Jain, Ravi Kumar; Bhargava, Alok Some unified integrals involving product of generalized Bessel-Maitland function and M-series. (English) Zbl 1513.33035 Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 242, 13 p. (2022). MSC: 33C60 26A33 33C10 33C15 33C70 PDF BibTeX XML Cite \textit{R. K. Jain} and \textit{A. Bhargava}, Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 242, 13 p. (2022; Zbl 1513.33035) Full Text: DOI
Bhatter, Sanjay; Mathur, Amit; Kumar, Devendra; Singh, Jagdev New extension of fractional-calculus results associated with product of certain special functions. (English) Zbl 1499.26008 Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 97, 9 p. (2021). MSC: 26A33 33C60 PDF BibTeX XML Cite \textit{S. Bhatter} et al., Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 97, 9 p. (2021; Zbl 1499.26008) Full Text: DOI
Sachan, Dheerandra Shanker; Jaloree, Shailesh Integral transforms of generalized \(M\)-series. (English) Zbl 1513.44014 J. Fract. Calc. Appl. 12, No. 1, 213-222 (2021). MSC: 44A20 33C20 33E12 PDF BibTeX XML Cite \textit{D. S. Sachan} and \textit{S. Jaloree}, J. Fract. Calc. Appl. 12, No. 1, 213--222 (2021; Zbl 1513.44014) Full Text: Link
Khan, Owais; Khan, Nabiullah; Choi, Junesang; Nisar, Kottakkaran Sooppy A type of fractional kinetic equations associated with the \((p,q)\)-extended \(\tau\)-hypergeometric and confluent hypergeometric functions. (English) Zbl 1485.33002 Nonlinear Funct. Anal. Appl. 26, No. 2, 381-392 (2021). MSC: 33C10 26A33 33E12 44A10 PDF BibTeX XML Cite \textit{O. Khan} et al., Nonlinear Funct. Anal. Appl. 26, No. 2, 381--392 (2021; Zbl 1485.33002) Full Text: Link
Shaktawat, Bhupender Singh; Lal, Madan; Gupta, Rajeev Kumar A study of generalized fractional derivative formulas associated with generalized \(M\)-series. (English) Zbl 1412.26009 Jñānābha 2018, Spec. Iss., 28-36 (2018). MSC: 26A33 33C45 33C65 33E12 PDF BibTeX XML Cite \textit{B. S. Shaktawat} et al., Jñānābha 2018, 28--36 (2018; Zbl 1412.26009)
Khan, Arif M.; Ramani, Pankaj; Suthar, Daya Lal; Kumar, Dinesh A note on \(K_4\) fractional integral operator. (English) Zbl 1383.44002 Int. J. Appl. Comput. Math. 4, No. 2, Paper No. 57, 12 p. (2018). MSC: 44A15 26A33 PDF BibTeX XML Cite \textit{A. M. Khan} et al., Int. J. Appl. Comput. Math. 4, No. 2, Paper No. 57, 12 p. (2018; Zbl 1383.44002) Full Text: DOI
Kumar, Dinesh; Saxena, Ram Kishore; Daiya, Jitendra Pathway fractional integral operators of generalized \(K\)-Wright function and \(K_4\)-function. (English) Zbl 1424.33013 Bol. Soc. Parana. Mat. (3) 35, No. 2, 235-247 (2017). MSC: 33C10 26A33 33C20 33C50 PDF BibTeX XML Cite \textit{D. Kumar} et al., Bol. Soc. Parana. Mat. (3) 35, No. 2, 235--247 (2017; Zbl 1424.33013) Full Text: Link
Kumar, Dinesh; Choi, Junesang Generalized fractional kinetic equations associated with Aleph function. (English) Zbl 1343.33007 Proc. Jangjeon Math. Soc. 19, No. 1, 145-155 (2016). MSC: 33C65 26A33 33C20 33C05 PDF BibTeX XML Cite \textit{D. Kumar} and \textit{J. Choi}, Proc. Jangjeon Math. Soc. 19, No. 1, 145--155 (2016; Zbl 1343.33007)
Chouhan, Amit; Khan, Arif M. Unified integrals associated with \(H\)-functions and \(M\)-series. (English) Zbl 1488.33018 J. Fract. Calc. Appl. 6, No. 2, 11-17 (2015). MSC: 33C20 26A33 33C60 PDF BibTeX XML Cite \textit{A. Chouhan} and \textit{A. M. Khan}, J. Fract. Calc. Appl. 6, No. 2, 11--17 (2015; Zbl 1488.33018) Full Text: Link
Manoj, Sharma Generalized Yang-Fourier transforms by using M-series to heat-conduction in a semi-infinite fractal bar. (English) Zbl 1474.35599 South East Asian J. Math. Math. Sci. 11, No. 1, 55-64 (2015). MSC: 35Q79 33C20 PDF BibTeX XML Cite \textit{S. Manoj}, South East Asian J. Math. Math. Sci. 11, No. 1, 55--64 (2015; Zbl 1474.35599) Full Text: Link
Chaurasia, V. B. L.; Singh, Yudhveer A novel computable extension of fractional kinetic equations arising in astrophysics. (English) Zbl 1359.34006 Int. J. Adv. Appl. Math. Mech. 3, No. 1, 1-9 (2015). MSC: 34A08 33E12 33C60 85A04 PDF BibTeX XML Cite \textit{V. B. L. Chaurasia} and \textit{Y. Singh}, Int. J. Adv. Appl. Math. Mech. 3, No. 1, 1--9 (2015; Zbl 1359.34006) Full Text: Link
Chouhan, Amit; Khan, Arif M.; Saraswat, Satish A note on Matichev-Saigo-Maeda fractional integral operator. (English) Zbl 1499.33057 J. Fract. Calc. Appl. 5, No. 2, 88-95 (2014). MSC: 33C65 26A33 33C60 PDF BibTeX XML Cite \textit{A. Chouhan} et al., J. Fract. Calc. Appl. 5, No. 2, 88--95 (2014; Zbl 1499.33057) Full Text: Link
Singh, Dharmendra Kumar Fractional calculus operators involving generalized \(M\)-series. (English) Zbl 1499.33055 J. Fract. Calc. Appl. 5, No. 2, 78-83 (2014). MSC: 33C60 26A33 33E12 PDF BibTeX XML Cite \textit{D. K. Singh}, J. Fract. Calc. Appl. 5, No. 2, 78--83 (2014; Zbl 1499.33055) Full Text: Link
Chouhan, Amit; Saraswat, Satish Remarks on fractional kinetic differintegral equations and M-series. (English) Zbl 1488.34027 J. Fract. Calc. Appl. 4, No. 1, 139-146 (2013). MSC: 34A08 26A33 33E12 44A10 31A10 PDF BibTeX XML Cite \textit{A. Chouhan} and \textit{S. Saraswat}, J. Fract. Calc. Appl. 4, No. 1, 139--146 (2013; Zbl 1488.34027) Full Text: Link
Gehlot, Kuldeep Singh Integral representation and certain properties of \(M\)-series associated with fractional calculus. (English) Zbl 1285.26007 Int. Math. Forum 8, No. 9-12, 415-426 (2013). MSC: 26A33 33C20 33E12 PDF BibTeX XML Cite \textit{K. S. Gehlot}, Int. Math. Forum 8, No. 9--12, 415--426 (2013; Zbl 1285.26007) Full Text: DOI Link
Gupta, Anjali; Parihar, C. L. An alternative method for solving generalized fractional kinetic equations involving the generalized functions for the fractional calculus. (English) Zbl 1279.33029 Matematiche 68, No. 2, 123-130 (2013). MSC: 33E12 33E99 PDF BibTeX XML Cite \textit{A. Gupta} and \textit{C. L. Parihar}, Matematiche 68, No. 2, 123--130 (2013; Zbl 1279.33029) Full Text: Link
Sharma, Kishan A method for the solution of fractional kinetic equations. (English) Zbl 1276.26023 J. Indian Math. Soc., New Ser. 80, No. 1-2, 197-201 (2013). MSC: 26A33 33E12 33C20 PDF BibTeX XML Cite \textit{K. Sharma}, J. Indian Math. Soc., New Ser. 80, No. 1--2, 197--201 (2013; Zbl 1276.26023)
Sharma, Kishan An introduction to the generalized fractional integration. (English) Zbl 1413.26018 Bol. Soc. Parana. Mat. (3) 30, No. 2, 85-90 (2012). MSC: 26A33 33C20 33E12 PDF BibTeX XML Cite \textit{K. Sharma}, Bol. Soc. Parana. Mat. (3) 30, No. 2, 85--90 (2012; Zbl 1413.26018) Full Text: Link
Chaurasia, V. B. L.; Kumar, Devendra The integration of certain product involving special functions. (English) Zbl 1244.26009 Sci., Ser. A, Math. Sci. (N.S.) 19, 7-12 (2010). MSC: 26A33 44A10 33C20 PDF BibTeX XML Cite \textit{V. B. L. Chaurasia} and \textit{D. Kumar}, Sci., Ser. A, Math. Sci. (N.S.) 19, 7--12 (2010; Zbl 1244.26009)
Chaurasia, V. B. L.; Kumar, Devendra On the solutions of generalized fractional kinetic equations. (English) Zbl 1227.82055 Adv. Stud. Theor. Phys. 4, No. 13-16, 773-780 (2010). MSC: 82C31 33C60 85A15 44A10 PDF BibTeX XML Cite \textit{V. B. L. Chaurasia} and \textit{D. Kumar}, Adv. Stud. Theor. Phys. 4, No. 13--16, 773--780 (2010; Zbl 1227.82055) Full Text: Link