pure Appl. Math. 7, No. 2, 123--145 (2016; Zbl 1371.26010) Full Text: Link
Rezazadeh, Hadi; Aminikhah, Hossein; Refahi Sheikhani, Amir Hossein Analytical studies for linear periodic systems of fractional order. (English) Zbl 1371.34017 Math. Sci., Springer 10, No. 1-2, 13-21 (2016). MSC: 34A08 34A30 PDF BibTeX XML Cite \textit{H. Rezazadeh} et al., Math. Sci., Springer 10, No. 1--2, 13--21 (2016; Zbl 1371.34017) Full Text: DOI
Garg, Mridula; Sharma, Ajay; Manohar, Pratibha A generalized Mittag-Leffler type function with four parameters. (English) Zbl 1365.33021 Thai J. Math. 14, No. 3, 637-649 (2016). MSC: 33E12 26A33 47B38 PDF BibTeX XML Cite \textit{M. Garg} et al., Thai J. Math. 14, No. 3, 637--649 (2016; Zbl 1365.33021) Full Text: Link
Chyzhykov, Igor; Semochko, Nadiya Generalization of the Wiman-Valiron method for fractional derivatives. (English) Zbl 1366.30024 Int. J. Appl. Math. 29, No. 1, 19-30 (2016). Reviewer: Anatoly N. Kochubei (Kyïv) MSC: 30D20 30E15 26A33 34A08 PDF BibTeX XML Cite \textit{I. Chyzhykov} and \textit{N. Semochko}, Int. J. Appl. Math. 29, No. 1, 19--30 (2016; Zbl 1366.30024) Full Text: DOI
Zhang, Xianmin; Ding, Wenbin; Peng, Hui; Liu, Zuohua; Shu, Tong The general solution of impulsive systems with Riemann-Liouville fractional derivatives. (English) Zbl 1357.34021 Open Math. 14, 1125-1137 (2016). MSC: 34A08 34A37 34A05 PDF BibTeX XML Cite \textit{X. Zhang} et al., Open Math. 14, 1125--1137 (2016; Zbl 1357.34021) Full Text: DOI
Liu, Yuji Survey and new results on boundary-value problems of singular fractional differential equations with impulse effects. (English) Zbl 1357.34001 Electron. J. Differ. Equ. 2016, Paper No. 296, 177 p. (2016). MSC: 34-02 34A08 26A33 45G10 34B37 34B15 34B16 34-01 34A30 34A45 PDF BibTeX XML Cite \textit{Y. Liu}, Electron. J. Differ. Equ. 2016, Paper No. 296, 177 p. (2016; Zbl 1357.34001) Full Text: Link
Cao, Jianxiong; Qiu, Yanan A high order numerical scheme for variable order fractional ordinary differential equation. (English) Zbl 1347.65119 Appl. Math. Lett. 61, 88-94 (2016). MSC: 65L05 34A08 65L20 34A34 PDF BibTeX XML Cite \textit{J. Cao} and \textit{Y. Qiu}, Appl. Math. Lett. 61, 88--94 (2016; Zbl 1347.65119) Full Text: DOI
Anastassiou, George A.; Argyros, Ioannis K. Semilocal convegence of Newton-like methods under general conditions, with applications in fractional calculus. (English) Zbl 1399.65116 J. Numer. Anal. Approx. Theory 44, No. 2, 113-126 (2015). MSC: 65G99 65H10 26A33 47J25 47J05 PDF BibTeX XML Cite \textit{G. A. Anastassiou} and \textit{I. K. Argyros}, J. Numer. Anal. Approx. Theory 44, No. 2, 113--126 (2015; Zbl 1399.65116)
Zhang, Xianmin; Agarwal, Praveen; Liu, Zuohua; Peng, Hui The general solution for impulsive differential equations with Riemann-Liouville fractional-order \(q\in (1,2)\). (English) Zbl 1350.34017 Open Math. 13, 908-930 (2015). MSC: 34A08 34A37 34A05 PDF BibTeX XML Cite \textit{X. Zhang} et al., Open Math. 13, 908--930 (2015; Zbl 1350.34017) Full Text: DOI
Didgar, Mohsen; Ahmadi, Nafiseh An efficient method for solving systems of linear ordinary and fractional differential equations. (English) Zbl 1326.65087 Bull. Malays. Math. Sci. Soc. (2) 38, No. 4, 1723-1740 (2015). MSC: 65L05 34A30 34A08 PDF BibTeX XML Cite \textit{M. Didgar} and \textit{N. Ahmadi}, Bull. Malays. Math. Sci. Soc. (2) 38, No. 4, 1723--1740 (2015; Zbl 1326.65087) Full Text: DOI
Malkawi, Ehab Spatial rotation of the fractional derivative in two-dimensional space. (English) Zbl 1326.83060 Adv. Math. Phys. 2015, Article ID 719173, 8 p. (2015). MSC: 83D05 83A05 83C10 81P15 26A33 PDF BibTeX XML Cite \textit{E. Malkawi}, Adv. Math. Phys. 2015, Article ID 719173, 8 p. (2015; Zbl 1326.83060) Full Text: DOI arXiv
Dehghan, Mehdi; Abbaszadeh, Mostafa; Mohebbi, Akbar Error estimate for the numerical solution of fractional reaction-subdiffusion process based on a meshless method. (English) Zbl 1305.65211 J. Comput. Appl. Math. 280, 14-36 (2015). MSC: 65M70 34A34 PDF BibTeX XML Cite \textit{M. Dehghan} et al., J. Comput. Appl. Math. 280, 14--36 (2015; Zbl 1305.65211) Full Text: DOI
Ekici, Mehmet; Sonmezoglu, Abdullah; Zayed, Elsayed M. E. A new fractional sub-equation method for solving the space-time fractional differential equations in mathematical physics. (English) Zbl 1412.35193 Comput. Methods Differ. Equ. 2, No. 3, 153-170 (2014). MSC: 35K99 35P05 35P99 PDF BibTeX XML Cite \textit{M. Ekici} et al., Comput. Methods Differ. Equ. 2, No. 3, 153--170 (2014; Zbl 1412.35193) Full Text: Link
Yang, Xiaohui; Liu, Yuji Picard iterative processes for initial value problems of singular fractional differential equations. (English) Zbl 1343.34151 Adv. Difference Equ. 2014, Paper No. 102, 17 p. (2014). MSC: 34K05 34A12 34A40 PDF BibTeX XML Cite \textit{X. Yang} and \textit{Y. Liu}, Adv. Difference Equ. 2014, Paper No. 102, 17 p. (2014; Zbl 1343.34151) Full Text: DOI
Khastan, A.; Nieto, Juan J.; Rodríguez-López, R. Schauder fixed-point theorem in semilinear spaces and its application to fractional differential equations with uncertainty. (English) Zbl 1391.34004 Fixed Point Theory Appl. 2014, Paper No. 21, 14 p. (2014). MSC: 34A07 34A08 34A12 34A34 47H10 47N20 PDF BibTeX XML Cite \textit{A. Khastan} et al., Fixed Point Theory Appl. 2014, Paper No. 21, 14 p. (2014; Zbl 1391.34004) Full Text: DOI
Rabei, Eqab M.; Al-Jamel, A.; Widyan, H.; Baleanu, D. Comment on “Maxwell’s equations and electromagnetic Lagrangian density in fractional form” [J. Math. Phys. 53, 033505 (2012)]. (English) Zbl 1290.78003 J. Math. Phys. 55, No. 3, 034101, 2 p. (2014). MSC: 78A25 70S05 26A33 70S10 PDF BibTeX XML Cite \textit{E. M. Rabei} et al., J. Math. Phys. 55, No. 3, 034101, 2 p. (2014; Zbl 1290.78003) Full Text: DOI
Furati, Khaled Bounds on the solution of a Cauchy-type problem involving a weighted sequential fractional derivative. (English) Zbl 1312.34014 Fract. Calc. Appl. Anal. 16, No. 1, 171-188 (2013). MSC: 34A08 33C05 45J05 34A34 34A12 PDF BibTeX XML Cite \textit{K. Furati}, Fract. Calc. Appl. Anal. 16, No. 1, 171--188 (2013; Zbl 1312.34014) Full Text: DOI
Rodrigues, M. M.; Vieira, N. On fractional Whittaker equation and operational calculus. (English) Zbl 1297.34009 J. Math. Sci., Tokyo 20, No. 1, 127-146 (2013). MSC: 34A08 34A30 34A25 PDF BibTeX XML Cite \textit{M. M. Rodrigues} and \textit{N. Vieira}, J. Math. Sci., Tokyo 20, No. 1, 127--146 (2013; Zbl 1297.34009)
Garg, Mridula; Manohar, Pratibha; Kalla, S. L. A Mittag-Leffler-type function of two variables. (English) Zbl 1292.33020 Integral Transforms Spec. Funct. 24, No. 11, 934-944 (2013). Reviewer: Sunil Dutt Purohit (Udaipur) MSC: 33E12 47B38 47G10 26A33 PDF BibTeX XML Cite \textit{M. Garg} et al., Integral Transforms Spec. Funct. 24, No. 11, 934--944 (2013; Zbl 1292.33020) Full Text: DOI
Bhrawy, A. H.; Tharwat, M. M.; Yildirim, A. A new formula for fractional integrals of Chebyshev polynomials: application for solving multi-term fractional differential equations. (English) Zbl 1278.65096 Appl. Math. Modelling 37, No. 6, 4245-4252 (2013). Reviewer: Ivan Secrieru (Chişinău) MSC: 65L05 65L03 34A08 34A30 PDF BibTeX XML Cite \textit{A. H. Bhrawy} et al., Appl. Math. Modelling 37, No. 6, 4245--4252 (2013; Zbl 1278.65096) Full Text: DOI Link
Mei, Zhan-Dong; Peng, Ji-Gen; Zhang, Yang On general fractional abstract Cauchy problem. (English) Zbl 1273.34012 Commun. Pure Appl. Anal. 12, No. 6, 2753-2772 (2013). MSC: 34A08 47D06 34A12 34G20 PDF BibTeX XML Cite \textit{Z.-D. Mei} et al., Commun. Pure Appl. Anal. 12, No. 6, 2753--2772 (2013; Zbl 1273.34012) Full Text: DOI
Jaradat, E. K.; Hijjawi, R. S.; Khalifeh, J. M. Maxwell’s equations and electromagnetic Lagrangian density in fractional form. (English) Zbl 1274.78012 J. Math. Phys. 53, No. 3, 033505, 9 p. (2012). MSC: 78A25 70S05 26A33 70S10 PDF BibTeX XML Cite \textit{E. K. Jaradat} et al., J. Math. Phys. 53, No. 3, 033505, 9 p. (2012; Zbl 1274.78012) Full Text: DOI
Furati, Khaled M. A Cauchy-type problem with a sequential fractional derivative in the space of continuous functions. (English) Zbl 1279.26016 Bound. Value Probl. 2012, Paper No. 58, 14 p. (2012). MSC: 26A33 34A08 34A34 34A12 PDF BibTeX XML Cite \textit{K. M. Furati}, Bound. Value Probl. 2012, Paper No. 58, 14 p. (2012; Zbl 1279.26016) Full Text: DOI
Guo, Shimin; Mei, Liquan; Li, Ying; Sun, Youfa The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics. (English) Zbl 1255.37022 Phys. Lett., A 376, No. 4, 407-411 (2012). MSC: 37L05 35Q35 35Q53 35R11 PDF BibTeX XML Cite \textit{S. Guo} et al., Phys. Lett., A 376, No. 4, 407--411 (2012; Zbl 1255.37022) Full Text: DOI
Patie, Pierre; Simon, Thomas Intertwining certain fractional derivatives. (English) Zbl 1259.60040 Potential Anal. 36, No. 4, 569-587 (2012). Reviewer: Stavros Vakeroudis (Paris) MSC: 60G18 60G51 60J25 26A33 33E12 PDF BibTeX XML Cite \textit{P. Patie} and \textit{T. Simon}, Potential Anal. 36, No. 4, 569--587 (2012; Zbl 1259.60040) Full Text: DOI arXiv
Zhou, Zhiqiang; Wu, Hongying Existence and uniqueness of solutions to nonlinear fractional differential equations with Lipschitz continuity. (English) Zbl 1258.26007 J. Pure Appl. Math., Adv. Appl. 6, No. 2, 85-103 (2011). MSC: 26A33 26D10 34K05 PDF BibTeX XML Cite \textit{Z. Zhou} and \textit{H. Wu}, J. Pure Appl. Math., Adv. Appl. 6, No. 2, 85--103 (2011; Zbl 1258.26007)
Saxena, R. K.; Kalla, S. L.; Saxena, Ravi Multivariate analogue of generalized Mittag-Leffler function. (English) Zbl 1275.33030 Integral Transforms Spec. Funct. 22, No. 7, 533-548 (2011). MSC: 33E12 33C15 26A33 47B38 47G10 PDF BibTeX XML Cite \textit{R. K. Saxena} et al., Integral Transforms Spec. Funct. 22, No. 7, 533--548 (2011; Zbl 1275.33030) Full Text: DOI
Denton, Z.; Vatsala, A. S. Fractional differential equations and numerical approximations. (English) Zbl 1227.34006 Ladde, G. S. (ed.) et al., Proceedings of neural, parallel, and scientific computations. Vol. 4. Proceedings of the 4th international conference, Atlanta, GA, USA, August 11–14, 2010. Atlanta, GA: Dynamic Publishers (ISBN 1-890888-05-2/pbk). 119-123 (2010). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 34A08 34A12 34A30 65L05 PDF BibTeX XML Cite \textit{Z. Denton} and \textit{A. S. Vatsala}, in: Proceedings of neural, parallel, and scientific computations. Vol. 4. Proceedings of the 4th international conference, Atlanta, GA, USA, August 11--14, 2010. Atlanta, GA: Dynamic Publishers. 119--123 (2010; Zbl 1227.34006)
Tomovski, Živorad; Hilfer, Rudolf; Srivastava, H. M. Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions. (English) Zbl 1213.26011 Integral Transforms Spec. Funct. 21, No. 11-12, 797-814 (2010). Reviewer: Stefan G. Samko (Faro) MSC: 26A33 33C20 33E12 47B38 47G10 PDF BibTeX XML Cite \textit{Ž. Tomovski} et al., Integral Transforms Spec. Funct. 21, No. 11--12, 797--814 (2010; Zbl 1213.26011) Full Text: DOI
Yakubovich, Semyon Eigenfunctions and fundamental solutions of the fractional two-parameter Laplacian. (English) Zbl 1189.35361 Int. J. Math. Math. Sci. 2010, Article ID 541934, 18 p. (2010). MSC: 35R11 35A22 35A08 35P05 35C05 26A33 PDF BibTeX XML Cite \textit{S. Yakubovich}, Int. J. Math. Math. Sci. 2010, Article ID 541934, 18 p. (2010; Zbl 1189.35361) Full Text: DOI EuDML
Liao, Chunping; Ye, Haiping Existence of positive solutions of nonlinear fractional delay differential equations. (English) Zbl 1177.34081 Positivity 13, No. 3, 601-609 (2009). MSC: 34K05 PDF BibTeX XML Cite \textit{C. Liao} and \textit{H. Ye}, Positivity 13, No. 3, 601--609 (2009; Zbl 1177.34081) Full Text: DOI
Jumarie, Guy On some similarities and differences between fractional probability density signed measure of probability and quantum probability. (English) Zbl 1171.82320 Mod. Phys. Lett. B 23, No. 6, 791-805 (2009). MSC: 82C10 28A80 PDF BibTeX XML Cite \textit{G. Jumarie}, Mod. Phys. Lett. B 23, No. 6, 791--805 (2009; Zbl 1171.82320) Full Text: DOI
Anastassiou, George A. Riemann-Liouville fractional opial inequalities for several functions with applications. (English) Zbl 1185.26007 Commun. Appl. Anal. 12, No. 4, 377-398 (2008). Reviewer: George A. Anastassiou (Memphis) MSC: 26A33 26D10 26D15 34A12 34A99 PDF BibTeX XML Cite \textit{G. A. Anastassiou}, Commun. Appl. Anal. 12, No. 4, 377--398 (2008; Zbl 1185.26007)
Voroshilov, A. A.; Kilbas, A. A. Conditions for the existence of a classical solution of a Cauchy type problem for the diffusion equation with a Riemann-Liouville partial derivative. (English. Russian original) Zbl 1173.35306 Differ. Equ. 44, No. 6, 789-806 (2008); translation from Differ. Uravn. 44, No. 6, 768-784 (2008). MSC: 35A05 35S10 35A20 26A33 PDF BibTeX XML Cite \textit{A. A. Voroshilov} and \textit{A. A. Kilbas}, Differ. Equ. 44, No. 6, 789--806 (2008; Zbl 1173.35306); translation from Differ. Uravn. 44, No. 6, 768--784 (2008) Full Text: DOI
Zhang, Xiuyun Some results of linear fractional order time-delay system. (English) Zbl 1138.34328 Appl. Math. Comput. 197, No. 1, 407-411 (2008). MSC: 34K05 34K20 26A33 PDF BibTeX XML Cite \textit{X. Zhang}, Appl. Math. Comput. 197, No. 1, 407--411 (2008; Zbl 1138.34328) Full Text: DOI
Tarasov, Vasily E. Fractional generalization of gradient systems. (English) Zbl 1101.26010 Lett. Math. Phys. 73, No. 1, 49-58 (2005). Reviewer: Anatoliy Aleksandrovich Kilbas (Minsk) MSC: 26A33 37C99 PDF BibTeX XML Cite \textit{V. E. Tarasov}, Lett. Math. Phys. 73, No. 1, 49--58 (2005; Zbl 1101.26010) Full Text: DOI arXiv
El-Sayed, Ahmed; El-Sayed, Magdy A.; El-Tawil, Magdi A.; Saif, Mahmoud S. M.; Hafiz, Fathi M. The mean square Riemann-Liouville stochastic fractional derivative and stochastic fractional order differential equation. (English) Zbl 1083.60026 Math. Sci. Res. J. 9, No. 6, 142-150 (2005). Reviewer: Evelyn Buckwar (Berlin) MSC: 60G12 26A33 PDF BibTeX XML Cite \textit{A. El-Sayed} et al., Math. Sci. Res. J. 9, No. 6, 142--150 (2005; Zbl 1083.60026)
Pečarić, Josip E.; Perić, Ivan; Srivastava, H. M. A family of the Cauchy type mean-value theorems. (English) Zbl 1068.26008 J. Math. Anal. Appl. 306, No. 2, 730-739 (2005). MSC: 26A33 26A24 65D30 PDF BibTeX XML Cite \textit{J. E. Pečarić} et al., J. Math. Anal. Appl. 306, No. 2, 730--739 (2005; Zbl 1068.26008) Full Text: DOI
Kobelev, Ya. L.; Kobelev, L. Ya.; Klimontovich, Yu. L. Statistical physics of dynamical systems with variable memory. (Russian) Zbl 1073.82569 Dokl. Phys. 48, No. 6, 285-289 (2003); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 390, No. 6, 758-762 (2003). Reviewer: Andrei Zemskov (Moskva) MSC: 82C05 26A33 PDF BibTeX XML Cite \textit{Ya. L. Kobelev} et al., Dokl. Phys. 48, No. 1, 758--762 (2003; Zbl 1073.82569); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 390, No. 6, 758--762 (2003) Full Text: DOI
Bonilla, B.; Kilbas, A. A.; Trujillo, J. J. Systems of nonlinear fractional differential equations in the space of summable functions. (English) Zbl 1054.34009 Tr. Inst. Mat., Minsk 6, 38-46 (2000). Reviewer: Sergei V. Rogosin (Minsk) MSC: 34A34 26A33 PDF BibTeX XML Cite \textit{B. Bonilla} et al., Tr. Inst. Mat., Minsk 6, 38--46 (2000; Zbl 1054.34009)
Diethelm, Kai An algorithm for the numerical solution of differential equations of fractional order. (English) Zbl 0890.65071 ETNA, Electron. Trans. Numer. Anal. 5, 1-6 (1997). Reviewer: S.Yanchuk (Kyïv) MSC: 65L05 34A34 65L70 26A33 PDF BibTeX XML Cite \textit{K. Diethelm}, ETNA, Electron. Trans. Numer. Anal. 5, 1--6 (1997; Zbl 0890.65071) Full Text: EMIS EuDML
George, A. J.; Chakrabarti, A. The Adomian method applied to some extraordinary differential equations. (English) Zbl 0828.65081 Appl. Math. Lett. 8, No. 3, 91-97 (1995). Reviewer: M.Bartušek (Brno) MSC: 65L05 34A25 34A34 26A33 PDF BibTeX XML Cite \textit{A. J. George} and \textit{A. Chakrabarti}, Appl. Math. Lett. 8, No. 3, 91--97 (1995; Zbl 0828.65081) Full Text: DOI
Michalski, Marek W. Multipoint problem for an extraordinary differential equation. (English) Zbl 0681.34019 Z. Anal. Anwend. 8, No. 5, 479-483 (1989). MSC: 34B10 26A33 34A99 PDF BibTeX XML Cite \textit{M. W. Michalski}, Z. Anal. Anwend. 8, No. 5, 479--483 (1989; Zbl 0681.34019) Full Text: DOI