Aribou, Y.; Kabbaj, S. The stability of \(N\)-dimensional quadratic functional inequality in non Archimedean Banach spaces. (English) Zbl 1503.39019 São Paulo J. Math. Sci. 16, No. 2, 1382-1400 (2022). MSC: 39B82 39B52 47H10 PDF BibTeX XML Cite \textit{Y. Aribou} and \textit{S. Kabbaj}, São Paulo J. Math. Sci. 16, No. 2, 1382--1400 (2022; Zbl 1503.39019) Full Text: DOI OpenURL
Zada, Akbar; Shaleena, Shaleena; Ahmad, Manzoor Analysis of solutions of the integro-differential equations with generalized Liouville-Caputo fractional derivative by \(\rho\)-Laplace transform. (English) Zbl 07541726 Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 116, 19 p. (2022). MSC: 34-XX 26A33 35A22 44A10 PDF BibTeX XML Cite \textit{A. Zada} et al., Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 116, 19 p. (2022; Zbl 07541726) Full Text: DOI OpenURL
Wang, Chun; Xu, Tianzhou Hyers-Ulam-Rassias stability on a class of generalized fractional systems. (Chinese. English summary) Zbl 07572496 Acta Math. Sci., Ser. A, Chin. Ed. 41, No. 6, 1791-1804 (2021). MSC: 39B72 39B52 PDF BibTeX XML Cite \textit{C. Wang} and \textit{T. Xu}, Acta Math. Sci., Ser. A, Chin. Ed. 41, No. 6, 1791--1804 (2021; Zbl 07572496) Full Text: Link OpenURL
Mohanapriya, Arusamy; Sivakumar, Varudaraj; Prakash, Periasamy A generalized approach of fractional Fourier transform to stability of fractional differential equation. (English) Zbl 1503.34027 Korean J. Math. 29, No. 4, 749-763 (2021). Reviewer: Syed Abbas (Mandi) MSC: 34A08 42B10 26A33 34D10 47N20 34A37 PDF BibTeX XML Cite \textit{A. Mohanapriya} et al., Korean J. Math. 29, No. 4, 749--763 (2021; Zbl 1503.34027) Full Text: DOI OpenURL
Wang, Zhihua Approximate mixed type quadratic-cubic functional equation. (English) Zbl 07543285 AIMS Math. 6, No. 4, 3546-3561 (2021). MSC: 39B82 39B72 PDF BibTeX XML Cite \textit{Z. Wang}, AIMS Math. 6, No. 4, 3546--3561 (2021; Zbl 07543285) Full Text: DOI OpenURL
Gupta, Eena; Chugh, Renu; Dubey, Ramu; Mishra, Vishnu Narayan Stability of generalized cube root functional (GCRFf) equations in random normed spaces. (English) Zbl 1499.39119 Adv. Stud. Contemp. Math., Kyungshang 31, No. 1, 139-157 (2021). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{E. Gupta} et al., Adv. Stud. Contemp. Math., Kyungshang 31, No. 1, 139--157 (2021; Zbl 1499.39119) Full Text: DOI OpenURL
Majani, Hamid Stability of a system of Euler-Lagrange type cubic functional equations in non-Archimedean 2-normed spaces. (Persian. English summary) Zbl 1499.39122 JAMM, J. Adv. Math. Model. 11, No. 1, 11-24 (2021). MSC: 39B82 39B72 46S10 PDF BibTeX XML Cite \textit{H. Majani}, JAMM, J. Adv. Math. Model. 11, No. 1, 11--24 (2021; Zbl 1499.39122) Full Text: DOI OpenURL
Bodaghi, Abasalt Functional inequalities for generalized multi-quadratic mappings. (English) Zbl 07465123 J. Inequal. Appl. 2021, Paper No. 145, 13 p. (2021). MSC: 39B82 39B52 39B72 PDF BibTeX XML Cite \textit{A. Bodaghi}, J. Inequal. Appl. 2021, Paper No. 145, 13 p. (2021; Zbl 07465123) Full Text: DOI OpenURL
Arasu, V.; Angayarkanni, M. Stability of \(n\)-dimensional additive functional equation in fuzzy normed spaces. (English) Zbl 1488.39069 Sarajevo J. Math. 17(30), No. 1, 79-91 (2021). MSC: 39B82 39B52 26E50 46S50 PDF BibTeX XML Cite \textit{V. Arasu} and \textit{M. Angayarkanni}, Sarajevo J. Math. 17(30), No. 1, 79--91 (2021; Zbl 1488.39069) OpenURL
Bahyrycz, Anna; Sikorska, Justyna On stability of a general bilinear functional equation. (English) Zbl 1470.39063 Result. Math. 76, No. 3, Paper No. 143, 17 p. (2021). MSC: 39B82 39B52 47J25 47D03 PDF BibTeX XML Cite \textit{A. Bahyrycz} and \textit{J. Sikorska}, Result. Math. 76, No. 3, Paper No. 143, 17 p. (2021; Zbl 1470.39063) Full Text: DOI OpenURL
Bodaghi, Abasalt; Senthil Kumar, Beri Venkatachalapathy; Bagheri Vakilabad, Ali Various stabilities of reciprocal-septic and reciprocal-octic functional equations. (English) Zbl 1464.39026 Asian-Eur. J. Math. 14, No. 3, Article ID 2150034, 19 p. (2021). MSC: 39B82 39B52 39B72 PDF BibTeX XML Cite \textit{A. Bodaghi} et al., Asian-Eur. J. Math. 14, No. 3, Article ID 2150034, 19 p. (2021; Zbl 1464.39026) Full Text: DOI OpenURL
Tomar, Shalini; Hooda, Navneet On stability of \(\alpha\)-radical reciprocal functional equation. (English) Zbl 1463.39066 Electron. J. Math. Anal. Appl. 9, No. 1, 293-301 (2021). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{S. Tomar} and \textit{N. Hooda}, Electron. J. Math. Anal. Appl. 9, No. 1, 293--301 (2021; Zbl 1463.39066) Full Text: Link OpenURL
Vahidi, Javad Approximation of functional equations in intuitionistic fuzzy \(C^\ast\)-algebras. (English) Zbl 07623591 Int. J. Nonlinear Anal. Appl. 11, Spec. Iss., 351-360 (2020). MSC: 39-XX 47-XX PDF BibTeX XML Cite \textit{J. Vahidi}, Int. J. Nonlinear Anal. Appl. 11, 351--360 (2020; Zbl 07623591) Full Text: DOI OpenURL
Senthil Kumar, B. V.; Dutta, Hemen; Sabarinathan, S. Fuzzy approximations of a multiplicative inverse cubic functional equation. (English) Zbl 1491.39014 Soft Comput. 24, No. 17, 13285-13292 (2020). MSC: 39B52 39B82 PDF BibTeX XML Cite \textit{B. V. Senthil Kumar} et al., Soft Comput. 24, No. 17, 13285--13292 (2020; Zbl 1491.39014) Full Text: DOI OpenURL
Ramdoss, Murali; Selvan-Arumugam, Ponmana; Park, Choonkil Ulam stability of linear differential equations using Fourier transform. (English) Zbl 1484.34058 AIMS Math. 5, No. 2, 766-780 (2020). MSC: 34A30 42A38 42A85 PDF BibTeX XML Cite \textit{M. Ramdoss} et al., AIMS Math. 5, No. 2, 766--780 (2020; Zbl 1484.34058) Full Text: DOI OpenURL
Govindan, V.; Murthy, S.; Saravanan, M. Solution and stability of a cubic type functional equation: using direct and fixed point methods. (English) Zbl 1488.39067 Kragujevac J. Math. 44, No. 1, 7-26 (2020). MSC: 39B52 39B22 PDF BibTeX XML Cite \textit{V. Govindan} et al., Kragujevac J. Math. 44, No. 1, 7--26 (2020; Zbl 1488.39067) Full Text: Link OpenURL
Saha, P.; Samanta, T. K.; Mondal, P.; Choudhury, B. S. Stability of additive-quadratic \(\rho\)-functional equations in non-Archimedean intuitionistic fuzzy Banach spaces. (English) Zbl 1488.39074 Mat. Vesn. 72, No. 2, 154-164 (2020). MSC: 39B82 47S40 PDF BibTeX XML Cite \textit{P. Saha} et al., Mat. Vesn. 72, No. 2, 154--164 (2020; Zbl 1488.39074) Full Text: Link Link OpenURL
Gupta, Eena; Chugh, Renu On the stability of multiplicative inverse cubic functional (MICF) equation in intutionistic fuzzy normed spaces. (English) Zbl 1474.39070 Poincare J. Anal. Appl. 7, No. 1, 39-49 (2020). MSC: 39B82 39B72 39B52 54A40 PDF BibTeX XML Cite \textit{E. Gupta} and \textit{R. Chugh}, Poincare J. Anal. Appl. 7, No. 1, 39--49 (2020; Zbl 1474.39070) OpenURL
Falihi, S.; Bodaghi, A.; Shojaee, B. A characterization of multi-mixed additive-quadratic mappings and a fixed point application. (English) Zbl 1451.39025 J. Contemp. Math. Anal., Armen. Acad. Sci. 55, No. 4, 235-247 (2020) and Izv. Nats. Akad. Nauk Armen., Mat. 55, No. 4, 31-46 (2020). MSC: 39B82 39B52 47H10 PDF BibTeX XML Cite \textit{S. Falihi} et al., J. Contemp. Math. Anal., Armen. Acad. Sci. 55, No. 4, 235--247 (2020; Zbl 1451.39025) Full Text: DOI OpenURL
Lee, Yang-Hi; Jung, Soon-Mo Generalized Hyers-Ulam stability of some cubic-quadratic-additive type functional equations. (English) Zbl 1450.39018 Kyungpook Math. J. 60, No. 1, 133-144 (2020). Reviewer: Eszter Gselmann (Debrecen) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Y.-H. Lee} and \textit{S.-M. Jung}, Kyungpook Math. J. 60, No. 1, 133--144 (2020; Zbl 1450.39018) Full Text: DOI OpenURL
Haddadi, M. Ternary quadratic Pompeiu on ternary Banach algebras. (English) Zbl 1452.39009 Math. Sci., Springer 14, No. 2, 121-128 (2020). MSC: 39B72 39B82 46H05 PDF BibTeX XML Cite \textit{M. Haddadi}, Math. Sci., Springer 14, No. 2, 121--128 (2020; Zbl 1452.39009) Full Text: DOI OpenURL
Lee, Yang-Hi; Jung, Soon-Mo Stability of some cubic-additive functional equations. (English) Zbl 1447.39021 Nonlinear Funct. Anal. Appl. 25, No. 1, 35-54 (2020). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Y.-H. Lee} and \textit{S.-M. Jung}, Nonlinear Funct. Anal. Appl. 25, No. 1, 35--54 (2020; Zbl 1447.39021) Full Text: Link OpenURL
Wang, Zhihua Approximate quadratic functional inequality in \(\beta\)-homogeneous normed spaces. (English) Zbl 1449.39031 J. Math. Res. Appl. 40, No. 1, 26-32 (2020). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Z. Wang}, J. Math. Res. Appl. 40, No. 1, 26--32 (2020; Zbl 1449.39031) Full Text: DOI OpenURL
Sokolowski, Dariusz Stability of \(n\)-th order Flett’s and Sahoo-Riedel’s points. (English) Zbl 1445.39021 Real Anal. Exch. 45, No. 2, 401-410 (2020). MSC: 39B82 26A24 26A06 PDF BibTeX XML Cite \textit{D. Sokolowski}, Real Anal. Exch. 45, No. 2, 401--410 (2020; Zbl 1445.39021) Full Text: Euclid OpenURL
EL-Fassi, Iz-iddine; Kabbaj, Samir; Chahbi, Abdellatif Measure zero stability problem of a generalized quadratic functional equation. (English) Zbl 1440.39018 São Paulo J. Math. Sci. 14, No. 1, 301-311 (2020). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{I.-i. EL-Fassi} et al., São Paulo J. Math. Sci. 14, No. 1, 301--311 (2020; Zbl 1440.39018) Full Text: DOI OpenURL
Kim, Hark-Mahn; Park, Jin-Seok; Shin, Hwan-Yong Approximation of quadratic Lie \(*\)-derivations on \(\rho\)-complete convex modular algebras. (English) Zbl 1434.17020 J. Math. Inequal. 14, No. 1, 121-134 (2020). MSC: 17B40 16W25 39B82 PDF BibTeX XML Cite \textit{H.-M. Kim} et al., J. Math. Inequal. 14, No. 1, 121--134 (2020; Zbl 1434.17020) Full Text: DOI OpenURL
Başcı, Yasemin; Mısır, Adil; Öğrekçi, Süleyman On the stability problem of differential equations in the sense of Ulam. (English) Zbl 1439.34061 Result. Math. 75, No. 1, Paper No. 6, 13 p. (2020). MSC: 34D10 47N20 PDF BibTeX XML Cite \textit{Y. Başcı} et al., Result. Math. 75, No. 1, Paper No. 6, 13 p. (2020; Zbl 1439.34061) Full Text: DOI OpenURL
Ramdoss, Murali; Arumugam, Ponmana Selvan Fourier transforms and Ulam stabilities of linear differential equations. (English) Zbl 1451.34075 Anastassiou, George A. (ed.) et al., Frontiers in functional equations and analytic inequalities. Cham: Springer. 195-217 (2019). MSC: 34D10 42A38 PDF BibTeX XML Cite \textit{M. Ramdoss} and \textit{P. S. Arumugam}, in: Frontiers in functional equations and analytic inequalities. Cham: Springer. 195--217 (2019; Zbl 1451.34075) Full Text: DOI OpenURL
Lee, Yang-Hi; Kim, Gwang Hui Generalized Hyers-Ulam stability of the additive functional equation. (English) Zbl 1432.39024 Axioms 8, No. 2, Paper No. 76, 11 p. (2019). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Y.-H. Lee} and \textit{G. H. Kim}, Axioms 8, No. 2, Paper No. 76, 11 p. (2019; Zbl 1432.39024) Full Text: DOI OpenURL
Kumar, B. V. Senthil; Rassias, J. M.; Sabarinathan, S. Stabilities of various multiplicative inverse functional equations. (English) Zbl 1437.39012 Tbil. Math. J. 12, No. 4, 15-28 (2019). Reviewer: Choonkil Park (Seoul) MSC: 39B82 39B52 39B72 PDF BibTeX XML Cite \textit{B. V. S. Kumar} et al., Tbil. Math. J. 12, No. 4, 15--28 (2019; Zbl 1437.39012) Full Text: DOI Euclid OpenURL
Nam, Young Woo Hyers-Ulam stability of loxodromic Möbius difference equation. (English) Zbl 1429.39006 Appl. Math. Comput. 356, 119-136 (2019). MSC: 39A20 39A45 39B82 PDF BibTeX XML Cite \textit{Y. W. Nam}, Appl. Math. Comput. 356, 119--136 (2019; Zbl 1429.39006) Full Text: DOI arXiv OpenURL
Kim, Hark-Mahn; Hong, Young Soon Additional stability results for quartic Lie \(\ast\)-derivations. (English) Zbl 1429.39018 Nonlinear Funct. Anal. Appl. 24, No. 3, 583-593 (2019). Reviewer: Maryam Amyari (Mashhad) MSC: 39B52 39B72 16W25 39B82 PDF BibTeX XML Cite \textit{H.-M. Kim} and \textit{Y. S. Hong}, Nonlinear Funct. Anal. Appl. 24, No. 3, 583--593 (2019; Zbl 1429.39018) Full Text: Link OpenURL
Choi, Ginkyu; Jung, Soon-Mo; Roh, Jaiok An operator method for the stability of inhomogeneous wave equations. (English) Zbl 1423.35237 Symmetry 11, No. 3, Paper No. 324, 12 p. (2019). MSC: 35L05 35R45 35B20 35A25 35A23 35B35 39B82 PDF BibTeX XML Cite \textit{G. Choi} et al., Symmetry 11, No. 3, Paper No. 324, 12 p. (2019; Zbl 1423.35237) Full Text: DOI OpenURL
Lee, Ki-Suk; Jung, Soon-Mo Approximation properties of the perturbed diffusion equation on the half-line. (English) Zbl 1423.35134 Nonlinear Funct. Anal. Appl. 24, No. 2, 407-415 (2019). MSC: 35K05 35R45 35B20 35A23 39B82 PDF BibTeX XML Cite \textit{K.-S. Lee} and \textit{S.-M. Jung}, Nonlinear Funct. Anal. Appl. 24, No. 2, 407--415 (2019; Zbl 1423.35134) OpenURL
Lee, Yang-Hi Generalized Hyers-Ulam stability of a quadratic-cubic functional equation in modular spaces. (English) Zbl 1423.39036 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 26, No. 1, 49-58 (2019). Reviewer: Mohammad Sal Moslehian (Mashhad) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Y.-H. Lee}, J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 26, No. 1, 49--58 (2019; Zbl 1423.39036) OpenURL
Akkouchi, Mohamed On the Hyers-Ulam-Rassias stability of a nonlinear integral equation. (English) Zbl 1434.45007 Appl. Sci. 21, 1-10 (2019). MSC: 45N05 39B52 45P05 45G10 47G10 PDF BibTeX XML Cite \textit{M. Akkouchi}, Appl. Sci. 21, 1--10 (2019; Zbl 1434.45007) Full Text: Link OpenURL
Kang, Dongseung; Kim, Hoewoon B. On the stability of reciprocal-negative Fermat’s equation in quasi-\(\beta\)-normed spaces. (English) Zbl 1423.39035 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 26, No. 2, 85-97 (2019). Reviewer: Eszter Gselmann (Debrecen) MSC: 39B82 39B52 39B22 11D41 PDF BibTeX XML Cite \textit{D. Kang} and \textit{H. B. Kim}, J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 26, No. 2, 85--97 (2019; Zbl 1423.39035) OpenURL
Park, Choonkil; Rassias, J. M.; Bodaghi, Abasalt; Kim, Sang Og Approximate homomorphisms from ternary semigroups to modular spaces. (English) Zbl 1435.17005 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 3, 2175-2188 (2019). Reviewer: Maryam Amyari (Mashhad) MSC: 17A40 39B52 39B82 PDF BibTeX XML Cite \textit{C. Park} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 3, 2175--2188 (2019; Zbl 1435.17005) Full Text: DOI OpenURL
Wang, Zhihua Generalized forms of Swiatak’s functional equations with involution. (English) Zbl 1418.39023 Bull. Korean Math. Soc. 56, No. 3, 779-787 (2019). Reviewer: Stefan Czerwik (Łaziska Górne) MSC: 39B52 39B82 PDF BibTeX XML Cite \textit{Z. Wang}, Bull. Korean Math. Soc. 56, No. 3, 779--787 (2019; Zbl 1418.39023) Full Text: DOI OpenURL
Senthil Kumar, B. V.; Dutta, Hemen; Sabarinathan, S. Approximation of a system of rational functional equations of three variables. (English) Zbl 1410.39048 Int. J. Appl. Comput. Math. 5, No. 2, Paper No. 39, 16 p. (2019). MSC: 39B82 39B72 PDF BibTeX XML Cite \textit{B. V. Senthil Kumar} et al., Int. J. Appl. Comput. Math. 5, No. 2, Paper No. 39, 16 p. (2019; Zbl 1410.39048) Full Text: DOI OpenURL
Nam, Young Woo Hyers-Ulam stability of hyperbolic Möbius difference equation. (English) Zbl 1499.39077 Filomat 32, No. 13, 4555-4575 (2018). MSC: 39A30 39A45 39A20 PDF BibTeX XML Cite \textit{Y. W. Nam}, Filomat 32, No. 13, 4555--4575 (2018; Zbl 1499.39077) Full Text: DOI arXiv OpenURL
Monea, Mihai Some considerations about Hyers-Ulam stability of the intermediary point arising from the mean value theorems. (English) Zbl 07476454 Publ. Inst. Math., Nouv. Sér. 104(118), 193-208 (2018). MSC: 26A24 39B82 PDF BibTeX XML Cite \textit{M. Monea}, Publ. Inst. Math., Nouv. Sér. 104(118), 193--208 (2018; Zbl 07476454) Full Text: DOI OpenURL
Kumar, B. V. Senthil; Dutta, Hemen Non-Archimedean stability of a generalized reciprocal-quadratic functional equation in several variables by direct and fixed point methods. (English) Zbl 1499.39101 Filomat 32, No. 9, 3199-3209 (2018). MSC: 39B52 39B82 39B72 26E30 PDF BibTeX XML Cite \textit{B. V. S. Kumar} and \textit{H. Dutta}, Filomat 32, No. 9, 3199--3209 (2018; Zbl 1499.39101) Full Text: DOI OpenURL
Wang, Zhihua; Sahoo, Prasanna K. Generalized Hyers-Ulam stability for general additive functional equations on non-Archimedean random Lie \(C^\ast\)-algebras. (English) Zbl 1499.39127 Filomat 32, No. 6, 2127-2138 (2018). MSC: 39B82 39B52 46S10 46L57 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{P. K. Sahoo}, Filomat 32, No. 6, 2127--2138 (2018; Zbl 1499.39127) Full Text: DOI OpenURL
Nikoufar, Ismail A correction to approximation of generalized homomorphisms in quasi-Banach algebras. (English) Zbl 1463.39054 Miskolc Math. Notes 19, No. 1, 423-430 (2018). MSC: 39B52 46H05 PDF BibTeX XML Cite \textit{I. Nikoufar}, Miskolc Math. Notes 19, No. 1, 423--430 (2018; Zbl 1463.39054) OpenURL
Lee, Yang-Hi; Jung, Soon-Mo A general uniqueness theorem concerning the stability of AQCQ type functional equations. (English) Zbl 1433.39011 Kyungpook Math. J. 58, No. 2, 291-305 (2018). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Y.-H. Lee} and \textit{S.-M. Jung}, Kyungpook Math. J. 58, No. 2, 291--305 (2018; Zbl 1433.39011) Full Text: DOI OpenURL
Lee, Yang-Hi; Jung, Soon-Mo A general theorem on the stability of a class of functional equations including quartic-cubic-quadratic-additive equations. (English) Zbl 1425.39018 Mathematics 6, No. 12, Paper No. 282, 24 p. (2018). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Y.-H. Lee} and \textit{S.-M. Jung}, Mathematics 6, No. 12, Paper No. 282, 24 p. (2018; Zbl 1425.39018) Full Text: DOI OpenURL
Jung, Soon-Mo; Min, Seungwook Stability of the diffusion equation with a source. (English) Zbl 1458.35048 J. Funct. Spaces 2018, Article ID 1216901, 8 p. (2018). MSC: 35B35 35K15 PDF BibTeX XML Cite \textit{S.-M. Jung} and \textit{S. Min}, J. Funct. Spaces 2018, Article ID 1216901, 8 p. (2018; Zbl 1458.35048) Full Text: DOI OpenURL
Lee, Yang-Hi; Jung, Soon-Mo; Rassias, Michael Th. Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation. (English) Zbl 1412.39028 J. Math. Inequal. 12, No. 1, 43-61 (2018). Reviewer: Xueyan Liu (New Orleans) MSC: 39B52 39B82 39B72 PDF BibTeX XML Cite \textit{Y.-H. Lee} et al., J. Math. Inequal. 12, No. 1, 43--61 (2018; Zbl 1412.39028) Full Text: DOI OpenURL
Derakhshan, Mohammad Hossein; Ansari, Alireza On Hyers-Ulam stability of fractional differential equations with Prabhakar derivatives. (English) Zbl 1384.34012 Analysis, München 38, No. 1, 37-46 (2018). MSC: 34A08 34K20 44A10 PDF BibTeX XML Cite \textit{M. H. Derakhshan} and \textit{A. Ansari}, Analysis, München 38, No. 1, 37--46 (2018; Zbl 1384.34012) Full Text: DOI OpenURL
Eskandani, G. Zamani; Rassias, John Michael Stability of general \(A\)-cubic functional equations in modular spaces. (English) Zbl 1390.39086 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 112, No. 2, 425-435 (2018). MSC: 39B52 39B72 47H09 PDF BibTeX XML Cite \textit{G. Z. Eskandani} and \textit{J. M. Rassias}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 112, No. 2, 425--435 (2018; Zbl 1390.39086) Full Text: DOI OpenURL
Bahyrycz, Anna; Fripertinger, Harald; Schwaiger, Jens On a functional equation by Baak, Boo and Rassias. (English) Zbl 1390.39076 Aequationes Math. 92, No. 2, 267-288 (2018). MSC: 39B22 39B82 PDF BibTeX XML Cite \textit{A. Bahyrycz} et al., Aequationes Math. 92, No. 2, 267--288 (2018; Zbl 1390.39076) Full Text: DOI OpenURL
Bodaghi, Abasalt; Narasimman, Pasupathi Stability of the general form of quadratic-quartic functional equations in non-Archimedean \(\mathcal{L}\)-fuzzy normed spaces. (English) Zbl 1390.39084 Tbil. Math. J. 11, No. 1, 15-29 (2018). MSC: 39B52 39B72 39B82 46B03 PDF BibTeX XML Cite \textit{A. Bodaghi} and \textit{P. Narasimman}, Tbil. Math. J. 11, No. 1, 15--29 (2018; Zbl 1390.39084) Full Text: DOI OpenURL
Batool, Afshan; Kamran, Tayyab; Park, Choonkil Matrix generalized \((\theta, \phi)\)-derivations on matrix Banach algebras. (English) Zbl 1473.39045 Math. Slovaca 68, No. 1, 153-162 (2018). MSC: 39B82 39B72 46L07 47L25 39B52 39B62 PDF BibTeX XML Cite \textit{A. Batool} et al., Math. Slovaca 68, No. 1, 153--162 (2018; Zbl 1473.39045) Full Text: DOI OpenURL
Aiemsomboon, Laddawan; Sintunavarat, Wutiphol Stability of the generalized logarithmic functional equations arising from fixed point theory. (English) Zbl 06836246 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 112, No. 1, 229-238 (2018). MSC: 47H10 39B82 PDF BibTeX XML Cite \textit{L. Aiemsomboon} and \textit{W. Sintunavarat}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 112, No. 1, 229--238 (2018; Zbl 06836246) Full Text: DOI OpenURL
Narasimman, Pasupathi; Bodaghi, Abasalt Solution and stability of a mixed type functional equation. (English) Zbl 1488.39072 Filomat 31, No. 5, 1229-1239 (2017). MSC: 39B82 39B22 PDF BibTeX XML Cite \textit{P. Narasimman} and \textit{A. Bodaghi}, Filomat 31, No. 5, 1229--1239 (2017; Zbl 1488.39072) Full Text: DOI arXiv OpenURL
Choi, Ginkyu; Jung, Soon-Mo; Lee, Yang-Hi Approximation properties of solutions of a mean value type functional inequalities. (English) Zbl 1412.39035 J. Nonlinear Sci. Appl. 10, No. 8, 4507-4514 (2017). MSC: 39B82 39B62 39B52 46J99 PDF BibTeX XML Cite \textit{G. Choi} et al., J. Nonlinear Sci. Appl. 10, No. 8, 4507--4514 (2017; Zbl 1412.39035) Full Text: DOI OpenURL
Eskandani, G. Z.; Rassias, J. M. Approximation of general \(\alpha\)-cubic functional equations in 2-Banach spaces. (English) Zbl 1490.39038 Ukr. Math. J. 68, No. 10, 1651-1658 (2017) and from Ukr. Mat. Zh. 68, No. 10, 1430-1436 (2016). MSC: 39B82 46J40 PDF BibTeX XML Cite \textit{G. Z. Eskandani} and \textit{J. M. Rassias}, Ukr. Math. J. 68, No. 10, 1651--1658 (2017; Zbl 1490.39038) Full Text: DOI OpenURL
Kim, Sang Og; Senthil Kumar, Beri Venkatachalapathy; Bodaghi, Abasalt Approximation on the reciprocal-cubic and reciprocal-quartic functional equations in non-Archimedean fields. (English) Zbl 1422.39062 Adv. Difference Equ. 2017, Paper No. 77, 12 p. (2017). MSC: 39B82 39B72 39B52 PDF BibTeX XML Cite \textit{S. O. Kim} et al., Adv. Difference Equ. 2017, Paper No. 77, 12 p. (2017; Zbl 1422.39062) Full Text: DOI OpenURL
Chang, Ick-Soon; Shin, Hwan-Yong Approximation of Pompeiu’s point. (English) Zbl 1390.39099 Kyungpook Math. J. 57, No. 2, 245-250 (2017). Reviewer: Jacek Chmieliński (Kraków) MSC: 39B82 39B22 26A24 PDF BibTeX XML Cite \textit{I.-S. Chang} and \textit{H.-Y. Shin}, Kyungpook Math. J. 57, No. 2, 245--250 (2017; Zbl 1390.39099) Full Text: DOI OpenURL
Jung, Soon-Mo; Roh, Jaiok Hyers-Ulam stability of the time independent Schrödinger equations. (English) Zbl 1377.34073 Appl. Math. Lett. 74, 147-153 (2017). MSC: 34D10 34L40 PDF BibTeX XML Cite \textit{S.-M. Jung} and \textit{J. Roh}, Appl. Math. Lett. 74, 147--153 (2017; Zbl 1377.34073) Full Text: DOI OpenURL
Jung, Soon-Mo; Roh, Jaiok The linear differential equations with complex constant coefficients and Schrödinger equations. (English) Zbl 1357.34092 Appl. Math. Lett. 66, 23-29 (2017). MSC: 34D10 34A30 PDF BibTeX XML Cite \textit{S.-M. Jung} and \textit{J. Roh}, Appl. Math. Lett. 66, 23--29 (2017; Zbl 1357.34092) Full Text: DOI OpenURL
Brzdęk, Janusz; Cădariu, Liviu Stability for a family of equations generalizing the equation of \(p\)-Wright affine functions. (English) Zbl 1410.39044 Appl. Math. Comput. 276, 158-171 (2016). MSC: 39B62 39B72 39B82 47H10 PDF BibTeX XML Cite \textit{J. Brzdęk} and \textit{L. Cădariu}, Appl. Math. Comput. 276, 158--171 (2016; Zbl 1410.39044) Full Text: DOI OpenURL
Charifi, A.; Kabbaj, S.; Zeglami, D. Non-Archimedian stability of generalized Jensen’s and quadratic equations. (English) Zbl 1413.39054 Acta Univ. Apulensis, Math. Inform. 45, 11-29 (2016). MSC: 39B82 39B72 39B52 PDF BibTeX XML Cite \textit{A. Charifi} et al., Acta Univ. Apulensis, Math. Inform. 45, 11--29 (2016; Zbl 1413.39054) OpenURL
Lee, Yang-Hi; Jung, Soon-Mo General uniqueness theorem concerning the stability of additive, quadratic, and cubic functional equations. (English) Zbl 1419.39055 Adv. Difference Equ. 2016, Paper No. 75, 12 p. (2016). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Y.-H. Lee} and \textit{S.-M. Jung}, Adv. Difference Equ. 2016, Paper No. 75, 12 p. (2016; Zbl 1419.39055) Full Text: DOI OpenURL
Akkouchi, Mohamed; Elqorachi, Elhoucien; Sammad, Khalil Hyers-Ulam-Rassias stability on amenable groups. (English) Zbl 1378.39015 Pardalos, Panos M. (ed.) et al., Contributions in mathematics and engineering. In honor of Constantin Carathéodory. With a foreword by R. Tyrrell Rockafellar. Cham: Springer (ISBN 978-3-319-31315-3/hbk; 978-3-319-31317-7/ebook). 377-392 (2016). Reviewer: Maryam Amyari (Mashhad) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{M. Akkouchi} et al., in: Contributions in mathematics and engineering. In honor of Constantin Carathéodory. With a foreword by R. Tyrrell Rockafellar. Cham: Springer. 377--392 (2016; Zbl 1378.39015) Full Text: DOI OpenURL
Murali, R.; Raj, A. Antony; Deboral, M. Hyers-Ulam stability of the isometric Cauchy-Jenson mapping in generalized quasi-Banach spaces. (English) Zbl 1367.46002 Int. J. Adv. Appl. Math. Mech. 3, No. 4, 16-21 (2016). MSC: 46A16 46B04 PDF BibTeX XML Cite \textit{R. Murali} et al., Int. J. Adv. Appl. Math. Mech. 3, No. 4, 16--21 (2016; Zbl 1367.46002) Full Text: Link OpenURL
Kim, Hark-Mahn; Son, Eunyoung Generalized Hyers-Ulam stability of cubic functional inequality. (English) Zbl 1461.39017 Filomat 30, No. 7, 1969-1978 (2016). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{H.-M. Kim} and \textit{E. Son}, Filomat 30, No. 7, 1969--1978 (2016; Zbl 1461.39017) Full Text: DOI OpenURL
Kim, Seong Sik; Rassias, John Michael; Hussain, Nawab; Cho, Yeol Je Generalized Hyers-Ulam stability of general cubic functional equation in random normed spaces. (English) Zbl 1390.39101 Filomat 30, No. 1, 89-98 (2016). MSC: 39B82 39B52 39B72 47H09 PDF BibTeX XML Cite \textit{S. S. Kim} et al., Filomat 30, No. 1, 89--98 (2016; Zbl 1390.39101) Full Text: DOI OpenURL
Baderi, Z.; Saadati, R. Generalized stability of Euler-Lagrange quadratic functional equation in random normed spaces under arbitrary \(t\)-norms. (English) Zbl 1453.39020 Thai J. Math. 14, No. 3, 585-590 (2016). MSC: 39B52 39B82 PDF BibTeX XML Cite \textit{Z. Baderi} and \textit{R. Saadati}, Thai J. Math. 14, No. 3, 585--590 (2016; Zbl 1453.39020) Full Text: Link OpenURL
Wang, Zhihua; Sahoo, Prasanna K. Approximation of a generalized Euler-Lagrange type additive mapping on Lie \(C^\ast\)-algebras. (English) Zbl 1361.39016 Int. J. Nonlinear Anal. Appl. 7, No. 2, 195-204 (2016). MSC: 39B82 39B52 46L57 46L05 16W25 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{P. K. Sahoo}, Int. J. Nonlinear Anal. Appl. 7, No. 2, 195--204 (2016; Zbl 1361.39016) OpenURL
Farokhzad Rostami, R.; Hosseinioun, S. A. R. Approximately generalized additive functions in several variables via fixed point method. (English) Zbl 1361.39014 Int. J. Nonlinear Anal. Appl. 7, No. 1, 167-181 (2016). MSC: 39B82 46S50 39B52 46S10 PDF BibTeX XML Cite \textit{R. Farokhzad Rostami} and \textit{S. A. R. Hosseinioun}, Int. J. Nonlinear Anal. Appl. 7, No. 1, 167--181 (2016; Zbl 1361.39014) Full Text: DOI OpenURL
Lee, Sung Jin; Lee, Jung Rye Generalized module left \((m,n)\)-derivations. (English) Zbl 1357.16058 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 23, No. 4, 385-387 (2016). MSC: 16W25 16D80 PDF BibTeX XML Cite \textit{S. J. Lee} and \textit{J. R. Lee}, J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 23, No. 4, 385--387 (2016; Zbl 1357.16058) Full Text: DOI OpenURL
Azadi Kenary, H.; Ghaffaripour, A. Almost Jordan quartic homomorphisms and Jordan quartic derivations on fuzzy Banach algebras. (English) Zbl 1370.46049 Nonlinear Funct. Anal. Appl. 21, No. 3, 531-543 (2016). MSC: 46S40 39B52 39B82 PDF BibTeX XML Cite \textit{H. Azadi Kenary} and \textit{A. Ghaffaripour}, Nonlinear Funct. Anal. Appl. 21, No. 3, 531--543 (2016; Zbl 1370.46049) OpenURL
Wang, Zhihua; Sahoo, Prasanna K. Stability of functional equations of \(n\)-Apollonius type in fuzzy ternary Banach algebras. (English) Zbl 1393.39016 J. Fixed Point Theory Appl. 18, No. 4, 721-735 (2016). MSC: 39B52 39B82 46S40 47H10 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{P. K. Sahoo}, J. Fixed Point Theory Appl. 18, No. 4, 721--735 (2016; Zbl 1393.39016) Full Text: DOI OpenURL
Cheng, Lihua Stability of the Euler-Lagrange type cubic functional equation. (Chinese. English summary) Zbl 1363.39035 J. Anhui Univ., Nat. Sci. 40, No. 4, 6-11 (2016). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{L. Cheng}, J. Anhui Univ., Nat. Sci. 40, No. 4, 6--11 (2016; Zbl 1363.39035) Full Text: DOI OpenURL
Kim, Chang Il; Han, Gil Jun Stability of drygas type functional equations with involution in non-Archimedean Banach spaces by fixed point method. (English) Zbl 1348.39012 J. Appl. Math. Inform. 34, No. 5-6, 509-517 (2016). MSC: 39B52 39B82 PDF BibTeX XML Cite \textit{C. I. Kim} and \textit{G. J. Han}, J. Appl. Math. Inform. 34, No. 5--6, 509--517 (2016; Zbl 1348.39012) Full Text: DOI OpenURL
Tang, Shuhong; Zada, Akbar; Faisal, Shah; El-Sheikh, M. M. A.; Li, Tongxing Stability of higher-order nonlinear impulsive differential equations. (English) Zbl 1350.34022 J. Nonlinear Sci. Appl. 9, No. 6, 4713-4721 (2016). MSC: 34A37 34D10 PDF BibTeX XML Cite \textit{S. Tang} et al., J. Nonlinear Sci. Appl. 9, No. 6, 4713--4721 (2016; Zbl 1350.34022) Full Text: DOI Link OpenURL
Eskandani, G. Zamani Stability of pexiderized Cauchy functional equation in Felbin’s type fuzzy normed linear spaces. (English) Zbl 1388.39015 Nonlinear Funct. Anal. Appl. 21, No. 1, 95-104 (2016). MSC: 39B82 46S40 PDF BibTeX XML Cite \textit{G. Z. Eskandani}, Nonlinear Funct. Anal. Appl. 21, No. 1, 95--104 (2016; Zbl 1388.39015) OpenURL
Chu, Hahng-Yun; Kim, Ahyoung; Park, Jinhae On the Hyers-Ulam stabilities of functional equations on \(n\)-Banach spaces. (English) Zbl 1354.39019 Math. Nachr. 289, No. 10, 1177-1188 (2016). Reviewer: Andrzej Smajdor (Kraków) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{H.-Y. Chu} et al., Math. Nachr. 289, No. 10, 1177--1188 (2016; Zbl 1354.39019) Full Text: DOI OpenURL
Kim, Hark-Mahn; Shin, Hwan-Yong Approximation of almost Sahoo-Riedel’s points by Sahoo-Riedel’s points. (English) Zbl 1351.39015 Aequationes Math. 90, No. 4, 809-815 (2016). Reviewer: Piotr Sworowski (Bydgoszcz) MSC: 39B82 26A24 39B22 PDF BibTeX XML Cite \textit{H.-M. Kim} and \textit{H.-Y. Shin}, Aequationes Math. 90, No. 4, 809--815 (2016; Zbl 1351.39015) Full Text: DOI OpenURL
Kim, Chang Il; Yun, Yong Sik Fuzzy stability of quadratic-cubic functional equations. (English) Zbl 1347.39027 East Asian Math. J. 32, No. 3, 413-423 (2016). Reviewer: Maryam Amyari (Mashhad) MSC: 39B82 46S40 39B52 PDF BibTeX XML Cite \textit{C. I. Kim} and \textit{Y. S. Yun}, East Asian Math. J. 32, No. 3, 413--423 (2016; Zbl 1347.39027) Full Text: DOI OpenURL
Zhang, Dong On Hyers-Ulam stability of generalized linear functional equation and its induced Hyers-Ulam programming problem. (English) Zbl 1341.39018 Aequationes Math. 90, No. 3, 559-568 (2016). Reviewer: Pál Burai (Debrecen) MSC: 39B82 39B62 39B52 PDF BibTeX XML Cite \textit{D. Zhang}, Aequationes Math. 90, No. 3, 559--568 (2016; Zbl 1341.39018) Full Text: DOI OpenURL
Mortici, Cristinel; Monea, Mihai; Marinescu, Dan Ştefan The stability of some points arising from continuous, differential and integral expressions. (English) Zbl 1341.39015 Monatsh. Math. 180, No. 1, 101-122 (2016). Reviewer: Maryam Amyari (Mashhad) MSC: 39B82 26A24 28A15 39B22 PDF BibTeX XML Cite \textit{C. Mortici} et al., Monatsh. Math. 180, No. 1, 101--122 (2016; Zbl 1341.39015) Full Text: DOI OpenURL
Bakhshandeh-Chamazkoti, Rohollah; Nadjafikhah, Mehdi The stability of a connection on Hermitian vector bundles over a Riemannian manifold. (English) Zbl 1336.39018 Asian-Eur. J. Math. 9, No. 1, Article ID 1650001, 9 p. (2016). Reviewer: Mohammad Sal Moslehian (Karlstad) MSC: 39B82 47B48 53C07 PDF BibTeX XML Cite \textit{R. Bakhshandeh-Chamazkoti} and \textit{M. Nadjafikhah}, Asian-Eur. J. Math. 9, No. 1, Article ID 1650001, 9 p. (2016; Zbl 1336.39018) Full Text: DOI OpenURL
Ravi, K.; Suresh, S. Fuzzy stability of a new mixed type additive and quadratic functional equation. (English) Zbl 1332.39022 Far East J. Math. Sci. (FJMS) 99, No. 5, 641-662 (2016). MSC: 39B55 39B52 39B82 PDF BibTeX XML Cite \textit{K. Ravi} and \textit{S. Suresh}, Far East J. Math. Sci. (FJMS) 99, No. 5, 641--662 (2016; Zbl 1332.39022) Full Text: DOI Link OpenURL
Fang, Ming; Lu, Gang; Pei, Dong He Functional inequalities in generalized quasi-Banach spaces. (English) Zbl 1338.39039 J. Nonlinear Sci. Appl. 9, No. 5, 2481-2491 (2016). MSC: 39B62 39B52 39B82 PDF BibTeX XML Cite \textit{M. Fang} et al., J. Nonlinear Sci. Appl. 9, No. 5, 2481--2491 (2016; Zbl 1338.39039) Full Text: DOI Link OpenURL
Li, Tongxing; Zada, Akbar; Faisal, Shah Hyers-Ulam stability of \(n\)th order linear differential equations. (English) Zbl 1337.34052 J. Nonlinear Sci. Appl. 9, No. 5, 2070-2075 (2016). MSC: 34D10 34A30 PDF BibTeX XML Cite \textit{T. Li} et al., J. Nonlinear Sci. Appl. 9, No. 5, 2070--2075 (2016; Zbl 1337.34052) Full Text: DOI Link OpenURL
Lee, Yang-Hi; Rassias, John Michael; Kim, Hark-Mahn Approximation of Jensen type quadratic-additive mappings via the fixed point theory. (English) Zbl 1333.39038 J. Comput. Anal. Appl. 21, No. 4, 704-715 (2016). MSC: 39B82 39B72 47L05 PDF BibTeX XML Cite \textit{Y.-H. Lee} et al., J. Comput. Anal. Appl. 21, No. 4, 704--715 (2016; Zbl 1333.39038) OpenURL
Kim, Chang Il; Han, Giljun; Chang, Jeongwook Stability of the generalized version of Euler-Lagrange type quadratic equation. (English) Zbl 1333.39036 J. Comput. Anal. Appl. 21, No. 1, 156-169 (2016). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{C. I. Kim} et al., J. Comput. Anal. Appl. 21, No. 1, 156--169 (2016; Zbl 1333.39036) OpenURL
Chu, Hahng-Yun; Yoo, Seung Ki On the stability of the generalized quadratic set-valued functional equation. (English) Zbl 1345.39016 J. Comput. Anal. Appl. 20, No. 6, 1007-1020 (2016). Reviewer: Prasanna Sahoo (Louisville) MSC: 39B82 47H04 47H10 54C60 39B52 PDF BibTeX XML Cite \textit{H.-Y. Chu} and \textit{S. K. Yoo}, J. Comput. Anal. Appl. 20, No. 6, 1007--1020 (2016; Zbl 1345.39016) OpenURL
Narasimman, Pasupathi; Rassias, John M.; Ravi, Krishnan \(n\)-dimensional quintic and sextic functional equations and their stabilities in felbin type spaces. (English) Zbl 1332.39021 Georgian Math. J. 23, No. 1, 121-137 (2016). MSC: 39B55 39B52 39B82 PDF BibTeX XML Cite \textit{P. Narasimman} et al., Georgian Math. J. 23, No. 1, 121--137 (2016; Zbl 1332.39021) Full Text: DOI OpenURL
Narasimman, P. Solution and fuzzy stability of a mixed type functional equation. (English) Zbl 1329.39028 Adv. Pure Appl. Math. 7, No. 1, 29-39 (2016). MSC: 39B55 39B52 39B82 PDF BibTeX XML Cite \textit{P. Narasimman}, Adv. Pure Appl. Math. 7, No. 1, 29--39 (2016; Zbl 1329.39028) Full Text: DOI OpenURL
Balamurugan, K.; Arunkumar, M.; Ravindiran, P. Solution and stability of system of quartic functional equations. (English) Zbl 1371.39029 Malaya J. Mat. 3, No. 3, 250-267 (2015). MSC: 39B52 39B72 39B82 PDF BibTeX XML Cite \textit{K. Balamurugan} et al., Malaya J. Mat. 3, No. 3, 250--267 (2015; Zbl 1371.39029) Full Text: Link OpenURL
Huang, Jinghao; Alqifiary, Qusuay H.; Li, Yongjin On the generalized superstability of \(n\)th-order linear differential equations with initial conditions. (English) Zbl 1452.34019 Publ. Inst. Math., Nouv. Sér. 98(112), 243-249 (2015). MSC: 34A30 34D10 34A12 34D20 PDF BibTeX XML Cite \textit{J. Huang} et al., Publ. Inst. Math., Nouv. Sér. 98(112), 243--249 (2015; Zbl 1452.34019) Full Text: DOI EMIS OpenURL
Ebadian, A.; Zolfaghari, S.; Ostadbashi, S. Higher \(*\)-derivations in non-Archimedean random \(C^*\)-algebras and Lie higher \(*\)-derivations in non-Archimedean random Lie \(C^*\)-algebras. (English) Zbl 1374.39035 Acta Univ. Apulensis, Math. Inform. 42, 127-139 (2015). MSC: 39B82 39B52 46S50 46S10 46L57 PDF BibTeX XML Cite \textit{A. Ebadian} et al., Acta Univ. Apulensis, Math. Inform. 42, 127--139 (2015; Zbl 1374.39035) OpenURL
Ravi, K.; Sabarinathan, S. A quadratic functional equation and its stability in Felbin’s type spaces. (English) Zbl 1359.39018 Far East J. Math. Sci. (FJMS) 98, No. 8, 977-998 (2015). MSC: 39B82 39B52 46S40 PDF BibTeX XML Cite \textit{K. Ravi} and \textit{S. Sabarinathan}, Far East J. Math. Sci. (FJMS) 98, No. 8, 977--998 (2015; Zbl 1359.39018) Full Text: DOI Link OpenURL
Ravi, Krishnan; Rassias, Matina J.; Narasimman, Pasupathi; Kumar, Ravi K. Stabilities of a general \(k\)-cubic functional equation in Banach spaces. (English) Zbl 1355.39036 Contemp. Anal. Appl. Math. 3, No. 1, 1-12 (2015). Reviewer: Jacek Chmieliński (Kraków) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{K. Ravi} et al., Contemp. Anal. Appl. Math. 3, No. 1, 1--12 (2015; Zbl 1355.39036) Full Text: DOI OpenURL
Choi, Ginkyu; Jung, Soon-Mo Invariance of Hyers-Ulam stability of linear differential equations and its applications. (English) Zbl 1351.34064 Adv. Difference Equ. 2015, Paper No. 277, 14 p. (2015). MSC: 34D10 34A30 34C20 PDF BibTeX XML Cite \textit{G. Choi} and \textit{S.-M. Jung}, Adv. Difference Equ. 2015, Paper No. 277, 14 p. (2015; Zbl 1351.34064) Full Text: DOI OpenURL
Bahyrycz, Anna; Ciepliński, Krzysztof; Olko, Jolanta On an equation characterizing multi-Cauchy-Jensen mappings and its Hyers-Ulam stability. (English) Zbl 1349.39043 Acta Math. Sci., Ser. B, Engl. Ed. 35, No. 6, 1349-1358 (2015). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{A. Bahyrycz} et al., Acta Math. Sci., Ser. B, Engl. Ed. 35, No. 6, 1349--1358 (2015; Zbl 1349.39043) Full Text: DOI OpenURL