×

A countable representation of the Fleming-Viot measure-valued diffusion. (English) Zbl 0869.60074

In the first two sections it is shown that the Fleming-Viot process \(Z\) can be obtained as limit of the empirical measures of a certain particle system \((X_1,X_2, \dots) \): \(Z(t)= \lim_{n\to\infty} {1\over n} \sum^n_{i=1} \delta_{X_k(t)}\). The interaction among the particles \(X_1,X_2,\dots\) has a relatively simple description. Thus the above representation turns out to be a useful device, which is applied in the three subsequent sections of this article to derive a variety of properties of the Fleming-Viot process \(Z\). First a connection between the genealogical structure of the population model and the particle system \((X_1,X_2,\dots)\) is established. Then a criterion for the strong ergodicity of \(Z\) is given, and the speed of convergence to equilibrium is analyzed. The final section is devoted to the derivation of numerous support properties of the sample paths of \(Z\). Some of these assertions extend previously known results to the case of more general mutation operators.
Reviewer: A.Schied (Berlin)

MSC:

60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)
60J25 Continuous-time Markov processes on general state spaces
60K35 Interacting random processes; statistical mechanics type models; percolation theory
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
92D10 Genetics and epigenetics
60G57 Random measures
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] BLACKWELL, D. and DUBINS, L. E. 1983. An extension of Skorohod’s almost sure representation theorem. Proc. Amer. Math. Soc. 89 691 692. Z. · Zbl 0542.60005 · doi:10.2307/2044607
[2] BREIMAN, L. 1968. Probability. Addison-Wesley, Reading, MA. Z. · Zbl 0174.48801
[3] CHOW, Y. S. and TEICHER, H. 1988. Probability Theory: Independence, Interchangeability, Martingales, 2nd ed. Springer, New York. Z. · Zbl 0652.60001
[4] DAWSON, D. A. and HOCHBERG, K. J. 1982. Wandering random measures in the Fleming Viot model. Ann. Probab. 10 554 580. Z. · Zbl 0492.60045 · doi:10.1214/aop/1176993767
[5] DONNELLY, P. and KURTZ, T. G. 1996. The asy mptotic behavior of an urn model arising in population genetics. Stochastic Process. Appl. To appear. Z. · Zbl 0879.60078 · doi:10.1016/S0304-4149(96)00085-3
[6] DONNELLY, P. and TAVARE, S. 1987a. The population genealogy of the infinitely-many neutral álleles model. J. Math. Biol. 25 381 391. Z. · Zbl 0636.92008 · doi:10.1007/BF00277163
[7] DONNELLY, P. and TAVARE, S. 1987b. A genealogical description of the infinite alleles model. Śtochastic Models in Biology. Lecture Notes in Biomath. 70 27 35. Springer, Berlin. Z.
[8] DURRETT, R. 1991. Probability: Theory and Examples. Wadsworth and Brooks Cole, Belmont, CA.Z. · Zbl 0709.60002
[9] Dy NKIN, E. B. 1965. Markov Processes, I. Springer, Berlin. Z.
[10] ETHIER, S. N. and GRIFFITHS, R. C. 1987. The infinitely-many-sites model as a measure-valued diffusion. Ann. Probab. 15 515 545. Z. · Zbl 0634.92007 · doi:10.1214/aop/1176992157
[11] ETHIER, S. N. and GRIFFITHS, R. C. 1990. The neutral two-locus model as a measure-valued diffusion. Adv. in Appl. Probab. 22 773 786. Z. JSTOR: · Zbl 0718.92009 · doi:10.2307/1427561
[12] ETHIER, S. N. and GRIFFITHS, R. C. 1993. The transition function of a Fleming Viot process. Ann. Probab. 21 1571 1590. Z. · Zbl 0778.60038 · doi:10.1214/aop/1176989131
[13] ETHIER, S. N. and KURTZ, T. G. 1981. The infinitely-many-neutral-alleles diffusion model. Adv. in Appl. Probab. 13 429 452. Z. JSTOR: · Zbl 0483.60076 · doi:10.2307/1426779
[14] ETHIER, S. N. and KURTZ, T. G. 1986. Markov Processes: Characterization and Convergence. Wiley, New York. Z. · Zbl 0592.60049
[15] ETHIER, S. N. and KURTZ, T. G. 1987. The infinitely-many-alleles model with selection as a measure-valued diffusion. Stochastic Models in Biology. Lecture Notes in Biomath. 70 72 86. Springer, Berlin. Z. · Zbl 0644.92011
[16] ETHIER, S. N. and KURTZ, T. G. 1992. On the stationary distribution of the neutral diffusion model in population genetics. Ann. Appl. Probab. 2 24 35. Z. · Zbl 0742.60076 · doi:10.1214/aoap/1177005769
[17] ETHIER, S. N. and KURTZ, T. G. 1993. Fleming Viot processes in population genetics. SIAM J. Control Optim. 31 345 386. Z. · Zbl 0774.60045 · doi:10.1137/0331019
[18] ETHIER, S. N. and KURTZ, T. G. 1995. Coupling and ergodic theorems for Fleming Viot processes. In preparation. Z. · Zbl 0940.60045
[19] FLEMING, W. H. and VIOT, M. 1979. Some measure-valued markov processes in population genetics theory. Indiana Univ. Math. J. 28 817 843. Z. · Zbl 0444.60064 · doi:10.1512/iumj.1979.28.28058
[20] GRIFFITHS, R. C. 1980. Lines of descent in the diffusion approximation of neutral Wright Fisher models. Theoret. Population Biol. 17 37 50. Z. · Zbl 0434.92011 · doi:10.1016/0040-5809(80)90013-1
[21] HOPPE, F. 1987. The sampling theory of neutral alleles and an urn model in population genetics. J. Math. Biol. 25 123 159. · Zbl 0636.92007 · doi:10.1007/BF00276386
[22] KINGMAN, J. F. C. 1976. Coherent random walks arising in some genetical models. Proc. Roy. Soc. London Ser. A 351 19 31. Z. · Zbl 0361.60024 · doi:10.1098/rspa.1976.0127
[23] KINGMAN, J. F. C. 1982a. On the genealogy of large populations. J. Appl. Probab. 19A 27 43. Z. · Zbl 0516.92011 · doi:10.2307/3213548
[24] KINGMAN, J. F. C. 1982b. The coalescent. Stochastic Process. Appl. 13 235 248. Z. · Zbl 0491.60076 · doi:10.1016/0304-4149(82)90011-4
[25] KURTZ, T. G. 1972. Inequalities for the law of large numbers. Ann. Math. Statist. 43 1874 1883. Z. · Zbl 0251.60019 · doi:10.1214/aoms/1177690858
[26] KURTZ, T. G. 1995. Martingale problems for conditional distributions of Markov processes. Preprint. Z. · Zbl 0907.60065
[27] KURTZ, T. G. and OCONE, D. L. 1988. Unique characterization of conditional distributions in nonlinear filtering. Ann. Probab. 16 80 107. Z. · Zbl 0655.60035 · doi:10.1214/aop/1176991887
[28] KUSHNER, H. J. 1967. Stochastic Stability and Control. Academic Press, New York. Z. · Zbl 0244.93065
[29] MORAN, P. A. P. 1958. Random processes in genetics. Proc. Cambridge Philos. Soc. 54 60 71. Z. · Zbl 0091.15701 · doi:10.1017/S0305004100033193
[30] MORAN, P. A. P. 1975. Wandering distributions and the electrophoretic profile. Theoret. Population Biol. 8 318 330. Z. · Zbl 0333.92006 · doi:10.1016/0040-5809(75)90049-0
[31] MORAN, P. A. P. 1976. Wandering distributions and the electrophoretic profile. II. Theoret. Population Biol. 10 145 149. Z. · doi:10.1016/0040-5809(76)90012-5
[32] OHTA, T. and KIMURA, M. 1973. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genetics Res. 22 201 204. Z. · doi:10.1017/S0016672300012994
[33] OHTA, T. and KIMURA, M. 1974. Simulation studies on electrophoretically detectable genetic variability in a finite population. Genetics 16 97 159. Z.
[34] OVERBECK, L., ROCKNER, M. and SCHMULAND, B. 1995. An analytic approach to Fleming Viot \" processes with interactive selection. Ann. Probab. 23 1 36. Z. · Zbl 0833.60053 · doi:10.1214/aop/1176988374
[35] SCHMULAND, B. 1991. A result on the infinitely many neutral alleles diffusion model. J. Appl. Probab. 28 253 267. Z. JSTOR: · Zbl 0727.60101 · doi:10.2307/3214864
[36] SHIGA, T. 1982. Wandering phenomena in infinite allelic diffusion models. Adv. in Appl. Probab. 14 457 483. Z. JSTOR: · Zbl 0489.60085 · doi:10.2307/1426669
[37] SVERCHKOV, M. and SMIRNOV, M. 1990. Maximal coupling of D-valued processes. Sov. Math. Dokl. 41 352 354. · Zbl 0755.60026
[38] UNITED KINGDOM MADISON, WISCONSIN 53706-1388 E-MAIL: p.j.donnelly@qmw.ac.uk E-MAIL: kurtz@math.wisc.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.