Wang, Tian-jun A new multi-domain spectral method for Korteweg-de Vries equation on the whole line. (English) Zbl 07550025 J. Sci. Comput. 92, No. 2, Paper No. 32, 29 p. (2022). MSC: 65M70 41A10 35Q53 76B25 PDF BibTeX XML Cite \textit{T.-j. Wang}, J. Sci. Comput. 92, No. 2, Paper No. 32, 29 p. (2022; Zbl 07550025) Full Text: DOI OpenURL
Han, Beom-Seok \(L_p\)-regularity theory for semilinear stochastic partial differential equations with multiplicative white noise. (English) Zbl 1487.60122 J. Math. Anal. Appl. 514, No. 1, Article ID 126366, 31 p. (2022). MSC: 60H15 35R60 35Q53 60H40 PDF BibTeX XML Cite \textit{B.-S. Han}, J. Math. Anal. Appl. 514, No. 1, Article ID 126366, 31 p. (2022; Zbl 1487.60122) Full Text: DOI OpenURL
Yan, Xiangqian; Yan, Wei The Cauchy problem for the generalized Ostrovsky equation with negative dispersion. (English) Zbl 1487.35190 J. Evol. Equ. 22, No. 2, Paper No. 40, 34 p. (2022). MSC: 35G25 35B45 35Q53 PDF BibTeX XML Cite \textit{X. Yan} and \textit{W. Yan}, J. Evol. Equ. 22, No. 2, Paper No. 40, 34 p. (2022; Zbl 1487.35190) Full Text: DOI OpenURL
Molinet, Luc; Tanaka, Tomoyuki Unconditional well-posedness for some nonlinear periodic one-dimensional dispersive equations. (English) Zbl 1486.35004 J. Funct. Anal. 283, No. 1, Article ID 109490, 45 p. (2022). MSC: 35A01 35A02 35Q53 35R11 PDF BibTeX XML Cite \textit{L. Molinet} and \textit{T. Tanaka}, J. Funct. Anal. 283, No. 1, Article ID 109490, 45 p. (2022; Zbl 1486.35004) Full Text: DOI OpenURL
Li, Jinlu; Yu, Yanghai; Zhu, Weipeng Sharp ill-posedness for the generalized Camassa-Holm equation in Besov spaces. (English) Zbl 07504663 J. Evol. Equ. 22, No. 1, Paper No. 29, 11 p. (2022). MSC: 35Q53 37K10 35R25 PDF BibTeX XML Cite \textit{J. Li} et al., J. Evol. Equ. 22, No. 1, Paper No. 29, 11 p. (2022; Zbl 07504663) Full Text: DOI OpenURL
Tu, Xi; Yin, Zhaoyang The existence of global weak solutions for a generalized Camassa-Holm equation. (English) Zbl 07496981 Appl. Anal. 101, No. 3, 810-823 (2022). MSC: 35Q53 35A01 35B44 35B65 35D30 35D35 PDF BibTeX XML Cite \textit{X. Tu} and \textit{Z. Yin}, Appl. Anal. 101, No. 3, 810--823 (2022; Zbl 07496981) Full Text: DOI OpenURL
Ma, Hongcai; Yue, Shupan; Deng, Aiping D’Alembert wave, the Hirota conditions and soliton molecule of a new generalized KdV equation. (English) Zbl 07482857 J. Geom. Phys. 172, Article ID 104413, 10 p. (2022). MSC: 35Q53 35C07 35C08 PDF BibTeX XML Cite \textit{H. Ma} et al., J. Geom. Phys. 172, Article ID 104413, 10 p. (2022; Zbl 07482857) Full Text: DOI OpenURL
Boukarou, Aissa; Guerbati, Kaddour; Zennir, Khaled; Alnegga, Mohammad Gevrey regularity for the generalized Kadomtsev-Petviashvili I (gKP-I) equation. (English) Zbl 07536319 AIMS Math. 6, No. 9, 10037-10054 (2021). MSC: 35Q35 35Q53 PDF BibTeX XML Cite \textit{A. Boukarou} et al., AIMS Math. 6, No. 9, 10037--10054 (2021; Zbl 07536319) Full Text: DOI OpenURL
Ullah, Naeem; Asjad, Muhammad Imran; Iqbal, Azhar; Rehman, Hamood Ur; Hassan, Ahmad; Tuan Nguyen Gia Analysis of optical solitons solutions of two nonlinear models using analytical technique. (English) Zbl 07533483 AIMS Math. 6, No. 12, 13258-13271 (2021). MSC: 35Q51 35Q53 PDF BibTeX XML Cite \textit{N. Ullah} et al., AIMS Math. 6, No. 12, 13258--13271 (2021; Zbl 07533483) Full Text: DOI OpenURL
Carvajal, Xavier; Gamboa, Pedro; Santos, Raphael Sharp well-posedness and ill-posedness results for dissipative KdV equations on the real line. (English) Zbl 07531108 Differ. Equ. Appl. 13, No. 4, 431-466 (2021). MSC: 35E15 35M11 35Q53 35Q60 PDF BibTeX XML Cite \textit{X. Carvajal} et al., Differ. Equ. Appl. 13, No. 4, 431--466 (2021; Zbl 07531108) Full Text: DOI OpenURL
Wang, Xiaoli; Wang, Lizhen Traveling wave solutions of conformable time fractional Burgers type equations. (English) Zbl 1484.35116 AIMS Math. 6, No. 7, 7266-7284 (2021). MSC: 35C07 26A24 35Q53 PDF BibTeX XML Cite \textit{X. Wang} and \textit{L. Wang}, AIMS Math. 6, No. 7, 7266--7284 (2021; Zbl 1484.35116) Full Text: DOI OpenURL
Raut, Santanu; Roy, Subrata; Kairi, Rishi Raj; Chatterjee, Prasanta Approximate analytical solutions of generalized Zakharov-Kuznetsov and generalized modified Zakharov-Kuznetsov equations. (English) Zbl 1485.35121 Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 157, 25 p. (2021). MSC: 35G25 35Q53 PDF BibTeX XML Cite \textit{S. Raut} et al., Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 157, 25 p. (2021; Zbl 1485.35121) Full Text: DOI OpenURL
Pelinovsky, Efim; Talipova, Tatiana; Soomere, Tarmo The structure of algebraic solitons and compactons in the generalized Korteweg-de Vries equation. (English) Zbl 07479447 Physica D 419, Article ID 132785, 7 p. (2021). MSC: 35Q53 35C07 35C08 PDF BibTeX XML Cite \textit{E. Pelinovsky} et al., Physica D 419, Article ID 132785, 7 p. (2021; Zbl 07479447) Full Text: DOI OpenURL
Liu, Shao-Hua; Tian, Bo; Qu, Qi-Xing; Li, He; Zhao, Xue-Hui; Du, Xia-Xia; Chen, Su-Su Breather, lump, shock and travelling-wave solutions for a (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in fluid mechanics and plasma physics. (English) Zbl 1479.35680 Int. J. Comput. Math. 98, No. 6, 1130-1145 (2021). MSC: 35Q35 35Q53 76X05 PDF BibTeX XML Cite \textit{S.-H. Liu} et al., Int. J. Comput. Math. 98, No. 6, 1130--1145 (2021; Zbl 1479.35680) Full Text: DOI OpenURL
Karakoc, Seydi Battal Gazi; Ali, Khalid Karam New exact solutions and numerical approximations of the generalized KdV equation. (English) Zbl 07468458 Comput. Methods Differ. Equ. 9, No. 3, 670-691 (2021). MSC: 65N30 65D07 74S05 74J35 76B25 PDF BibTeX XML Cite \textit{S. B. G. Karakoc} and \textit{K. K. Ali}, Comput. Methods Differ. Equ. 9, No. 3, 670--691 (2021; Zbl 07468458) Full Text: DOI OpenURL
Wang, Gangwei Symmetry analysis, analytical solutions and conservation laws of a generalized KdV-Burgers-Kuramoto equation and its fractional version. (English) Zbl 1482.35027 Fractals 29, No. 4, Article ID 2150101, 11 p. (2021). MSC: 35B06 35Q53 35R11 PDF BibTeX XML Cite \textit{G. Wang}, Fractals 29, No. 4, Article ID 2150101, 11 p. (2021; Zbl 1482.35027) Full Text: DOI OpenURL
Chen, Yiren; Li, Shaoyong New traveling wave solutions and interesting bifurcation phenomena of generalized KdV-mKdV-like equation. (English) Zbl 1483.35184 Adv. Math. Phys. 2021, Article ID 4213939, 6 p. (2021). MSC: 35Q53 35C07 35C08 35B32 35B44 37G99 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{S. Li}, Adv. Math. Phys. 2021, Article ID 4213939, 6 p. (2021; Zbl 1483.35184) Full Text: DOI OpenURL
Wang, Yuan Painlevé analysis of higher order nonlinear evolution equations with variable coefficients. (English) Zbl 07448254 Chin. Q. J. Math. 36, No. 2, 196-203 (2021). MSC: 35Q53 37K10 PDF BibTeX XML Cite \textit{Y. Wang}, Chin. Q. J. Math. 36, No. 2, 196--203 (2021; Zbl 07448254) Full Text: DOI OpenURL
Geng, Xianguo; Li, Yihao; Wei, Jiao; Zhai, Yunyun Darboux transformation of a two-component generalized Sasa-Satsuma equation and explicit solutions. (English) Zbl 1479.35718 Math. Methods Appl. Sci. 44, No. 17, 12727-12745 (2021). MSC: 35Q51 35Q53 35C08 35C07 37K10 37K35 35L65 PDF BibTeX XML Cite \textit{X. Geng} et al., Math. Methods Appl. Sci. 44, No. 17, 12727--12745 (2021; Zbl 1479.35718) Full Text: DOI OpenURL
Zhu, Yuting; Chen, Chunfang; Chen, Jianhua; Yuan, Chenggui Multiple solutions and ground state solutions for a class of generalized Kadomtsev-Petviashvili equation. (English) Zbl 1483.35191 Open Math. 19, 297-305 (2021). MSC: 35Q53 35C08 PDF BibTeX XML Cite \textit{Y. Zhu} et al., Open Math. 19, 297--305 (2021; Zbl 1483.35191) Full Text: DOI OpenURL
Ling, Xing-qian; Zhang, Wei-guo Orbital stability of dn periodic solutions for the generalized symmetric regularized-long-wave equation. (English) Zbl 07424153 Appl. Math. Comput. 405, Article ID 126249, 10 p. (2021). MSC: 35Q53 35Q51 37K45 PDF BibTeX XML Cite \textit{X.-q. Ling} and \textit{W.-g. Zhang}, Appl. Math. Comput. 405, Article ID 126249, 10 p. (2021; Zbl 07424153) Full Text: DOI OpenURL
Hong, Xiao; Manafian, Jalil; Ilhan, Onur Alp; Alkireet, Arshad Ilyas Ali; Nasution, Mahyuddin K. M. Multiple soliton solutions of the generalized Hirota-Satsuma-Ito equation arising in shallow water wave. (English) Zbl 1479.35721 J. Geom. Phys. 170, Article ID 104338, 19 p. (2021). MSC: 35Q51 35Q53 35C08 76B25 PDF BibTeX XML Cite \textit{X. Hong} et al., J. Geom. Phys. 170, Article ID 104338, 19 p. (2021; Zbl 1479.35721) Full Text: DOI OpenURL
Wang, Kang-Jia; Wang, Guo-Dong Solitary and periodic wave solutions of the generalized fourth-order Boussinesq equation via He’s variational methods. (English) Zbl 1473.35493 Math. Methods Appl. Sci. 44, No. 7, 5617-5625 (2021). MSC: 35Q53 PDF BibTeX XML Cite \textit{K.-J. Wang} and \textit{G.-D. Wang}, Math. Methods Appl. Sci. 44, No. 7, 5617--5625 (2021; Zbl 1473.35493) Full Text: DOI OpenURL
Wang, Nan; Li, Meng; Huang, Chengming Unconditional energy dissipation and error estimates of the SAV Fourier spectral method for nonlinear fractional generalized wave equation. (English) Zbl 1480.35349 J. Sci. Comput. 88, No. 1, Paper No. 19, 32 p. (2021). MSC: 35Q53 65M70 65M06 65N35 65M15 65N15 26A33 35R11 PDF BibTeX XML Cite \textit{N. Wang} et al., J. Sci. Comput. 88, No. 1, Paper No. 19, 32 p. (2021; Zbl 1480.35349) Full Text: DOI arXiv OpenURL
Alam, Md. Khorshed; Hossain, Md. Dulal; Akbar, M. Ali; Gepreel, Khaled A. Determination of the rich structural wave dynamic solutions to the Caudrey-Dodd-Gibbon equation and the Lax equation. (English) Zbl 1471.35083 Lett. Math. Phys. 111, No. 4, Paper No. 103, 19 p. (2021). MSC: 35C08 35Q53 35R35 47J35 PDF BibTeX XML Cite \textit{Md. K. Alam} et al., Lett. Math. Phys. 111, No. 4, Paper No. 103, 19 p. (2021; Zbl 1471.35083) Full Text: DOI OpenURL
Miyazaki, Hayato Lower bound for the lifespan of solutions to the generalized KdV equation with low-degree of nonlinearity. (English) Zbl 1473.35488 Giga, Yoshikazu (ed.) et al., The role of metrics in the theory of partial differential equations. Proceedings of the 11th Mathematical Society of Japan, Seasonal Institute (MSJ-SI), Nagoya University, Japan, July 2–13 2018. Tokyo: Mathematical Society of Japan. Adv. Stud. Pure Math. 85, 303-313 (2021). MSC: 35Q53 35A01 35A02 PDF BibTeX XML Cite \textit{H. Miyazaki}, Adv. Stud. Pure Math. 85, 303--313 (2021; Zbl 1473.35488) Full Text: DOI OpenURL
Verma, Amit Kumar; Rawani, Mukesh Kumar; Cattani, Carlo A numerical scheme for a class of generalized Burgers’ equation based on Haar wavelet nonstandard finite difference method. (English) Zbl 1486.65211 Appl. Numer. Math. 168, 41-54 (2021). MSC: 65M70 65T60 65M06 65M15 35Q53 PDF BibTeX XML Cite \textit{A. K. Verma} et al., Appl. Numer. Math. 168, 41--54 (2021; Zbl 1486.65211) Full Text: DOI OpenURL
Riaño, Oscar On persistence properties in weighted spaces for solutions of the fractional Korteweg-de Vries equation. (English) Zbl 1469.35189 Nonlinearity 34, No. 7, 4604-4660 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q53 35R11 35B40 35B65 PDF BibTeX XML Cite \textit{O. Riaño}, Nonlinearity 34, No. 7, 4604--4660 (2021; Zbl 1469.35189) Full Text: DOI arXiv OpenURL
Mao, Lei; Gao, Hongjun The Cauchy problem for generalized fractional Camassa-Holm equation in Besov space. (English) Zbl 1467.35291 Monatsh. Math. 195, No. 3, 451-475 (2021). MSC: 35Q53 35B30 35G25 35A01 35A02 35B44 35R11 PDF BibTeX XML Cite \textit{L. Mao} and \textit{H. Gao}, Monatsh. Math. 195, No. 3, 451--475 (2021; Zbl 1467.35291) Full Text: DOI OpenURL
Ma, Yong-Xin; Tian, Bo; Qu, Qi-Xing; Yang, Dan-Yu; Chen, Yu-Qi Painlevé analysis, Bäcklund transformations and traveling-wave solutions for a \((3 + 1)\)-dimensional generalized Kadomtsev-Petviashvili equation in a fluid. (English) Zbl 1462.35338 Int. J. Mod. Phys. B 35, No. 7, Article ID 2150108, 13 p. (2021). MSC: 35Q53 35C07 35A22 PDF BibTeX XML Cite \textit{Y.-X. Ma} et al., Int. J. Mod. Phys. B 35, No. 7, Article ID 2150108, 13 p. (2021; Zbl 1462.35338) Full Text: DOI OpenURL
Oh, Tadahiro; Wang, Yuzhao On global well-posedness of the modified KdV equation in modulation spaces. (English) Zbl 1469.35188 Discrete Contin. Dyn. Syst. 41, No. 6, 2971-2992 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q53 35B65 42B99 PDF BibTeX XML Cite \textit{T. Oh} and \textit{Y. Wang}, Discrete Contin. Dyn. Syst. 41, No. 6, 2971--2992 (2021; Zbl 1469.35188) Full Text: DOI arXiv OpenURL
Nesterov, A. V. The effect of weak mutual diffusion on transport processes in a multiphase medium. (English. Russian original) Zbl 1462.35036 Comput. Math. Math. Phys. 61, No. 3, 494-503 (2021); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 3, 519-528 (2021). MSC: 35B25 35C20 35Q53 PDF BibTeX XML Cite \textit{A. V. Nesterov}, Comput. Math. Math. Phys. 61, No. 3, 494--503 (2021; Zbl 1462.35036); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 3, 519--528 (2021) Full Text: DOI OpenURL
Urbain, Fibay; Kudryashov, N. A.; Tala-Tebue, E.; Hubert, Malwe Boudoue; Doka, S. Y.; Crepin, Kofane Timoleon Exact solutions of the KdV equation with dual-power law nonlinearity. (English) Zbl 1465.35356 Comput. Math. Math. Phys. 61, No. 3, 431-435 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q53 35C07 35C08 PDF BibTeX XML Cite \textit{F. Urbain} et al., Comput. Math. Math. Phys. 61, No. 3, 431--435 (2021; Zbl 1465.35356) Full Text: DOI OpenURL
Chen, Mingjuan; Guo, Boling; Han, Lijia Global well-posedness and inviscid limit for the generalized Benjamin-Ono-Burgers equation. (English) Zbl 1460.35312 Appl. Anal. 100, No. 4, 804-818 (2021). MSC: 35Q53 35Q35 35A01 35A02 44A15 76B15 PDF BibTeX XML Cite \textit{M. Chen} et al., Appl. Anal. 100, No. 4, 804--818 (2021; Zbl 1460.35312) Full Text: DOI OpenURL
Wang, Kedong; Chen, Mingming; Li, Ruomeng; Geng, Xianguo An integrable generalized Korteweg-de Vries equation with pseudo-peakons. (English) Zbl 1462.35342 Appl. Math. Lett. 115, Article ID 106942, 9 p. (2021). MSC: 35Q53 35C08 35B07 35B09 37K10 PDF BibTeX XML Cite \textit{K. Wang} et al., Appl. Math. Lett. 115, Article ID 106942, 9 p. (2021; Zbl 1462.35342) Full Text: DOI OpenURL
Hryniv, Rostyslav; Melnyk, Bohdan; Mykytyuk, Yaroslav Inverse scattering for reflectionless Schrödinger operators with integrable potentials and generalized soliton solutions for the KdV equation. (English) Zbl 07303662 Ann. Henri Poincaré 22, No. 2, 487-527 (2021). MSC: 47A40 34L25 34L40 35C08 81U40 37K15 37K40 37K60 37J35 37K10 PDF BibTeX XML Cite \textit{R. Hryniv} et al., Ann. Henri Poincaré 22, No. 2, 487--527 (2021; Zbl 07303662) Full Text: DOI arXiv OpenURL
Benzoni-Gavage, Sylvie; Mietka, Colin; Rodrigues, Luis Miguel Modulated equations of Hamiltonian PDEs and dispersive shocks. (English) Zbl 1457.35052 Nonlinearity 34, No. 1, 578-641 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q53 35Q35 35C07 35C08 35B10 35B40 37K45 PDF BibTeX XML Cite \textit{S. Benzoni-Gavage} et al., Nonlinearity 34, No. 1, 578--641 (2021; Zbl 1457.35052) Full Text: DOI arXiv OpenURL
Zhang, Qifeng; Qin, Yifan; Wang, Xuping; Sun, Zhi-zhong The study of exact and numerical solutions of the generalized viscous Burgers’ equation. (English) Zbl 1453.65240 Appl. Math. Lett. 112, Article ID 106719, 9 p. (2021). MSC: 65M06 65M12 65M15 65J08 35Q53 PDF BibTeX XML Cite \textit{Q. Zhang} et al., Appl. Math. Lett. 112, Article ID 106719, 9 p. (2021; Zbl 1453.65240) Full Text: DOI OpenURL
Gao, Xin-Yi; Guo, Yong-Jiang; Shan, Wen-Rui; Yuan, Yu-Qiang; Zhang, Chen-Rong; Chen, Su-Su Magneto-optical/ferromagnetic-material computation: Bäcklund transformations, bilinear forms and \(N\) solitons for a generalized \((3+1)\)-dimensional variable-coefficient modified Kadomtsev-Petviashvili system. (English) Zbl 1455.35248 Appl. Math. Lett. 111, Article ID 106627, 8 p. (2021). Reviewer: Eric Stachura (Marietta) MSC: 35Q60 35Q53 78A25 78A60 78A40 78A50 76X05 76Q05 76B25 82D40 82D10 74K35 37K35 35C08 68W30 PDF BibTeX XML Cite \textit{X.-Y. Gao} et al., Appl. Math. Lett. 111, Article ID 106627, 8 p. (2021; Zbl 1455.35248) Full Text: DOI OpenURL
Ma, Yu-Lan; Li, Bang-Qing Mixed lump and soliton solutions for a generalized \((3+1)\)-dimensional Kadomtsev-Petviashvili equation. (English) Zbl 1484.35338 AIMS Math. 5, No. 2, 1162-1176 (2020). MSC: 35Q53 35B40 35C08 37K40 PDF BibTeX XML Cite \textit{Y.-L. Ma} and \textit{B.-Q. Li}, AIMS Math. 5, No. 2, 1162--1176 (2020; Zbl 1484.35338) Full Text: DOI OpenURL
Gao, Wei; Yel, Gulnur; Baskonus, Haci Mehmet; Cattani, Carlo Complex solitons in the conformable \((2+1)\)-dimensional Ablowitz-Kaup-Newell-Segur equation. (English) Zbl 1484.35377 AIMS Math. 5, No. 1, 507-521 (2020). MSC: 35R11 26A24 35C08 35Q53 PDF BibTeX XML Cite \textit{W. Gao} et al., AIMS Math. 5, No. 1, 507--521 (2020; Zbl 1484.35377) Full Text: DOI OpenURL
Wang, Kedong; Geng, Xianguo; Chen, Mingming; Li, Ruomeng Long-time asymptotics for the generalized Sasa-Satsuma equation. (English) Zbl 1484.35340 AIMS Math. 5, No. 6, 7413-7437 (2020). MSC: 35Q53 35B40 PDF BibTeX XML Cite \textit{K. Wang} et al., AIMS Math. 5, No. 6, 7413--7437 (2020; Zbl 1484.35340) Full Text: DOI OpenURL
Oruc, Goksu; Borluk, Handan; Muslu, Gulcin M. The generalized fractional Benjamin-Bona-Mahony equation: analytical and numerical results. (English) Zbl 1486.35443 Physica D 409, Article ID 132499, 10 p. (2020). MSC: 35R11 35C08 35Q53 74J30 PDF BibTeX XML Cite \textit{G. Oruc} et al., Physica D 409, Article ID 132499, 10 p. (2020; Zbl 1486.35443) Full Text: DOI OpenURL
Ali, Ahmad T.; Khater, Mostafa M. A.; Attia, Raghda A. M.; Abdel-Aty, Abdel-Haleem; Lu, Dianchen Abundant numerical and analytical solutions of the generalized formula of Hirota-Satsuma coupled KdV system. (English) Zbl 07505790 Chaos Solitons Fractals 131, Article ID 109473, 10 p. (2020). MSC: 35Cxx 35Qxx 35Bxx PDF BibTeX XML Cite \textit{A. T. Ali} et al., Chaos Solitons Fractals 131, Article ID 109473, 10 p. (2020; Zbl 07505790) Full Text: DOI OpenURL
Wang, Hui; Tian, Shou-Fu; Chen, Yi; Zhang, Tian-Tian Dynamics of kink solitary waves and lump waves with interaction phenomena in a generalized \((3+1)\)-dimensional Kadomtsev-Petviashvili-Boussinesq equation. (English) Zbl 1479.35728 Int. J. Comput. Math. 97, No. 11, 2178-2190 (2020). MSC: 35Q51 35Q53 35C08 PDF BibTeX XML Cite \textit{H. Wang} et al., Int. J. Comput. Math. 97, No. 11, 2178--2190 (2020; Zbl 1479.35728) Full Text: DOI OpenURL
Koroglu, C. Exact and nonstandard finite difference schemes for the generalized KdV-Burgers equation. (English) Zbl 1482.65144 Adv. Difference Equ. 2020, Paper No. 134, 21 p. (2020). MSC: 65M06 35Q51 35Q53 PDF BibTeX XML Cite \textit{C. Koroglu}, Adv. Difference Equ. 2020, Paper No. 134, 21 p. (2020; Zbl 1482.65144) Full Text: DOI OpenURL
Fan, Guobing; Yang, Zhifeng Optimal control of a viscous generalized \(\theta\)-type dispersive equation with weak dissipation. (English) Zbl 1483.35301 Open Math. 18, 1302-1316 (2020). MSC: 35Q93 35Q53 35D40 35D30 35A01 35A02 49J20 49L25 93C20 PDF BibTeX XML Cite \textit{G. Fan} and \textit{Z. Yang}, Open Math. 18, 1302--1316 (2020; Zbl 1483.35301) Full Text: DOI OpenURL
Bagheri, Majid; Khani, Ali Analytical method for solving the fractional order generalized KdV equation by a beta-fractional derivative. (English) Zbl 1479.35734 Adv. Math. Phys. 2020, Article ID 8819183, 18 p. (2020). MSC: 35Q53 35C08 26A33 35R11 65M99 PDF BibTeX XML Cite \textit{M. Bagheri} and \textit{A. Khani}, Adv. Math. Phys. 2020, Article ID 8819183, 18 p. (2020; Zbl 1479.35734) Full Text: DOI OpenURL
Zhao, Guozhong; Guo, Huaimin; Guo, Pengyun; Tian, Bing A local discontinuous Petrov-Galerkin method for the generalized Burgers-Huxley equation and Burgers-Fisher equation. (English) Zbl 1474.65376 Numer. Math., Nanjing 42, No. 3, 193-208 (2020). MSC: 65M60 65M12 35Q53 PDF BibTeX XML Cite \textit{G. Zhao} et al., Numer. Math., Nanjing 42, No. 3, 193--208 (2020; Zbl 1474.65376) OpenURL
Ren, Bo; Lin, Ji; Lou, Zhi-Mei Lumps and their interaction solutions of a (2+1)-dimensional generalized potential Kadomtsev-Petviashvili equation. (English) Zbl 1464.35290 J. Appl. Anal. Comput. 10, No. 3, 935-945 (2020). MSC: 35Q51 35Q53 37K40 PDF BibTeX XML Cite \textit{B. Ren} et al., J. Appl. Anal. Comput. 10, No. 3, 935--945 (2020; Zbl 1464.35290) Full Text: DOI OpenURL
Cai, Benzhi; Wang, Zhenli; Zhang, Lihua; Liu, Hanze Lump solutions to the generalized (2+1)-dimensional B-type Kadomtsev-Petviashvili equation. (English) Zbl 1464.35278 J. Appl. Anal. Comput. 10, No. 3, 1038-1046 (2020). MSC: 35Q51 35Q53 37K10 37K40 68W30 PDF BibTeX XML Cite \textit{B. Cai} et al., J. Appl. Anal. Comput. 10, No. 3, 1038--1046 (2020; Zbl 1464.35278) Full Text: DOI OpenURL
Wang, Hui; Tian, Shou-Fu; Zhang, Tian-Tian; Chen, Yi The breather wave solutions, M-lump solutions and semi-rational solutions to a (2+1)-dimensional generalized Korteweg-de Vries equation. (English) Zbl 1464.35292 J. Appl. Anal. Comput. 10, No. 1, 118-130 (2020). MSC: 35Q51 35Q53 35C08 37K35 PDF BibTeX XML Cite \textit{H. Wang} et al., J. Appl. Anal. Comput. 10, No. 1, 118--130 (2020; Zbl 1464.35292) Full Text: DOI OpenURL
Mendez, Argenis J. On the propagation of regularity for solutions of the dispersion generalized Benjamin-Ono equation. (English) Zbl 1462.35339 Anal. PDE 13, No. 8, 2399-2440 (2020). MSC: 35Q53 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{A. J. Mendez}, Anal. PDE 13, No. 8, 2399--2440 (2020; Zbl 1462.35339) Full Text: DOI arXiv OpenURL
Vinodh, D.; Asokan, R. Multi-soliton, rogue wave and periodic wave solutions of generalized \((2+1)\) dimensional Boussinesq equation. (English) Zbl 1464.35256 Int. J. Appl. Comput. Math. 6, No. 1, Paper No. 15, 16 p. (2020). Reviewer: Vladimir Mityushev (Kraków) MSC: 35Q35 35Q51 35Q53 76B15 76B25 35C07 35B10 PDF BibTeX XML Cite \textit{D. Vinodh} and \textit{R. Asokan}, Int. J. Appl. Comput. Math. 6, No. 1, Paper No. 15, 16 p. (2020; Zbl 1464.35256) Full Text: DOI OpenURL
Masaki, Satoshi; Segata, Jun-ichi Refinement of Strichartz estimates for Airy equation and application. (English) Zbl 1458.35377 RIMS Kôkyûroku Bessatsu B80, 11-25 (2020). MSC: 35Q53 35B40 35B30 PDF BibTeX XML Cite \textit{S. Masaki} and \textit{J.-i. Segata}, RIMS Kôkyûroku Bessatsu B80, 11--25 (2020; Zbl 1458.35377) Full Text: Link OpenURL
Alam, Md Nur; Tunc, Cemil Construction of soliton and multiple soliton solutions to the longitudinal wave motion equation in a magneto-electro-elastic circular rod and the Drinfeld-Sokolov-Wilson equation. (English) Zbl 1474.35173 Miskolc Math. Notes 21, No. 2, 545-561 (2020). MSC: 35C07 35C08 35Q53 PDF BibTeX XML Cite \textit{M. N. Alam} and \textit{C. Tunc}, Miskolc Math. Notes 21, No. 2, 545--561 (2020; Zbl 1474.35173) Full Text: DOI OpenURL
Manafian, Jalil; Ilhan, Onur Alp; Alizadeh, As’ad; Mohammed, Sizar Abid Multiple rogue wave and solitary solutions for the generalized BK equation via Hirota bilinear and SIVP schemes arising in fluid mechanics. (English) Zbl 1451.76026 Commun. Theor. Phys. 72, No. 7, Article ID 075002, 13 p. (2020). MSC: 76B15 35Q53 35C08 35Q51 PDF BibTeX XML Cite \textit{J. Manafian} et al., Commun. Theor. Phys. 72, No. 7, Article ID 075002, 13 p. (2020; Zbl 1451.76026) Full Text: DOI OpenURL
Wang, Xiaomin; Bilige, Sudao Novel interaction phenomena of the \((3+1)\)-dimensional Jimbo-Miwa equation. (English) Zbl 1451.35177 Commun. Theor. Phys. 72, No. 4, Article ID 045001, 10 p. (2020). MSC: 35Q53 37K10 PDF BibTeX XML Cite \textit{X. Wang} and \textit{S. Bilige}, Commun. Theor. Phys. 72, No. 4, Article ID 045001, 10 p. (2020; Zbl 1451.35177) Full Text: DOI OpenURL
Inan, Bilge; Bahadir, Ahmet Refik A fully implicit finite difference approach for numerical solution of the generalized equal width (GEW) equation. (English) Zbl 1456.65069 Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 90, No. 2, 299-308 (2020). MSC: 65M06 65M12 65H10 35C08 35Q53 PDF BibTeX XML Cite \textit{B. Inan} and \textit{A. R. Bahadir}, Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 90, No. 2, 299--308 (2020; Zbl 1456.65069) Full Text: DOI OpenURL
Pham Loi Vu The inverse scattering problem for the perturbed string equation and its application to integration of the two-dimensional generalization from Korteweg-de Vries equation. (English) Zbl 1451.35172 Acta Math. Vietnam. 45, No. 4, 807-831 (2020). MSC: 35Q53 37K15 35B20 PDF BibTeX XML Cite \textit{Pham Loi Vu}, Acta Math. Vietnam. 45, No. 4, 807--831 (2020; Zbl 1451.35172) Full Text: DOI OpenURL
Zayed, Elsayed M. E.; Shohib, Reham M. A.; Alngar, Mohamed E. M. New extended generalized Kudryashov method for solving three nonlinear partial differential equations. (English) Zbl 07249219 Nonlinear Anal., Model. Control 25, No. 4, 598-617 (2020). MSC: 35Q55 35Q53 76X05 76Q05 35C08 34A34 PDF BibTeX XML Cite \textit{E. M. E. Zayed} et al., Nonlinear Anal., Model. Control 25, No. 4, 598--617 (2020; Zbl 07249219) Full Text: DOI OpenURL
Martel, Yvan; Pilod, Didier Full family of flattening solitary waves for the critical generalized KdV equation. (English) Zbl 1446.35176 Commun. Math. Phys. 378, No. 2, 1011-1080 (2020). MSC: 35Q53 35C08 35B40 35B44 PDF BibTeX XML Cite \textit{Y. Martel} and \textit{D. Pilod}, Commun. Math. Phys. 378, No. 2, 1011--1080 (2020; Zbl 1446.35176) Full Text: DOI arXiv OpenURL
Wang, Gangwei; Liu, Yixing; Wu, Yanbin; Su, Xing Symmetry analysis for a seventh-order generalized KdV equation and its fractional version in fluid mechanics. (English) Zbl 1434.35278 Fractals 28, No. 3, Article ID 2050044, 9 p. (2020). MSC: 35R11 35B06 35Q53 PDF BibTeX XML Cite \textit{G. Wang} et al., Fractals 28, No. 3, Article ID 2050044, 9 p. (2020; Zbl 1434.35278) Full Text: DOI OpenURL
Nasreen, Naila; Seadawy, Aly R.; Lu, Dianchen Construction of soliton solutions for modified Kawahara equation arising in shallow water waves using novel techniques. (English) Zbl 1434.35168 Int. J. Mod. Phys. B 34, No. 7, Article ID 2050045, 18 p. (2020). MSC: 35Q53 76B15 76B45 35C08 PDF BibTeX XML Cite \textit{N. Nasreen} et al., Int. J. Mod. Phys. B 34, No. 7, Article ID 2050045, 18 p. (2020; Zbl 1434.35168) Full Text: DOI OpenURL
Yan, Wei; Li, Yongsheng; Huang, Jianhua; Duan, Jinqiao The Cauchy problem for a two-dimensional generalized Kadomtsev-Petviashvili-I equation in anisotropic Sobolev spaces. (English) Zbl 1434.35171 Anal. Appl., Singap. 18, No. 3, 469-522 (2020). MSC: 35Q53 35B30 PDF BibTeX XML Cite \textit{W. Yan} et al., Anal. Appl., Singap. 18, No. 3, 469--522 (2020; Zbl 1434.35171) Full Text: DOI arXiv OpenURL
Wang, Mingliang; Zhang, Jinliang; Li, Erqiang; Xin, Xiaofei The generalized Cole-Hopf transformation to a general variable coefficient Burgers equation with linear damping term. (English) Zbl 1439.35434 Appl. Math. Lett. 105, Article ID 106299, 6 p. (2020). MSC: 35Q53 37K10 PDF BibTeX XML Cite \textit{M. Wang} et al., Appl. Math. Lett. 105, Article ID 106299, 6 p. (2020; Zbl 1439.35434) Full Text: DOI OpenURL
Tu, Xi; Yin, Zhaoyang Blow-up phenomena and local well-posedness for a generalized Camassa-Holm equation in the critical Besov space. (English) Zbl 1439.35433 Monatsh. Math. 191, No. 4, 801-829 (2020). MSC: 35Q53 35A01 35A02 42B25 35B44 35B65 35D35 35Q49 PDF BibTeX XML Cite \textit{X. Tu} and \textit{Z. Yin}, Monatsh. Math. 191, No. 4, 801--829 (2020; Zbl 1439.35433) Full Text: DOI OpenURL
Chen, Yong; Huang, Lili; Liu, Yue On the modelling of shallow-water waves with the Coriolis effect. (English) Zbl 1431.35152 J. Nonlinear Sci. 30, No. 1, 93-135 (2020). MSC: 35Q53 35B30 35G25 76B15 74K10 PDF BibTeX XML Cite \textit{Y. Chen} et al., J. Nonlinear Sci. 30, No. 1, 93--135 (2020; Zbl 1431.35152) Full Text: DOI OpenURL
Chentouf, B.; Smaoui, N.; Alalabi, A. Nonlinear adaptive boundary control of the modified generalized Korteweg-de Vries-Burgers equation. (English) Zbl 1435.35333 Complexity 2020, Article ID 4574257, 18 p. (2020). MSC: 35Q53 93C20 93C40 93D15 35B35 PDF BibTeX XML Cite \textit{B. Chentouf} et al., Complexity 2020, Article ID 4574257, 18 p. (2020; Zbl 1435.35333) Full Text: DOI OpenURL
Li, Ruomeng; Geng, Xianguo; Xue, Bo A generalization of the Landau-Lifschitz equation: breathers and rogue waves. (English) Zbl 1436.37086 J. Nonlinear Math. Phys. 27, No. 2, 279-294 (2020). MSC: 37K35 35Q51 35Q53 PDF BibTeX XML Cite \textit{R. Li} et al., J. Nonlinear Math. Phys. 27, No. 2, 279--294 (2020; Zbl 1436.37086) Full Text: DOI OpenURL
Habib, M. A.; Ali, H. M. Shahadat; Miah, M. Mamun; Akbar, M. Ali The generalized kudryashov method for new closed form traveling wave solutions to some NLEEs. (English) Zbl 1484.35335 AIMS Math. 4, No. 3, 896-909 (2019). MSC: 35Q53 35C07 PDF BibTeX XML Cite \textit{M. A. Habib} et al., AIMS Math. 4, No. 3, 896--909 (2019; Zbl 1484.35335) Full Text: DOI OpenURL
Smaoui, Nejib; Chentouf, Boumediène; Alalabi, Ala’ Boundary linear stabilization of the modified generalized Korteweg-de Vries-Burgers equation. (English) Zbl 1485.35341 Adv. Difference Equ. 2019, Paper No. 457, 17 p. (2019). MSC: 35Q53 35Q51 93C20 PDF BibTeX XML Cite \textit{N. Smaoui} et al., Adv. Difference Equ. 2019, Paper No. 457, 17 p. (2019; Zbl 1485.35341) Full Text: DOI OpenURL
Smaoui, N.; Chentouf, B.; Alalabi, A. Modelling and nonlinear boundary stabilization of the modified generalized Korteweg-de Vries-Burgers equation. (English) Zbl 1485.35340 Adv. Difference Equ. 2019, Paper No. 449, 27 p. (2019). MSC: 35Q53 35B35 93C20 PDF BibTeX XML Cite \textit{N. Smaoui} et al., Adv. Difference Equ. 2019, Paper No. 449, 27 p. (2019; Zbl 1485.35340) Full Text: DOI OpenURL
Yan, Xue-Wei; Tian, Shou-Fu; Wang, Xiu-Bin; Zhang, Tian-Tian Solitons to rogue waves transition, lump solutions and interaction solutions for the (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation in fluid dynamics. (English) Zbl 07474770 Int. J. Comput. Math. 96, No. 9, 1839-1848 (2019). MSC: 35Q51 35Q53 74J30 PDF BibTeX XML Cite \textit{X.-W. Yan} et al., Int. J. Comput. Math. 96, No. 9, 1839--1848 (2019; Zbl 07474770) Full Text: DOI OpenURL
Chen, Su-Su; Tian, Bo Gramian solutions and soliton interactions for a generalized (3 + 1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation in a plasma or fluid. (English) Zbl 1472.82035 Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 475, No. 2228, Article ID 20190122, 10 p. (2019). MSC: 82D10 35C08 35Q53 PDF BibTeX XML Cite \textit{S.-S. Chen} and \textit{B. Tian}, Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 475, No. 2228, Article ID 20190122, 10 p. (2019; Zbl 1472.82035) Full Text: DOI OpenURL
Zuparic, Mathew; Hoek, Keeley Green’s functions and the Cauchy problem of the Burgers hierarchy and forced Burgers equation. (English) Zbl 1464.35306 Commun. Nonlinear Sci. Numer. Simul. 73, 275-290 (2019). MSC: 35Q53 35A08 35Q84 PDF BibTeX XML Cite \textit{M. Zuparic} and \textit{K. Hoek}, Commun. Nonlinear Sci. Numer. Simul. 73, 275--290 (2019; Zbl 1464.35306) Full Text: DOI arXiv OpenURL
Seadawy, Aly R.; Iqbal, Mujahid; Lu, Dianchen Applications of propagation of long-wave with dissipation and dispersion in nonlinear media via solitary wave solutions of generalized Kadomtsev-Petviashvili modified equal width dynamical equation. (English) Zbl 1443.35141 Comput. Math. Appl. 78, No. 11, 3620-3632 (2019). MSC: 35Q53 35C08 65J15 PDF BibTeX XML Cite \textit{A. R. Seadawy} et al., Comput. Math. Appl. 78, No. 11, 3620--3632 (2019; Zbl 1443.35141) Full Text: DOI OpenURL
Kumar, Dharmendra; Kumar, Sachin Some new periodic solitary wave solutions of (3+1)-dimensional generalized shallow water wave equation by Lie symmetry approach. (English) Zbl 1442.35380 Comput. Math. Appl. 78, No. 3, 857-877 (2019). MSC: 35Q53 35A30 35B10 35C08 76M60 PDF BibTeX XML Cite \textit{D. Kumar} and \textit{S. Kumar}, Comput. Math. Appl. 78, No. 3, 857--877 (2019; Zbl 1442.35380) Full Text: DOI arXiv OpenURL
Sun, Yong-Li; Ma, Wen-Xiu; Yu, Jian-Ping; Khalique, Chaudry Masood Dynamics of lump solitary wave of Kadomtsev-Petviashvili-Boussinesq-like equation. (English) Zbl 1442.35402 Comput. Math. Appl. 78, No. 3, 840-847 (2019). MSC: 35Q53 35C08 PDF BibTeX XML Cite \textit{Y.-L. Sun} et al., Comput. Math. Appl. 78, No. 3, 840--847 (2019; Zbl 1442.35402) Full Text: DOI OpenURL
Hu, Cong-Cong; Tian, Bo; Yin, Hui-Min; Zhang, Chen-Rong; Zhang, Ze Dark breather waves, dark lump waves and lump wave-soliton interactions for a (3 + 1)-dimensional generalized Kadomtsev-Petviashvili equation in a fluid. (English) Zbl 1442.35379 Comput. Math. Appl. 78, No. 1, 166-177 (2019). MSC: 35Q53 35C08 76B25 PDF BibTeX XML Cite \textit{C.-C. Hu} et al., Comput. Math. Appl. 78, No. 1, 166--177 (2019; Zbl 1442.35379) Full Text: DOI OpenURL
Liu, Yaqing; Wen, Xiao-Yong; Wang, Deng-Shan Novel interaction phenomena of localized waves in the generalized (3+1)-dimensional KP equation. (English) Zbl 1442.35391 Comput. Math. Appl. 78, No. 1, 1-19 (2019). MSC: 35Q53 PDF BibTeX XML Cite \textit{Y. Liu} et al., Comput. Math. Appl. 78, No. 1, 1--19 (2019; Zbl 1442.35391) Full Text: DOI OpenURL
Li, Wei; Zhang, Yan; Liu, Yinping Exact wave solutions for a (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation. (English) Zbl 1442.35392 Comput. Math. Appl. 77, No. 12, 3087-3101 (2019). MSC: 35Q53 35B10 35C08 PDF BibTeX XML Cite \textit{W. Li} et al., Comput. Math. Appl. 77, No. 12, 3087--3101 (2019; Zbl 1442.35392) Full Text: DOI OpenURL
Li, Qiang; Chaolu, Temuer; Wang, Yun-Hu Lump-type solutions and lump solutions for the (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation. (English) Zbl 1442.35385 Comput. Math. Appl. 77, No. 8, 2077-2085 (2019). MSC: 35Q53 PDF BibTeX XML Cite \textit{Q. Li} et al., Comput. Math. Appl. 77, No. 8, 2077--2085 (2019; Zbl 1442.35385) Full Text: DOI OpenURL
Liu, Yaqing; Wen, Xiao-Yong; Wang, Deng-Shan The \(N\)-soliton solution and localized wave interaction solutions of the \((2+1)\)-dimensional generalized Hirota-Satsuma-Ito equation. (English) Zbl 1442.35390 Comput. Math. Appl. 77, No. 4, 947-966 (2019). MSC: 35Q53 35C08 PDF BibTeX XML Cite \textit{Y. Liu} et al., Comput. Math. Appl. 77, No. 4, 947--966 (2019; Zbl 1442.35390) Full Text: DOI OpenURL
Jiang, Guifeng Exact solutions of generalized Burgers equation and \( (2+1)\)-dimensional Burgers equation. (Chinese. English summary) Zbl 1449.35382 J. Jiangsu Norm. Univ., Nat. Sci. 37, No. 3, 55-57 (2019). MSC: 35Q53 PDF BibTeX XML Cite \textit{G. Jiang}, J. Jiangsu Norm. Univ., Nat. Sci. 37, No. 3, 55--57 (2019; Zbl 1449.35382) Full Text: DOI OpenURL
Hou, Jie; Wang, Lizhen Analytic solutions to the one dimensional time fractional Keller-Segel model. (English) Zbl 1449.35381 Pure Appl. Math. 35, No. 3, 276-286 (2019). MSC: 35Q53 35R11 PDF BibTeX XML Cite \textit{J. Hou} and \textit{L. Wang}, Pure Appl. Math. 35, No. 3, 276--286 (2019; Zbl 1449.35381) Full Text: DOI OpenURL
Wang, Xi; Zhang, Hong; Hu, Jinsong A linearized difference method for generalized SRLW equation with damping term. (Chinese. English summary) Zbl 1449.65202 J. Sichuan Univ., Nat. Sci. Ed. 56, No. 6, 1009-1013 (2019). MSC: 65M06 65M12 35Q53 PDF BibTeX XML Cite \textit{X. Wang} et al., J. Sichuan Univ., Nat. Sci. Ed. 56, No. 6, 1009--1013 (2019; Zbl 1449.65202) Full Text: DOI OpenURL
Li, Ying; Liu, Jianguo; Yang, Lianwu New exact periodic solitary wave solutions for the \( (3+1)\)-dimensional generalized Kadomtsev-Petviashvili equation. (Chinese. English summary) Zbl 1449.35028 Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 5, 1064-1076 (2019). MSC: 35B10 35C08 35Q53 PDF BibTeX XML Cite \textit{Y. Li} et al., Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 5, 1064--1076 (2019; Zbl 1449.35028) OpenURL
Wang, Chuanjian; Fang, Hui; Tang, Xiuxiu State transition of lump-type waves for the \((2+1)\)-dimensional generalized KdV equation. (English) Zbl 1437.35613 Nonlinear Dyn. 95, No. 4, 2943-2961 (2019). MSC: 35Q53 37K10 37K40 35C08 PDF BibTeX XML Cite \textit{C. Wang} et al., Nonlinear Dyn. 95, No. 4, 2943--2961 (2019; Zbl 1437.35613) Full Text: DOI OpenURL
Kwak, Chulkwang; Muñoz, Claudio Extended decay properties for generalized BBM equation. (English) Zbl 1442.35383 Miller, Peter D. (ed.) et al., Nonlinear dispersive partial differential equations and inverse scattering. Papers from the focus program on “Nonlinear Dispersive Partial Differential Equations and Inverse Scattering”, Fields Institute, July 31 – August 18, 2017. New York, NY: Springer; Toronto, ON: The Fields Institute for Research in Mathematical Scienes. Fields Inst. Commun. 83, 397-411 (2019). MSC: 35Q53 PDF BibTeX XML Cite \textit{C. Kwak} and \textit{C. Muñoz}, Fields Inst. Commun. 83, 397--411 (2019; Zbl 1442.35383) Full Text: DOI arXiv OpenURL
Redkina, Tatyana V.; Zakinyan, Robert G.; Zakinyan, Arthur R.; Surneva, Olesya B.; Yanovskaya, Olga S. Bäcklund transformations for nonlinear differential equations and systems. (English) Zbl 1432.35187 Axioms 8, No. 2, Paper No. 45, 18 p. (2019). MSC: 35Q53 37K35 37K10 PDF BibTeX XML Cite \textit{T. V. Redkina} et al., Axioms 8, No. 2, Paper No. 45, 18 p. (2019; Zbl 1432.35187) Full Text: DOI OpenURL
Giresunlu, İlker Burak; Yaşar, Emrullah; Rashid Adem, Abdullahi The logarithmic \((1+1)\)-dimensional KdV-like and \((2+1)\)-dimensional KP-like equations: Lie group analysis, conservation laws and double reductions. (English) Zbl 07168386 Int. J. Nonlinear Sci. Numer. Simul. 20, No. 7-8, 747-755 (2019). MSC: 35Q51 35Q53 37K10 78A60 PDF BibTeX XML Cite \textit{İ. B. Giresunlu} et al., Int. J. Nonlinear Sci. Numer. Simul. 20, No. 7--8, 747--755 (2019; Zbl 07168386) Full Text: DOI OpenURL
Masaki, Satoshi; Segata, Jun-ichi A note on Strichartz estimates for Airy equation and its application. (English) Zbl 1434.35167 RIMS Kôkyûroku Bessatsu B74, 1-21 (2019). MSC: 35Q53 35B40 35P25 PDF BibTeX XML Cite \textit{S. Masaki} and \textit{J.-i. Segata}, RIMS Kôkyûroku Bessatsu B74, 1--21 (2019; Zbl 1434.35167) OpenURL
Zhang, Xue; Sun, Yuhuai Dynamical analysis and traveling wave solutions for generalized \( (3+1)\)-dimensional Kadomtsev-Petviashvili equation. (Chinese. English summary) Zbl 1449.35150 Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 3, 501-509 (2019). MSC: 35C07 35B32 35Q53 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{Y. Sun}, Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 3, 501--509 (2019; Zbl 1449.35150) OpenURL
Fukuda, Ikki Asymptotic behavior of solutions to the generalized KdV-Burgers equation. (English) Zbl 1433.35337 Osaka J. Math. 56, No. 4, 883-906 (2019). MSC: 35Q53 35B40 35C06 35B65 PDF BibTeX XML Cite \textit{I. Fukuda}, Osaka J. Math. 56, No. 4, 883--906 (2019; Zbl 1433.35337) Full Text: Link OpenURL
Ghanbari, Behzad; Baleanu, Dumitru; Al Qurashi, Maysaa New exact solutions of the generalized Benjamin-Bona-Mahony equation. (English) Zbl 1423.35340 Symmetry 11, No. 1, Paper No. 20, 12 p. (2019). MSC: 35Q53 35C08 PDF BibTeX XML Cite \textit{B. Ghanbari} et al., Symmetry 11, No. 1, Paper No. 20, 12 p. (2019; Zbl 1423.35340) Full Text: DOI OpenURL
Su, LingDe Numerical solution of two-dimensional nonlinear sine-Gordon equation using localized method of approximate particular solutions. (English) Zbl 1464.65110 Eng. Anal. Bound. Elem. 108, 95-107 (2019). MSC: 65M38 35Q53 PDF BibTeX XML Cite \textit{L. Su}, Eng. Anal. Bound. Elem. 108, 95--107 (2019; Zbl 1464.65110) Full Text: DOI OpenURL
Zhao, Song-Lin Discrete potential Ablowitz-Kaup-Newell-Segur equation. (English) Zbl 1423.39014 J. Difference Equ. Appl. 25, No. 8, 1134-1148 (2019). MSC: 39A14 39A12 37K10 35Q51 35Q53 PDF BibTeX XML Cite \textit{S.-L. Zhao}, J. Difference Equ. Appl. 25, No. 8, 1134--1148 (2019; Zbl 1423.39014) Full Text: DOI OpenURL
Linares, Felipe; Miyazaki, Hayato; Ponce, Gustavo On a class of solutions to the generalized KdV type equation. (English) Zbl 1428.35456 Commun. Contemp. Math. 21, No. 7, Article ID 1850056, 21 p. (2019). MSC: 35Q53 35A01 35A21 35B65 PDF BibTeX XML Cite \textit{F. Linares} et al., Commun. Contemp. Math. 21, No. 7, Article ID 1850056, 21 p. (2019; Zbl 1428.35456) Full Text: DOI arXiv OpenURL
Farah, Luiz Gustavo; Holmer, Justin; Roudenko, Svetlana Instability of solitons – revisited. I: The critical generalized KdV equation. (English) Zbl 1423.35336 Zheng, Shijun (ed.) et al., Nonlinear dispersive waves and fluids. AMS special sessions on spectral calculus and quasilinear partial differential equations, and PDE analysis on fluid flows, Atlanta, GA, USA, January 5–7, 2017. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 725, 65-88 (2019). MSC: 35Q53 37K40 37K45 37K05 PDF BibTeX XML Cite \textit{L. G. Farah} et al., Contemp. Math. 725, 65--88 (2019; Zbl 1423.35336) Full Text: DOI arXiv OpenURL