Farid, Ghulam; Mehmood, Sajid; Rathour, Laxmi; Mishra, Lakshmi Narayan; Mishra, Vishnu Narayan Fractional Hadamard and Fejér-Hadamard inequalities associated with exp. \((\alpha,h-m)\)-convexity. (English) Zbl 07772593 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 30, No. 5, 353-367 (2023). MSC: 26D15 26A33 26A51 33E12 PDF BibTeX XML Cite \textit{G. Farid} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 30, No. 5, 353--367 (2023; Zbl 07772593) Full Text: Link Link
Haubold, Hans J.; Kabeer, Ashik A.; Kumar, Dilip Analytic forms of thermonuclear functions. (English) Zbl 07762327 Physica A 630, Article ID 129249, 10 p. (2023). MSC: 82-10 33E20 33C60 33E12 60E05 PDF BibTeX XML Cite \textit{H. J. Haubold} et al., Physica A 630, Article ID 129249, 10 p. (2023; Zbl 07762327) Full Text: DOI
Mazhgikhova, Madina Gumarovna The Cauchy problem for the delay differential equation with Dzhrbashyan-Nersesyan fractional derivative. (Russian. English summary) Zbl 07746598 Vestn. KRAUNTS, Fiz.-Mat. Nauki 42, No. 1, 98-107 (2023). MSC: 34A12 34K09 PDF BibTeX XML Cite \textit{M. G. Mazhgikhova}, Vestn. KRAUNTS, Fiz.-Mat. Nauki 42, No. 1, 98--107 (2023; Zbl 07746598) Full Text: DOI MNR
Ahmad, Manzoor; Mishra, Rajshree; Jain, Renu Analytical solution of time fractional Black-Scholes equation with two assets through new Sumudu transform iterative method. (English) Zbl 07746023 Gulf J. Math. 15, No. 1, 42-56 (2023). MSC: 91G20 35R11 33E12 PDF BibTeX XML Cite \textit{M. Ahmad} et al., Gulf J. Math. 15, No. 1, 42--56 (2023; Zbl 07746023) Full Text: DOI
Lamba, Navneet; Verma, Jyoti; Deshmukh, Kishor A brief note on space time fractional order thermoelastic response in a layer. (English) Zbl 07704596 Appl. Appl. Math. 18, No. 1, Paper No. 18, 9 p. (2023). MSC: 35R11 26A33 42A38 58J35 PDF BibTeX XML Cite \textit{N. Lamba} et al., Appl. Appl. Math. 18, No. 1, Paper No. 18, 9 p. (2023; Zbl 07704596) Full Text: Link
Pal, Ankit; Jana, R. K.; Nieto, Juan J.; Shukla, A. K. Some results on the \({}_p R_q (\lambda,\mu; z)\) function involving pathway fractional integral operator and statistical distribution. (English) Zbl 07699168 S\(\vec{\text{e}}\)MA J. 80, No. 1, 159-173 (2023). MSC: 33C60 26A33 33E12 44A99 PDF BibTeX XML Cite \textit{A. Pal} et al., S\(\vec{\text{e}}\)MA J. 80, No. 1, 159--173 (2023; Zbl 07699168) Full Text: DOI
Mazhgikhova, M. G. Generalized Sturm problem for a linear fractional differential equation. (English) Zbl 07688845 Lobachevskii J. Math. 44, No. 2, 629-633 (2023). MSC: 34A30 34A08 26A33 34B15 33E12 PDF BibTeX XML Cite \textit{M. G. Mazhgikhova}, Lobachevskii J. Math. 44, No. 2, 629--633 (2023; Zbl 07688845) Full Text: DOI
Apelblat, Alexander; González-Santander, Juan Luis Differentiation of integral Mittag-Leffler and integral wright functions with respect to parameters. (English) Zbl 1511.33012 Fract. Calc. Appl. Anal. 26, No. 2, 567-598 (2023). MSC: 33E12 33B15 33C20 PDF BibTeX XML Cite \textit{A. Apelblat} and \textit{J. L. González-Santander}, Fract. Calc. Appl. Anal. 26, No. 2, 567--598 (2023; Zbl 1511.33012) Full Text: DOI
Suthar, D. L.; Kumar, Dinesh; Habenom, Haile Solutions of fractional kinetic equation associated with the generalized multiindex Bessel function via Laplace transform. (English) Zbl 07682724 Differ. Equ. Dyn. Syst. 31, No. 2, 357-370 (2023). MSC: 33E12 44A10 44A20 PDF BibTeX XML Cite \textit{D. L. Suthar} et al., Differ. Equ. Dyn. Syst. 31, No. 2, 357--370 (2023; Zbl 07682724) Full Text: DOI
Abilassan, A.; Restrepo, J. E.; Suragan, D. On a variant of multivariate Mittag-Leffler’s function arising in the Laplace transform method. (English) Zbl 1512.33019 Integral Transforms Spec. Funct. 34, No. 3, 244-260 (2023). Reviewer: Sergei V. Rogosin (Minsk) MSC: 33E12 26A33 34A08 44A10 PDF BibTeX XML Cite \textit{A. Abilassan} et al., Integral Transforms Spec. Funct. 34, No. 3, 244--260 (2023; Zbl 1512.33019) Full Text: DOI
Srivastava, H. M.; Şeker, Bilal; Eker, Sevtap Sümer; Çekiç, Bilal A class of Poisson distributions based upon a two-parameter Mittag-Leffler type function. (English) Zbl 1507.60033 J. Nonlinear Convex Anal. 24, No. 2, 475-485 (2023). MSC: 60E05 30C80 33C80 33C20 33E12 PDF BibTeX XML Cite \textit{H. M. Srivastava} et al., J. Nonlinear Convex Anal. 24, No. 2, 475--485 (2023; Zbl 1507.60033) Full Text: Link
Nagar, Harish; Mishra, Shristi Composition of pathway fractional integral operator on product of special functions. (English) Zbl 07710123 J. Ramanujan Soc. Math. Math. Sci. 10, No. 1, 39-46 (2022). MSC: 33C20 33C65 PDF BibTeX XML Cite \textit{H. Nagar} and \textit{S. Mishra}, J. Ramanujan Soc. Math. Math. Sci. 10, No. 1, 39--46 (2022; Zbl 07710123) Full Text: DOI Link
Masaeva, Olesya Khazhismelovna Solution of the boundary problem for the generalized Laplace equation with a fractional derivative. (Russian. English summary) Zbl 07667792 Vestn. KRAUNTS, Fiz.-Mat. Nauki 40, No. 3, 53-63 (2022). MSC: 35L05 PDF BibTeX XML Cite \textit{O. K. Masaeva}, Vestn. KRAUNTS, Fiz.-Mat. Nauki 40, No. 3, 53--63 (2022; Zbl 07667792) Full Text: DOI MNR
Ali, Musharraf; Ghayasuddin, Mohd; Paris, R. B. Generalized beta-type integrals. (English) Zbl 07659988 Indian J. Math. 64, No. 1, 133-145 (2022). MSC: 33B15 33C20 33C65 33E12 PDF BibTeX XML Cite \textit{M. Ali} et al., Indian J. Math. 64, No. 1, 133--145 (2022; Zbl 07659988) Full Text: arXiv
Akram, Muhammad; Muhammad, Ghulam; Allahviranloo, Tofigh; Pedrycz, Witold Solution of initial-value problem for linear third-order fuzzy differential equations. (English) Zbl 1513.34008 Comput. Appl. Math. 41, No. 8, Paper No. 398, 31 p. (2022). MSC: 34A07 34A08 03E72 33E12 34A12 34A30 44A10 PDF BibTeX XML Cite \textit{M. Akram} et al., Comput. Appl. Math. 41, No. 8, Paper No. 398, 31 p. (2022; Zbl 1513.34008) Full Text: DOI
Omaba, M. Generalized fractional inequalities of the Hermite-Hadamard type via new Katugampola generalized fractional integrals. (English) Zbl 07644464 Carpathian Math. Publ. 14, No. 2, 475-484 (2022). MSC: 26D15 26A33 PDF BibTeX XML Cite \textit{M. Omaba}, Carpathian Math. Publ. 14, No. 2, 475--484 (2022; Zbl 07644464) Full Text: DOI
Abed-Elhameed, Tarek M.; Aboelenen, Tarek Mittag-Leffler stability, control, and synchronization for chaotic generalized fractional-order systems. (English) Zbl 07636096 Adv. Contin. Discrete Models 2022, Paper No. 50, 16 p. (2022). MSC: 26A33 33E12 37C75 37D45 PDF BibTeX XML Cite \textit{T. M. Abed-Elhameed} and \textit{T. Aboelenen}, Adv. Contin. Discrete Models 2022, Paper No. 50, 16 p. (2022; Zbl 07636096) Full Text: DOI
Jolly, N.; Bansal, M. K. Several inequalities involving the generalized multi-index Mittag-Leffler functions. (English) Zbl 1497.33017 Palest. J. Math. 11, No. 2, 290-298 (2022). MSC: 33E12 26D07 PDF BibTeX XML Cite \textit{N. Jolly} and \textit{M. K. Bansal}, Palest. J. Math. 11, No. 2, 290--298 (2022; Zbl 1497.33017) Full Text: Link
Jain, Ravi Kumar; Bhargava, Alok Some unified integrals involving product of generalized Bessel-Maitland function and M-series. (English) Zbl 1513.33035 Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 242, 13 p. (2022). MSC: 33C60 26A33 33C10 33C15 33C70 PDF BibTeX XML Cite \textit{R. K. Jain} and \textit{A. Bhargava}, Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 242, 13 p. (2022; Zbl 1513.33035) Full Text: DOI
Abujarad, Eman S.; Jarad, Fahd; Abujarad, Mohammed H.; Baleanu, Dumitru Application of \(q\)-Shehu transform on \(q\)-fractional kinetic equation involving the generalized hyper-Bessel function. (English) Zbl 07578035 Fractals 30, No. 5, Article ID 2240179, 11 p. (2022). Reviewer: Pranay Goswami (Delhi) MSC: 44A20 33D99 PDF BibTeX XML Cite \textit{E. S. Abujarad} et al., Fractals 30, No. 5, Article ID 2240179, 11 p. (2022; Zbl 07578035) Full Text: DOI
Riaz, Muhammad Bilal; Rehman, Aziz Ur; Awrejcewicz, Jan Double diffusive magneto-free convection flow of a Maxwell fluid over a vertical plate: special functions based analysis using local and nonlocal kernels to heat and mass flux subject to exponential heating. (English) Zbl 1504.76077 Fractals 30, No. 5, Article ID 2240157, 25 p. (2022). MSC: 76R10 76W05 76R50 76V05 76A10 80A19 PDF BibTeX XML Cite \textit{M. B. Riaz} et al., Fractals 30, No. 5, Article ID 2240157, 25 p. (2022; Zbl 1504.76077) Full Text: DOI
Rashid, Saima; Khalid, Aasma; Karaca, Yeliz; Hammouch, Zakia; Chu, Yu-Ming New generalization involving convex functions via \(\hbar\)-discrete \(\mathcal{AB}\)-fractional sums and their applications in fractional difference equations. (English) Zbl 1496.39005 Fractals 30, No. 5, Article ID 2240134, 17 p. (2022). MSC: 39A13 39A12 26E70 26A51 PDF BibTeX XML Cite \textit{S. Rashid} et al., Fractals 30, No. 5, Article ID 2240134, 17 p. (2022; Zbl 1496.39005) Full Text: DOI
Jain, Alok; Bhat, Altaf Ahmad; Jain, Renu; Jain, Deepak Kumar \((p, q)\)-analogue of Mittag-Leffler function with \((p, q)\)-Laplace transform. (English) Zbl 1513.33042 Anal. Theory Appl. 38, No. 3, 351-360 (2022). MSC: 33D15 33C20 33E12 PDF BibTeX XML Cite \textit{A. Jain} et al., Anal. Theory Appl. 38, No. 3, 351--360 (2022; Zbl 1513.33042) Full Text: DOI
Singh, Dharmendra Kumar; Gupta, Nivedita Fractional differential equations of hypergeometric functions and Laguerre polynomial. (English) Zbl 1517.33001 J. Ramanujan Soc. Math. Math. Sci. 9, No. 2, 97-108 (2022). MSC: 33C20 26A33 33E12 35R11 PDF BibTeX XML Cite \textit{D. K. Singh} and \textit{N. Gupta}, J. Ramanujan Soc. Math. Math. Sci. 9, No. 2, 97--108 (2022; Zbl 1517.33001) Full Text: Link
Khan, N. U.; Khan, M. Iqbal; Khan, Owais Evaluation of transforms and fractional calculus of new extended Wright function. (English) Zbl 1494.33003 Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 163, 14 p. (2022). Reviewer: Bujar Fejzullahu (Presevo) MSC: 33C20 26A33 33E12 PDF BibTeX XML Cite \textit{N. U. Khan} et al., Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 163, 14 p. (2022; Zbl 1494.33003) Full Text: DOI
Rida, S. Z.; Hussien, H. S.; Noreldeen, A. H.; Farag, M. M. Effective fractional technical for some fractional initial value problems. (English) Zbl 1498.65113 Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 149, 18 p. (2022). MSC: 65L03 65L60 34A08 PDF BibTeX XML Cite \textit{S. Z. Rida} et al., Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 149, 18 p. (2022; Zbl 1498.65113) Full Text: DOI
Bhatter, Sanjay; Mathur, Amit; Kumar, Devendra; Singh, Jagdev On certain new results of fractional calculus involving product of generalized special functions. (English) Zbl 1492.26005 Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 135, 9 p. (2022). MSC: 26A33 33C20 33C65 33E12 PDF BibTeX XML Cite \textit{S. Bhatter} et al., Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 135, 9 p. (2022; Zbl 1492.26005) Full Text: DOI
Zada, Akbar; Shaleena, Shaleena; Ahmad, Manzoor Analysis of solutions of the integro-differential equations with generalized Liouville-Caputo fractional derivative by \(\rho\)-Laplace transform. (English) Zbl 07541726 Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 116, 19 p. (2022). MSC: 45J05 26A33 44A10 45M10 PDF BibTeX XML Cite \textit{A. Zada} et al., Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 116, 19 p. (2022; Zbl 07541726) Full Text: DOI
Pal, Ankit; Jana, R. K.; Shukla, A. K. Generalized integral transform and fractional calculus involving extended \(_p R_q(\alpha, \beta; z)\) function. (English) Zbl 1499.33052 J. Indian Math. Soc., New Ser. 89, No. 1-2, 100-116 (2022). MSC: 33C60 26A33 33E12 44A20 PDF BibTeX XML Cite \textit{A. Pal} et al., J. Indian Math. Soc., New Ser. 89, No. 1--2, 100--116 (2022; Zbl 1499.33052) Full Text: DOI
Wei, Yufen; Guo, Ying; Li, Yu A new numerical method for solving semilinear fractional differential equation. (English) Zbl 1495.65103 J. Appl. Math. Comput. 68, No. 2, 1289-1311 (2022). MSC: 65L05 34A08 65L60 PDF BibTeX XML Cite \textit{Y. Wei} et al., J. Appl. Math. Comput. 68, No. 2, 1289--1311 (2022; Zbl 1495.65103) Full Text: DOI
Bairwa, R. K.; Kumar, Ajay; Singh, Karan An efficient computational technique for solving generalized time-fractional biological population model. (English) Zbl 1499.92061 South East Asian J. Math. Math. Sci. 18, No. 1, 129-146 (2022). MSC: 92D25 26A33 33E12 35R11 PDF BibTeX XML Cite \textit{R. K. Bairwa} et al., South East Asian J. Math. Math. Sci. 18, No. 1, 129--146 (2022; Zbl 1499.92061) Full Text: Link
Chauhan, Rajendrakumar B.; Chudasama, Meera H. A study of the right local general truncated \(M\)-fractional derivative. (English) Zbl 1498.26007 Commun. Korean Math. Soc. 37, No. 2, 503-520 (2022). MSC: 26A33 26A06 26A24 26A42 33E12 PDF BibTeX XML Cite \textit{R. B. Chauhan} and \textit{M. H. Chudasama}, Commun. Korean Math. Soc. 37, No. 2, 503--520 (2022; Zbl 1498.26007) Full Text: DOI
Cinque, Fabrizio On the sum of independent generalized Mittag-Leffler random variables and the related fractional processes. (English) Zbl 1480.60100 Stochastic Anal. Appl. 40, No. 1, 103-117 (2022). MSC: 60G22 60G50 60G55 PDF BibTeX XML Cite \textit{F. Cinque}, Stochastic Anal. Appl. 40, No. 1, 103--117 (2022; Zbl 1480.60100) Full Text: DOI
Park, Jong-Do Boundary behavior of the Bergman kernel for generalized Fock-Bargmann-Hartogs domains. (English) Zbl 1495.32010 J. Math. Anal. Appl. 509, No. 1, Article ID 125909, 14 p. (2022). Reviewer: Nikolai Nikolov (Sofia) MSC: 32A25 PDF BibTeX XML Cite \textit{J.-D. Park}, J. Math. Anal. Appl. 509, No. 1, Article ID 125909, 14 p. (2022; Zbl 1495.32010) Full Text: DOI
Gehlot, Kuldeep Singh; Bhandari, Anjana The \(j\)-generalized \(p-k\) Mittag-Leffler function. (English) Zbl 1499.33077 J. Fract. Calc. Appl. 13, No. 1, 122-129 (2022). MSC: 33E12 26A33 33B10 PDF BibTeX XML Cite \textit{K. S. Gehlot} and \textit{A. Bhandari}, J. Fract. Calc. Appl. 13, No. 1, 122--129 (2022; Zbl 1499.33077) Full Text: Link
Khan, S. W. A study of unified integrals involving generalized Mittag-Leffler function (GMLF). (English) Zbl 07648804 Acta Univ. Apulensis, Math. Inform. 67, 37-47 (2021). MSC: 33C45 26A33 33C20 PDF BibTeX XML Cite \textit{S. W. Khan}, Acta Univ. Apulensis, Math. Inform. 67, 37--47 (2021; Zbl 07648804)
Jangid, Nirmal Kumar; Joshi, Sunil; Purohit, Sunil Dutt Some double integral formulae associated with Q function and Galue-type struve function. (English) Zbl 1497.33016 Chadli, Ouayl (ed.) et al., Mathematical analysis and applications, MAA 2020. Selected papers based on the presentations at the conference, Jamshedpur, India, November 2–4, 2020. Singapore: Springer. Springer Proc. Math. Stat. 381, 281-291 (2021). MSC: 33E12 PDF BibTeX XML Cite \textit{N. K. Jangid} et al., Springer Proc. Math. Stat. 381, 281--291 (2021; Zbl 1497.33016) Full Text: DOI
Farid, Ghulam; Guran, Liliana; Qiang, Xiaoli; Chu, Yu-Ming Study on fractional Fejér-Hadamard type inequalities associated with generalized exponentially convexity. (English) Zbl 1513.26046 Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 83, No. 4, 159-170 (2021). MSC: 26D15 26A33 26A51 33E12 PDF BibTeX XML Cite \textit{G. Farid} et al., Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 83, No. 4, 159--170 (2021; Zbl 1513.26046)
Naz, Samaira; Naeem, Muhammad Nawaz On the generalization of \(\kappa\)-fractional Hilfer-Katugampola derivative with Cauchy problem. (English) Zbl 1506.26006 Turk. J. Math. 45, No. 1, 110-124 (2021). MSC: 26A33 PDF BibTeX XML Cite \textit{S. Naz} and \textit{M. N. Naeem}, Turk. J. Math. 45, No. 1, 110--124 (2021; Zbl 1506.26006) Full Text: DOI
Mohanapriya, Arusamy; Sivakumar, Varudaraj; Prakash, Periasamy A generalized approach of fractional Fourier transform to stability of fractional differential equation. (English) Zbl 1503.34027 Korean J. Math. 29, No. 4, 749-763 (2021). Reviewer: Syed Abbas (Mandi) MSC: 34A08 42B10 26A33 34D10 47N20 34A37 PDF BibTeX XML Cite \textit{A. Mohanapriya} et al., Korean J. Math. 29, No. 4, 749--763 (2021; Zbl 1503.34027) Full Text: DOI
Yağci, Oğuz; Şahin, Recep Solution of fractional kinetic equations involving generalized Hurwitz-Lerch zeta function using Sumudu transform. (English) Zbl 1489.44002 Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 70, No. 2, 678-689 (2021). MSC: 44A10 11M35 26A33 33B15 33E20 44A45 PDF BibTeX XML Cite \textit{O. Yağci} and \textit{R. Şahin}, Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 70, No. 2, 678--689 (2021; Zbl 1489.44002) Full Text: DOI
Saad, Khaled M.; Alqhtani, Manal Numerical simulation of the fractal-fractional reaction diffusion equations with general nonlinear. (English) Zbl 07543299 AIMS Math. 6, No. 4, 3788-3804 (2021). MSC: 26A33 34A08 35A20 35A22 PDF BibTeX XML Cite \textit{K. M. Saad} and \textit{M. Alqhtani}, AIMS Math. 6, No. 4, 3788--3804 (2021; Zbl 07543299) Full Text: DOI
Sun, Wenbing Hermite-Hadamard type local fractional integral inequalities with Mittag-Leffler kernel for generalized preinvex functions. (English) Zbl 1500.26018 Fractals 29, No. 8, Article ID 2150253, 13 p. (2021). MSC: 26D15 26A33 26A51 PDF BibTeX XML Cite \textit{W. Sun}, Fractals 29, No. 8, Article ID 2150253, 13 p. (2021; Zbl 1500.26018) Full Text: DOI
Srivastava, Hari M.; Kashuri, Artion; Mohammed, Pshtiwan Othman; Alsharif, Abdullah M.; Guirao, Juan L. G. New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel. (English) Zbl 07536384 AIMS Math. 6, No. 10, 11167-11186 (2021). MSC: 26D15 26D10 26A33 PDF BibTeX XML Cite \textit{H. M. Srivastava} et al., AIMS Math. 6, No. 10, 11167--11186 (2021; Zbl 07536384) Full Text: DOI
Thange, T. G.; Gade, A. R. Fractional Shehu transform and its applications. (English) Zbl 1513.44009 South East Asian J. Math. Math. Sci. 17, No. 2, 1-14 (2021). MSC: 44A15 26A33 33E12 44A10 PDF BibTeX XML Cite \textit{T. G. Thange} and \textit{A. R. Gade}, South East Asian J. Math. Math. Sci. 17, No. 2, 1--14 (2021; Zbl 1513.44009) Full Text: Link
Gurjar, Meena Kumari; Chhattry, Preeti; Shrivastava, Subhash Chandra Fractional calculus of the generalized Mittag-Leffler \((p,s,k)\)-function. (English) Zbl 1499.26015 J. Rajasthan Acad. Phys. Sci. 20, No. 1-2, 73-82 (2021). MSC: 26A33 33C20 33E12 PDF BibTeX XML Cite \textit{M. K. Gurjar} et al., J. Rajasthan Acad. Phys. Sci. 20, No. 1--2, 73--82 (2021; Zbl 1499.26015) Full Text: Link
Saddiqa, Maryam; Farid, Ghulam; Ullah, Saleem; Jung, Chahn Yong; Shim, Soo Hak On bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions. (English) Zbl 1484.26089 AIMS Math. 6, No. 6, 6454-6468 (2021). MSC: 26D15 26A33 26A51 33E12 PDF BibTeX XML Cite \textit{M. Saddiqa} et al., AIMS Math. 6, No. 6, 6454--6468 (2021; Zbl 1484.26089) Full Text: DOI
Naheed, Saima; Mubeen, Shahid; Rahman, Gauhar; Alharthi, M. R.; Nisar, Kottakkaran Sooppy Some new inequalities for the generalized Fox-Wright functions. (English) Zbl 1484.33004 AIMS Math. 6, No. 6, 5452-5464 (2021). MSC: 33B15 33B20 26D07 PDF BibTeX XML Cite \textit{S. Naheed} et al., AIMS Math. 6, No. 6, 5452--5464 (2021; Zbl 1484.33004) Full Text: DOI
Mazhgikhova, M. G. Steklov problem of the first class for a fractional order delay differential equation. (Russian. English summary) Zbl 1499.34410 Vestn. KRAUNTS, Fiz.-Mat. Nauki 37, No. 4, 30-37 (2021). MSC: 34K37 34K10 34K06 33E12 PDF BibTeX XML Cite \textit{M. G. Mazhgikhova}, Vestn. KRAUNTS, Fiz.-Mat. Nauki 37, No. 4, 30--37 (2021; Zbl 1499.34410) Full Text: DOI MNR
Bhadana, Krishna Gopal; Meena, Ashok Kumar Some properties of \(q\)-analogue of generalized Mittag-Leffler function associated with fractional calculus. (English) Zbl 1499.33075 South East Asian J. Math. Math. Sci. 17, No. 1, 171-182 (2021). MSC: 33E12 33D05 44A20 PDF BibTeX XML Cite \textit{K. G. Bhadana} and \textit{A. K. Meena}, South East Asian J. Math. Math. Sci. 17, No. 1, 171--182 (2021; Zbl 1499.33075) Full Text: Link
Jatav, Vinod Kumar; Shukla, A. K. Computation of some properties of polynomials \(L_n^{\delta,\xi}(x)\). (English) Zbl 1499.33051 Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 116, 16 p. (2021). MSC: 33C60 26A33 33C45 33E12 PDF BibTeX XML Cite \textit{V. K. Jatav} and \textit{A. K. Shukla}, Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 116, 16 p. (2021; Zbl 1499.33051) Full Text: DOI
Tyagi, Sapna; Jain, Monika; Singh, Jagdev Application of \(S\)-function and the aleph function in the electric circuit theory. (English) Zbl 1513.94057 Int. J. Appl. Comput. Math. 7, No. 5, Paper No. 193, 10 p. (2021). MSC: 94C05 33C60 33C99 PDF BibTeX XML Cite \textit{S. Tyagi} et al., Int. J. Appl. Comput. Math. 7, No. 5, Paper No. 193, 10 p. (2021; Zbl 1513.94057) Full Text: DOI
Ahmed, Wagdi F. S.; Pawar, D. D.; Salamooni, Ahmad Y. A. On the solution of kinetic equation for Katugampola type fractional differential equations. (English) Zbl 1499.74015 J. Dyn. Syst. Geom. Theor. 19, No. 1, 125-134 (2021). MSC: 74A25 33C20 26A33 44A15 33E12 PDF BibTeX XML Cite \textit{W. F. S. Ahmed} et al., J. Dyn. Syst. Geom. Theor. 19, No. 1, 125--134 (2021; Zbl 1499.74015) Full Text: DOI
Naz, Samaira; Naeem, Muhammad Nawaz; Chu, Yu-Ming Ostrowski-type inequalities for \(n\)-polynomial \(\mathscr{P} \)-convex function for \(k\)-fractional Hilfer-Katugampola derivative. (English) Zbl 1504.26028 J. Inequal. Appl. 2021, Paper No. 117, 23 p. (2021). MSC: 26D05 26D15 26A33 26A51 26D10 33E12 PDF BibTeX XML Cite \textit{S. Naz} et al., J. Inequal. Appl. 2021, Paper No. 117, 23 p. (2021; Zbl 1504.26028) Full Text: DOI
Sachan, Dheerandra Shanker; Jaloree, Shailesh Integral transforms of generalized \(M\)-series. (English) Zbl 1513.44014 J. Fract. Calc. Appl. 12, No. 1, 213-222 (2021). MSC: 44A20 33C20 33E12 PDF BibTeX XML Cite \textit{D. S. Sachan} and \textit{S. Jaloree}, J. Fract. Calc. Appl. 12, No. 1, 213--222 (2021; Zbl 1513.44014) Full Text: Link
Khan, Owais; Khan, Nabiullah; Choi, Junesang; Nisar, Kottakkaran Sooppy A type of fractional kinetic equations associated with the \((p,q)\)-extended \(\tau\)-hypergeometric and confluent hypergeometric functions. (English) Zbl 1485.33002 Nonlinear Funct. Anal. Appl. 26, No. 2, 381-392 (2021). MSC: 33C10 26A33 33E12 44A10 PDF BibTeX XML Cite \textit{O. Khan} et al., Nonlinear Funct. Anal. Appl. 26, No. 2, 381--392 (2021; Zbl 1485.33002) Full Text: Link
Jarad, Fahd; Adjabi, Yassine; Abdeljawad, Thabet; Mallak, Saed F.; Alrabaiah, Hussam Lyapunov type inequality in the frame of generalized Caputo derivatives. (English) Zbl 1493.34025 Discrete Contin. Dyn. Syst., Ser. S 14, No. 7, 2335-2355 (2021). Reviewer: Sotiris K. Ntouyas (Ioannina) MSC: 34A08 34B15 33E12 34B09 PDF BibTeX XML Cite \textit{F. Jarad} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 7, 2335--2355 (2021; Zbl 1493.34025) Full Text: DOI
Desai, Rachana; Shukla, A. K. Note on the \(_p R_q(\alpha, \beta; z)\) function. (English) Zbl 1488.33063 J. Indian Math. Soc., New Ser. 88, No. 3-4, 288-297 (2021). MSC: 33E12 30A05 33C05 33C20 PDF BibTeX XML Cite \textit{R. Desai} and \textit{A. K. Shukla}, J. Indian Math. Soc., New Ser. 88, No. 3--4, 288--297 (2021; Zbl 1488.33063)
Li, Yu; Zhang, Yanming An efficient numerical method for nonlinear fractional differential equations based on the generalized Mittag-Leffler functions and Lagrange polynomials. (English) Zbl 1512.65167 Math. Methods Appl. Sci. 44, No. 16, 12169-12184 (2021). MSC: 65L60 34A08 65L20 PDF BibTeX XML Cite \textit{Y. Li} and \textit{Y. Zhang}, Math. Methods Appl. Sci. 44, No. 16, 12169--12184 (2021; Zbl 1512.65167) Full Text: DOI
Mehrez, Khaled; Pogány, Tibor K. Integrals of ratios of Fox-Wright and incomplete Fox-Wright functions with applications. (English) Zbl 1489.33005 J. Math. Inequal. 15, No. 3, 981-1001 (2021). MSC: 33C20 26D15 33C70 33E12 40C10 PDF BibTeX XML Cite \textit{K. Mehrez} and \textit{T. K. Pogány}, J. Math. Inequal. 15, No. 3, 981--1001 (2021; Zbl 1489.33005) Full Text: DOI
Suthar, Dayalal; Purohit, Sunil Dutt; Habenom, Haile; Singh, Jagdev Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. (English) Zbl 1479.26009 Discrete Contin. Dyn. Syst., Ser. S 14, No. 10, 3803-3819 (2021). Reviewer: S. L. Kalla (Ballwin) MSC: 26A33 33C10 33E12 44A10 44A20 PDF BibTeX XML Cite \textit{D. Suthar} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 10, 3803--3819 (2021; Zbl 1479.26009) Full Text: DOI
Choudhary, Anupama; Kumar, Devendra; Singh, Jagdev On the integral transform of Mittag-Leffler-type functions with applications. (English) Zbl 1482.33014 Analysis, München 41, No. 3, 155-162 (2021). MSC: 33E12 26A33 44A45 PDF BibTeX XML Cite \textit{A. Choudhary} et al., Analysis, München 41, No. 3, 155--162 (2021; Zbl 1482.33014) Full Text: DOI
Lu, Peng-Hong; Wang, Yue-Yue; Dai, Chao-Qing Discrete soliton solutions of the fractional discrete coupled nonlinear Schrödinger equations: three analytical approaches. (English) Zbl 1473.35097 Math. Methods Appl. Sci. 44, No. 14, 11089-11101 (2021). MSC: 35C08 35Q55 35R11 39A12 PDF BibTeX XML Cite \textit{P.-H. Lu} et al., Math. Methods Appl. Sci. 44, No. 14, 11089--11101 (2021; Zbl 1473.35097) Full Text: DOI
Sun, Wenbing Some new inequalities for generalized \(h\)-convex functions involving local fractional integral operators with Mittag-Leffler kernel. (English) Zbl 1473.26034 Math. Methods Appl. Sci. 44, No. 6, 4985-4998 (2021). MSC: 26D15 26A33 26A51 PDF BibTeX XML Cite \textit{W. Sun}, Math. Methods Appl. Sci. 44, No. 6, 4985--4998 (2021; Zbl 1473.26034) Full Text: DOI
Roumaissa, Sassane; Nadjib, Boussetila; Faouzia, Rebbani; Abderafik, Benrabah Iterative regularization method for an abstract ill-posed generalized elliptic equation. (English) Zbl 1469.35239 Asian-Eur. J. Math. 14, No. 5, Article ID 2150069, 22 p. (2021). MSC: 35R25 35R30 35J15 65F22 26A33 PDF BibTeX XML Cite \textit{S. Roumaissa} et al., Asian-Eur. J. Math. 14, No. 5, Article ID 2150069, 22 p. (2021; Zbl 1469.35239) Full Text: DOI
Zhang, Xiaorui; Wang, Lianglong Existence and uniqueness of solutions of initial value problems for a class of Riemann-Liouville fractional mixed difference and summation equations. (Chinese. English summary) Zbl 1474.39043 J. Anhui Norm. Univ., Nat. Sci. 44, No. 1, 22-27 (2021). MSC: 39A27 39A20 26A33 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{L. Wang}, J. Anhui Norm. Univ., Nat. Sci. 44, No. 1, 22--27 (2021; Zbl 1474.39043) Full Text: DOI
Jabee, S.; Shadab, M.; Paris, R. B. Certain results on Euler-type integrals and their applications. (English) Zbl 1476.33003 Ramanujan J. 54, No. 2, 245-260 (2021). Reviewer: István Mező (Nanjing) MSC: 33C20 33B99 33C05 33E12 PDF BibTeX XML Cite \textit{S. Jabee} et al., Ramanujan J. 54, No. 2, 245--260 (2021; Zbl 1476.33003) Full Text: DOI arXiv
Ghayasuddin, Mohd; Khan, Nabiullah Certain new presentation of the generalized polynomials and numbers. (English) Zbl 1478.33004 Rend. Circ. Mat. Palermo (2) 70, No. 1, 327-339 (2021). MSC: 33C45 11B68 33E12 PDF BibTeX XML Cite \textit{M. Ghayasuddin} and \textit{N. Khan}, Rend. Circ. Mat. Palermo (2) 70, No. 1, 327--339 (2021; Zbl 1478.33004) Full Text: DOI
Gehlot, Kuldeep Singh Recurrence relation and integral representation of \(p\)-\(k\) Mittag-Leffler function. (English) Zbl 1465.33018 Palest. J. Math. 10, No. 1, 290-298 (2021). MSC: 33E12 PDF BibTeX XML Cite \textit{K. S. Gehlot}, Palest. J. Math. 10, No. 1, 290--298 (2021; Zbl 1465.33018) Full Text: Link
Jolly, Nidhi; Jain, Rashmi An investigation of composition formulae for fractional integral operators. (English) Zbl 1465.33019 Palest. J. Math. 10, No. 1, 199-208 (2021). MSC: 33E12 33C70 PDF BibTeX XML Cite \textit{N. Jolly} and \textit{R. Jain}, Palest. J. Math. 10, No. 1, 199--208 (2021; Zbl 1465.33019) Full Text: Link
Li, Chenkuan; Li, Changpin The fractional Green’s function by Babenko’s approach. (English) Zbl 1507.46031 Tbil. Math. J. 13, No. 3, 19-42 (2020). MSC: 46F10 45J05 26A33 PDF BibTeX XML Cite \textit{C. Li} and \textit{C. Li}, Tbil. Math. J. 13, No. 3, 19--42 (2020; Zbl 1507.46031) Full Text: DOI
Kumar, Hemant Application in initial value problems via operational techniques on a contour integral for Srivastava-Daoust function of two variables. (English) Zbl 1513.33014 Jñānābha 50, No. 2, 84-92 (2020). MSC: 33C15 11M06 26A33 33C20 33C60 PDF BibTeX XML Cite \textit{H. Kumar}, Jñānābha 50, No. 2, 84--92 (2020; Zbl 1513.33014) Full Text: Link
Rahaman, Mostafijur; Mondal, Sankar Prasad; Shaikh, Ali Akbar; Ahmadian, Ali; Senu, Norazak; Salahshour, Soheil Arbitrary-order economic production quantity model with and without deterioration: generalized point of view. (English) Zbl 1487.90041 Adv. Difference Equ. 2020, Paper No. 16, 30 p. (2020). MSC: 90B05 91B38 26A33 34A08 PDF BibTeX XML Cite \textit{M. Rahaman} et al., Adv. Difference Equ. 2020, Paper No. 16, 30 p. (2020; Zbl 1487.90041) Full Text: DOI
Farid, Ghulam; Akbar, Saira Bano; Ur Rehman, Shafiq; Pečarić, Josip Boundedness of fractional integral operators containing Mittag-Leffler functions via \((s,m)\)-convexity. (English) Zbl 1484.26006 AIMS Math. 5, No. 2, 966-978 (2020). MSC: 26A33 26A51 33E12 PDF BibTeX XML Cite \textit{G. Farid} et al., AIMS Math. 5, No. 2, 966--978 (2020; Zbl 1484.26006) Full Text: DOI
Farid, Ghulam; Andrić, Maja; Saddiqa, Maryam; Pečarić, Josip; Jung, Chahn Yong Refinement and corrigendum of bounds of fractional integral operators containing Mittag-Leffler functions. (English) Zbl 1484.26025 AIMS Math. 5, No. 6, 7332-7349 (2020). MSC: 26D10 31A10 26A33 PDF BibTeX XML Cite \textit{G. Farid} et al., AIMS Math. 5, No. 6, 7332--7349 (2020; Zbl 1484.26025) Full Text: DOI
Yang, Xiuzhi; Farid, G.; Nazeer, Waqas; Yussouf, Muhammad; Chu, Yu-Ming; Dong, Chunfa Fractional generalized Hadamard and Fejér-Hadamard inequalities for \(m\)-convex functions. (English) Zbl 1484.26100 AIMS Math. 5, No. 6, 6325-6340 (2020). MSC: 26D15 26A33 26A51 33E12 PDF BibTeX XML Cite \textit{X. Yang} et al., AIMS Math. 5, No. 6, 6325--6340 (2020; Zbl 1484.26100) Full Text: DOI
Qi, Hengxiao; Yussouf, Muhammad; Mehmood, Sajid; Chu, Yu-Ming; Farid, Ghulam Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. (English) Zbl 1484.26087 AIMS Math. 5, No. 6, 6030-6042 (2020). MSC: 26D15 26A33 26A51 PDF BibTeX XML Cite \textit{H. Qi} et al., AIMS Math. 5, No. 6, 6030--6042 (2020; Zbl 1484.26087) Full Text: DOI
Chandak, S.; Al-Omari, S. K. Q.; Suthar, D. L. Unified integral associated with the generalized \(V\)-function. (English) Zbl 1486.33008 Adv. Difference Equ. 2020, Paper No. 560, 16 p. (2020). MSC: 33C20 26A33 33C05 33B20 33E12 PDF BibTeX XML Cite \textit{S. Chandak} et al., Adv. Difference Equ. 2020, Paper No. 560, 16 p. (2020; Zbl 1486.33008) Full Text: DOI
Khan, Nabiullah; Usman, Talha; Aman, Mohd; Al-Omari, Shrideh; Araci, Serkan Computation of certain integral formulas involving generalized Wright function. (English) Zbl 1486.33009 Adv. Difference Equ. 2020, Paper No. 491, 9 p. (2020). MSC: 33C20 33C10 33C45 26A33 PDF BibTeX XML Cite \textit{N. Khan} et al., Adv. Difference Equ. 2020, Paper No. 491, 9 p. (2020; Zbl 1486.33009) Full Text: DOI
Hasan, Shatha; El-Ajou, Ahmad; Hadid, Samir; Al-Smadi, Mohammed; Momani, Shaher Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system. (English) Zbl 1483.92110 Chaos Solitons Fractals 133, Article ID 109624, 10 p. (2020). MSC: 92D25 26A33 34A08 65L10 PDF BibTeX XML Cite \textit{S. Hasan} et al., Chaos Solitons Fractals 133, Article ID 109624, 10 p. (2020; Zbl 1483.92110) Full Text: DOI
Rao, Yongsheng; Yussouf, Muhammad; Farid, Ghulam; Pečarić, Josip; Tlili, Iskander Further generalizations of Hadamard and Fejér-Hadamard fractional inequalities and error estimates. (English) Zbl 1486.26049 Adv. Difference Equ. 2020, Paper No. 421, 14 p. (2020). MSC: 26D15 26A33 26A51 26D10 33E12 PDF BibTeX XML Cite \textit{Y. Rao} et al., Adv. Difference Equ. 2020, Paper No. 421, 14 p. (2020; Zbl 1486.26049) Full Text: DOI
Kashuri, Artion; Liko, Rozana Some new fractional integral inequalities for generalized-\(m\)-\(((h^p_1,h^q_2)\); \((\eta_1,\eta_2))\)-convex mappings via generalized Mittag-Leffler function. (English) Zbl 1499.26131 J. Fract. Calc. Appl. 11, No. 2, 75-91 (2020). MSC: 26D15 26A33 26A51 33E12 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, J. Fract. Calc. Appl. 11, No. 2, 75--91 (2020; Zbl 1499.26131) Full Text: Link
Ali, Musharraf; Khan, Waseem A.; Khan, Idrees A. On certain integral transform involving generalized Bessel-Maitland function and applications. (English) Zbl 1499.33034 J. Fract. Calc. Appl. 11, No. 1, 82-90 (2020). MSC: 33C45 33C60 33E12 PDF BibTeX XML Cite \textit{M. Ali} et al., J. Fract. Calc. Appl. 11, No. 1, 82--90 (2020; Zbl 1499.33034) Full Text: Link
Li, Chenkuan The generalized Abel’s integral equations on \(R^n\) with variable coefficients. (English) Zbl 1488.45014 Fract. Differ. Calc. 10, No. 1, 129-140 (2020). MSC: 45E10 26A33 PDF BibTeX XML Cite \textit{C. Li}, Fract. Differ. Calc. 10, No. 1, 129--140 (2020; Zbl 1488.45014) Full Text: DOI
Li, Chenkuan; Huang, Jianfei Remarks on the linear fractional integro-differential equation with variable coefficients in distribution. (English) Zbl 1488.46075 Fract. Differ. Calc. 10, No. 1, 57-77 (2020). MSC: 46F10 34A08 26A33 45J05 PDF BibTeX XML Cite \textit{C. Li} and \textit{J. Huang}, Fract. Differ. Calc. 10, No. 1, 57--77 (2020; Zbl 1488.46075) Full Text: DOI
Chen, Zhihua; Farid, Ghulam; Ur Rehman, Atiq; Latif, Naveed Estimations of fractional integral operators for convex functions and related results. (English) Zbl 1482.45009 Adv. Difference Equ. 2020, Paper No. 163, 18 p. (2020). MSC: 45P05 26A33 26D15 35R11 26D10 PDF BibTeX XML Cite \textit{Z. Chen} et al., Adv. Difference Equ. 2020, Paper No. 163, 18 p. (2020; Zbl 1482.45009) Full Text: DOI
Nisar, Kottakkaran Sooppy; Suthar, D. L.; Agarwal, R.; Purohit, S. D. Fractional calculus operators with Appell function kernels applied to Srivastava polynomials and extended Mittag-Leffler function. (English) Zbl 1482.26010 Adv. Difference Equ. 2020, Paper No. 148, 14 p. (2020). MSC: 26A33 33C20 33E20 33E12 33C10 PDF BibTeX XML Cite \textit{K. S. Nisar} et al., Adv. Difference Equ. 2020, Paper No. 148, 14 p. (2020; Zbl 1482.26010) Full Text: DOI
Anastassiou, George A. About the right fractional local general \(M\)-derivative. (English) Zbl 1488.26010 An. Univ. Oradea, Fasc. Mat. 27, No. 1, 87-94 (2020). MSC: 26A33 26A24 PDF BibTeX XML Cite \textit{G. A. Anastassiou}, An. Univ. Oradea, Fasc. Mat. 27, No. 1, 87--94 (2020; Zbl 1488.26010)
Kashuri, Artion; Liko, Rozana Some new fractional integral inequalities for generalized relative semi-\(\mathbf{m}\)-\((r;h_1,h_2)\)-preinvex mappings via generalized Mittag-Leffler function. (English) Zbl 1488.26106 Arab J. Math. Sci. 26, No. 1-2, 41-55 (2020). MSC: 26D15 26A33 26A51 33E12 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, Arab J. Math. Sci. 26, No. 1--2, 41--55 (2020; Zbl 1488.26106) Full Text: DOI
Formica, Maria Rosaria; Ostrovsky, Eugeny; Sirota, Leonid Fundamental solution for Cauchy initial value problem for parabolic PDEs with discontinuous unbounded first-order coefficient at the origin. Extension of the classical parametrix method. (English) Zbl 1465.35009 Acta Appl. Math. 170, 399-413 (2020). Reviewer: Vincenzo Vespri (Firenze) MSC: 35A08 35K15 35K20 35R05 PDF BibTeX XML Cite \textit{M. R. Formica} et al., Acta Appl. Math. 170, 399--413 (2020; Zbl 1465.35009) Full Text: DOI arXiv
Yang, Fan; Wang, Ni; Li, Xiao-Xiao Landweber iterative method for an inverse source problem of time-fractional diffusion-wave equation on spherically symmetric domain. (English) Zbl 1473.65174 J. Appl. Anal. Comput. 10, No. 2, 514-529 (2020). Reviewer: Robert Plato (Siegen) MSC: 65M32 26A33 35R11 35R25 35R30 65J20 65M30 65K10 33E12 PDF BibTeX XML Cite \textit{F. Yang} et al., J. Appl. Anal. Comput. 10, No. 2, 514--529 (2020; Zbl 1473.65174) Full Text: DOI
Kumar, Hemant; RAi, Surya Kant Multiple fractional diffusions via multivariable \(H\)-function. (English) Zbl 1488.35569 Jñānābha 50, No. 1, 253-264 (2020). MSC: 35R11 26A33 33C20 33C60 33E12 33E20 33E30 44A15 60G18 60J60 PDF BibTeX XML Cite \textit{H. Kumar} and \textit{S. K. RAi}, Jñānābha 50, No. 1, 253--264 (2020; Zbl 1488.35569) Full Text: Link
Chandel, R. C. Singh; Kumar, Hemant Contour integral representations of two variable generalized hypergeometric function of Srivastava and Daoust with their applications to initial value problems of arbitrary order. (English) Zbl 1474.33028 Jñānābha 50, No. 1, 232-242 (2020). MSC: 33C20 33C15 33C60 33E12 26A33 PDF BibTeX XML Cite \textit{R. C. S. Chandel} and \textit{H. Kumar}, Jñānābha 50, No. 1, 232--242 (2020; Zbl 1474.33028) Full Text: Link
Bhatnagar, Diksha; Pandey, Rupakshi Mishra A study of some integral transforms on Q function. (English) Zbl 1463.33041 South East Asian J. Math. Math. Sci. 16, No. 1, 99-110 (2020). MSC: 33E12 26A33 44A10 PDF BibTeX XML Cite \textit{D. Bhatnagar} and \textit{R. M. Pandey}, South East Asian J. Math. Math. Sci. 16, No. 1, 99--110 (2020; Zbl 1463.33041) Full Text: Link
Khan, Nabiullah; Usman, Talha; Aman, Mohd Generalized Wright function and its properties using extended beta function. (English) Zbl 1454.33004 Tamkang J. Math. 51, No. 4, 349-363 (2020). MSC: 33B15 33C10 33C15 33E12 33E50 44A15 PDF BibTeX XML Cite \textit{N. Khan} et al., Tamkang J. Math. 51, No. 4, 349--363 (2020; Zbl 1454.33004) Full Text: DOI
Desai, R.; Salehbhai, I. A.; Shukla, A. K. Integral equations involving generalized Mittag-Leffler function. (English. Ukrainian original) Zbl 1468.45002 Ukr. Math. J. 72, No. 5, 712-721 (2020); translation from Ukr. Mat. Zh. 72, No. 5, 620-627 (2020). MSC: 45E05 45P05 33E12 26A33 PDF BibTeX XML Cite \textit{R. Desai} et al., Ukr. Math. J. 72, No. 5, 712--721 (2020; Zbl 1468.45002); translation from Ukr. Mat. Zh. 72, No. 5, 620--627 (2020) Full Text: DOI
Kumar, Sunil; Ghosh, Surath; Samet, Bessem; Goufo, Emile Franc Doungmo An analysis for heat equations arises in diffusion process using new Yang-Abdel-Aty-Cattani fractional operator. (English) Zbl 1452.35242 Math. Methods Appl. Sci. 43, No. 9, 6062-6080 (2020). MSC: 35R11 35K05 PDF BibTeX XML Cite \textit{S. Kumar} et al., Math. Methods Appl. Sci. 43, No. 9, 6062--6080 (2020; Zbl 1452.35242) Full Text: DOI
Kumar, D.; Ayant, F. Y.; Singh, A.; Banerji, P. K. Finite integral formula involving aleph-function and generalized Mittag-Leffler function. (English) Zbl 1450.33013 Probl. Anal. Issues Anal. 9(27), No. 1, 96-109 (2020). MSC: 33C60 33C05 33C45 33E12 PDF BibTeX XML Cite \textit{D. Kumar} et al., Probl. Anal. Issues Anal. 9(27), No. 1, 96--109 (2020; Zbl 1450.33013) Full Text: DOI MNR
Wang, Xiaoyuan Extensions of some sufficient conditions for starlikeness and convexity of order \(\beta\). (English) Zbl 1463.30098 J. Math. Res. Appl. 40, No. 3, 275-286 (2020). MSC: 30C45 33D15 33E12 PDF BibTeX XML Cite \textit{X. Wang}, J. Math. Res. Appl. 40, No. 3, 275--286 (2020; Zbl 1463.30098) Full Text: DOI
Eshaghi, Shiva; Ghaziani, Reza Khoshsiar; Ansari, Alireza Stability and dynamics of neutral and integro-differential regularized Prabhakar fractional differential systems. (English) Zbl 1476.34019 Comput. Appl. Math. 39, No. 4, Paper No. 250, 21 p. (2020). MSC: 34A08 34D20 45J05 PDF BibTeX XML Cite \textit{S. Eshaghi} et al., Comput. Appl. Math. 39, No. 4, Paper No. 250, 21 p. (2020; Zbl 1476.34019) Full Text: DOI