Fu, Ruiqin; Yang, Hai On the generalized Ramanujan-Nagell equation \(x^2+(3m^2+1)=(4m^2+1)^n\). (English) Zbl 07506505 Indian J. Pure Appl. Math. 53, No. 1, 222-227 (2022). Reviewer: Anitha Srinivasan (Madrid) MSC: 11D61 PDF BibTeX XML Cite \textit{R. Fu} and \textit{H. Yang}, Indian J. Pure Appl. Math. 53, No. 1, 222--227 (2022; Zbl 07506505) Full Text: DOI OpenURL
Yu, Yahui; Hu, Jiayuan On the generalized Ramanujan-nagell equation \(x^2+(2k-1)^y = k^z\) with \(k\equiv 3 \pmod 4\). (English) Zbl 07536351 AIMS Math. 6, No. 10, 10596-10601 (2021). MSC: 11D61 PDF BibTeX XML Cite \textit{Y. Yu} and \textit{J. Hu}, AIMS Math. 6, No. 10, 10596--10601 (2021; Zbl 07536351) Full Text: DOI OpenURL
Le, Maohua; Soydan, Gökhan A note on Terai’s conjecture concerning primitive Pythagorean triples. (English) Zbl 07428780 Hacet. J. Math. Stat. 50, No. 4, 911-917 (2021). MSC: 11D61 PDF BibTeX XML Cite \textit{M. Le} and \textit{G. Soydan}, Hacet. J. Math. Stat. 50, No. 4, 911--917 (2021; Zbl 07428780) Full Text: DOI OpenURL
Le, Maohua; Soydan, Gökhan A brief survey on the generalized Lebesgue-Ramanujan-Nagell equation. (English) Zbl 1482.11054 Surv. Math. Appl. 15, 473-523 (2020). MSC: 11D61 11-02 PDF BibTeX XML Cite \textit{M. Le} and \textit{G. Soydan}, Surv. Math. Appl. 15, 473--523 (2020; Zbl 1482.11054) Full Text: arXiv Link OpenURL
Fujita, Y.; Terai, N. On the generalized Ramanujan-Nagell equation \(x^2+(2c-1)^m=c^n\). (English) Zbl 1474.11097 Acta Math. Hung. 162, No. 2, 518-526 (2020). Reviewer: István Gaál (Debrecen) MSC: 11D61 11D41 PDF BibTeX XML Cite \textit{Y. Fujita} and \textit{N. Terai}, Acta Math. Hung. 162, No. 2, 518--526 (2020; Zbl 1474.11097) Full Text: DOI OpenURL
Yamada, Tomohiro A generalization of the Ramanujan-Nagell equation. (English) Zbl 1477.11061 Glasg. Math. J. 61, No. 3, 535-544 (2019). Reviewer: Gökhan Soydan (Bursa) MSC: 11D61 11D45 PDF BibTeX XML Cite \textit{T. Yamada}, Glasg. Math. J. 61, No. 3, 535--544 (2019; Zbl 1477.11061) Full Text: DOI arXiv OpenURL
Li, Jianghua On the number of solutions of the generalized Ramanujan-Nagell equation \(D_1X^2+D^M_2=2^{N+2}\). (English) Zbl 1390.11070 Quaest. Math. 41, No. 2, 149-163 (2018). MSC: 11D61 PDF BibTeX XML Cite \textit{J. Li}, Quaest. Math. 41, No. 2, 149--163 (2018; Zbl 1390.11070) Full Text: DOI OpenURL
Hu, Jianyuan; Li, Xiaoxue On the generalized Ramanujan-Nagell equation \(x^2 + q^m = c^n\) with \(q^r + 1 = 2c^2\). (English) Zbl 1399.11100 Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 60(108), No. 3, 257-265 (2017). MSC: 11D61 PDF BibTeX XML Cite \textit{J. Hu} and \textit{X. Li}, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 60(108), No. 3, 257--265 (2017; Zbl 1399.11100) OpenURL
Wang, Tingting; Jiang, Yingzhao On the number of positive integer solutions \((x, n)\) of the generalized Ramanujan-Nagell equation \(x^2-2^r = p^n\). (English) Zbl 1399.11106 Period. Math. Hung. 75, No. 2, 150-154 (2017). Reviewer: Lajos Hajdu (Debrecen) MSC: 11D61 PDF BibTeX XML Cite \textit{T. Wang} and \textit{Y. Jiang}, Period. Math. Hung. 75, No. 2, 150--154 (2017; Zbl 1399.11106) Full Text: DOI OpenURL
Fu, Ruiqin; Yang, Hai On the solvability of the generalized Ramanujan-Nagell equation \({x^2} + {\left( {2k - 1} \right)^m} = {k^n}\). (Chinese. English summary) Zbl 1389.11086 J. Xiamen Univ., Nat. Sci. 56, No. 1, 102-105 (2017). MSC: 11D61 PDF BibTeX XML Cite \textit{R. Fu} and \textit{H. Yang}, J. Xiamen Univ., Nat. Sci. 56, No. 1, 102--105 (2017; Zbl 1389.11086) Full Text: DOI OpenURL
Zhang, Xiaobeng; Li, Xiaoxue The number of solutions of the generalized Ramanujan-Nagell equation \(x^2+D^m=4p^n\). (Chinese. English summary) Zbl 1374.11059 J. Shaanxi Norm. Univ., Nat. Sci. Ed. 44, No. 4, 11-13 (2016). MSC: 11D61 11D45 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{X. Li}, J. Shaanxi Norm. Univ., Nat. Sci. Ed. 44, No. 4, 11--13 (2016; Zbl 1374.11059) Full Text: DOI OpenURL
Zhang, Zhengping; Zhao, Kaiming On the positive integer solutions of a class of generalized Ramanujan-Nagell equation. (Chinese. English summary) Zbl 1374.11046 J. Math., Wuhan Univ. 36, No. 5, 1077-1082 (2016). MSC: 11D09 11D45 PDF BibTeX XML Cite \textit{Z. Zhang} and \textit{K. Zhao}, J. Math., Wuhan Univ. 36, No. 5, 1077--1082 (2016; Zbl 1374.11046) OpenURL
Ji, Yongqiang Upper bounds and lower bounds for the pseudo-Smarandache function. (Chinese. English summary) Zbl 1363.11039 Math. Pract. Theory 46, No. 1, 275-279 (2016). MSC: 11B83 PDF BibTeX XML Cite \textit{Y. Ji}, Math. Pract. Theory 46, No. 1, 275--279 (2016; Zbl 1363.11039) OpenURL
Wang, Jianping; Wang, Tingting; Zhang, Wenpeng A note on the exponential Diophantine equation \((4m^2+1)^x+(5m^2-1)^y=(3m)^z\). (English) Zbl 1364.11087 Colloq. Math. 139, No. 1, 121-126 (2015). MSC: 11D61 PDF BibTeX XML Cite \textit{J. Wang} et al., Colloq. Math. 139, No. 1, 121--126 (2015; Zbl 1364.11087) Full Text: DOI OpenURL
Bérczes, Attila; Pink, István On generalized Lebesgue-Ramanujan-Nagell equations. (English) Zbl 1340.11039 An. Științ. Univ. “Ovidius” Constanța, Ser. Mat. 22, No. 1, 51-71 (2014). MSC: 11D61 11D41 PDF BibTeX XML Cite \textit{A. Bérczes} and \textit{I. Pink}, An. Științ. Univ. ``Ovidius'' Constanța, Ser. Mat. 22, No. 1, 51--71 (2014; Zbl 1340.11039) OpenURL
Vîrgolici, Horia On the exponential Diophantine equation \(x^z + D = y^n\): a brief survey. (English) Zbl 1415.11064 An. Univ. Spiru Haret, Ser. Mat.-Inform. 9, No. 1, 45-54 (2013). MSC: 11D41 11D61 PDF BibTeX XML Cite \textit{H. Vîrgolici}, An. Univ. Spiru Haret, Ser. Mat.-Inform. 9, No. 1, 45--54 (2013; Zbl 1415.11064) Full Text: Link OpenURL
Hu, Yongzhong; Le, Maohua On the number of solutions of the generalized Ramanujan-Nagell equation \(D_1 x^2+D^m_2=p^n\). (English) Zbl 1274.11090 Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 55(103), No. 3, 279-293 (2012). Reviewer: Maurice Mignotte (Strasbourg) MSC: 11D61 11D25 PDF BibTeX XML Cite \textit{Y. Hu} and \textit{M. Le}, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 55(103), No. 3, 279--293 (2012; Zbl 1274.11090) OpenURL
Le, Maohua; Hu, Yongzhong New advances on the generalized Lebesgue-Ramanujan-Nagell equation. (Chinese. English summary) Zbl 1274.11091 Adv. Math., Beijing 41, No. 4, 385-396 (2012). MSC: 11D61 11D45 PDF BibTeX XML Cite \textit{M. Le} and \textit{Y. Hu}, Adv. Math., Beijing 41, No. 4, 385--396 (2012; Zbl 1274.11091) OpenURL
Zhao, Yuan-e; Wang, Tingting A note on the number of solutions of the generalized Ramanujan-Nagell equation \(x^2-D=p^n\). (English) Zbl 1265.11066 Czech. Math. J. 62, No. 2, 381-389 (2012). MSC: 11D61 PDF BibTeX XML Cite \textit{Y.-e Zhao} and \textit{T. Wang}, Czech. Math. J. 62, No. 2, 381--389 (2012; Zbl 1265.11066) Full Text: DOI OpenURL
Bérczes, Attila; Pink, István On the Diophantine equation \(x^2+d^{2l+1}=y^n\). (English) Zbl 1266.11059 Glasg. Math. J. 54, No. 2, 415-428 (2012). Reviewer: Mihai Cipu (Bucureşti) MSC: 11D41 11D61 PDF BibTeX XML Cite \textit{A. Bérczes} and \textit{I. Pink}, Glasg. Math. J. 54, No. 2, 415--428 (2012; Zbl 1266.11059) Full Text: DOI OpenURL
Pink, István; Rábai, Zsolt On the Diophantine equation \(x^2+5^k17^l=y^n\). (English) Zbl 1264.11026 Commun. Math. 19, No. 1, 1-9 (2011). Reviewer: Mihai Cipu (Bucureşti) MSC: 11D41 11D61 PDF BibTeX XML Cite \textit{I. Pink} and \textit{Z. Rábai}, Commun. Math. 19, No. 1, 1--9 (2011; Zbl 1264.11026) Full Text: EuDML Link OpenURL
Cangül, Ismail Naci; Soydan, Gökhan; Simsek, Yilmaz A \(p\)-adic look at the Diophantine equation \(x^2+11^{2k} = y^n\). (English) Zbl 1229.11054 Simos, Theodore E. (ed.) et al., Numerical analysis and applied mathematics. International conference on numerical analysis and applied mathematics 2009, Rethymno, Crete, Greece, September 18–22, 2009. Vol. 1. Melville, NY: American Institute of Physics (AIP) (ISBN 978-0-7354-0705-3/hbk; 978-0-7354-0709-1/set). AIP Conference Proceedings 1168, 1, 275-277 (2009). Reviewer: Maurice Mignotte (Strasbourg) MSC: 11D61 11D41 PDF BibTeX XML Cite \textit{I. N. Cangül} et al., AIP Conf. Proc. 1168, 275--277 (2009; Zbl 1229.11054) Full Text: DOI arXiv OpenURL
Saradha, N.; Srinivasan, Anitha Generalized Lebesgue-Ramanujan-Nagell equations. (English) Zbl 1198.11033 Saradha, N. (ed.), Diophantine equations. Papers from the international conference held in honor of T. N. Shorey’s 60th birthday, Mumbai, India, December 16–20, 2005. New Delhi: Narosa Publishing House/Published for the Tata Institute of Fundamental Research (ISBN 978-81-7319-898-4/hbk). Studies in Mathematics. Tata Institute of Fundamental Research 20, 207-223 (2008). Reviewer: Le Maohua (Zhanjiang) MSC: 11D41 PDF BibTeX XML Cite \textit{N. Saradha} and \textit{A. Srinivasan}, in: Diophantine equations. Papers from the international conference held in honor of T. N. Shorey's 60th birthday, Mumbai, India, December 16--20, 2005. New Delhi: Narosa Publishing House/Published for the Tata Institute of Fundamental Research. 207--223 (2008; Zbl 1198.11033) OpenURL
Liu, Zhiwei On the generalized Ramanujan-Nagell equation \(x^2+D^m=p^n\). (Chinese. English summary) Zbl 1174.11042 Acta Math. Sin., Chin. Ser. 51, No. 4, 809-814 (2008). MSC: 11D61 PDF BibTeX XML Cite \textit{Z. Liu}, Acta Math. Sin., Chin. Ser. 51, No. 4, 809--814 (2008; Zbl 1174.11042) OpenURL
Yang, Shichun A note on the solutions of the generalized Ramanujan-Nagell equation \(x^2+D^m=p^n\). (Chinese. English summary) Zbl 1131.11338 Acta Math. Sin., Chin. Ser. 50, No. 4, 943-948 (2007). MSC: 11D61 PDF BibTeX XML Cite \textit{S. Yang}, Acta Math. Sin., Chin. Ser. 50, No. 4, 943--948 (2007; Zbl 1131.11338) OpenURL
Le, Maohua A note on a generalized Ramanujan-Nagell equation. (Chinese. English summary) Zbl 1125.11023 J. Math., Wuhan Univ. 27, No. 2, 219-221 (2007). MSC: 11D61 PDF BibTeX XML Cite \textit{M. Le}, J. Math., Wuhan Univ. 27, No. 2, 219--221 (2007; Zbl 1125.11023) OpenURL
Le, Maohua The number of solutions of the generalized Ramanujan-Nagell equation \(x^2 + D^m = p^n\). (Chinese. English summary) Zbl 1137.11308 Acta Math. Sin. 48, No. 1, 153-156 (2005). MSC: 11D61 PDF BibTeX XML Cite \textit{M. Le}, Acta Math. Sin. 48, No. 1, 153--156 (2005; Zbl 1137.11308) OpenURL
Cao, Zhenfu The divisibility of the class number of imaginary quadratic fields. (Chinese. English summary) Zbl 1062.11069 Chin. Ann. Math., Ser. A 25, No. 3, 397-406 (2004). Reviewer: Le Maohua (Zhanjiang) MSC: 11R29 11R11 94A60 11D61 PDF BibTeX XML Cite \textit{Z. Cao}, Chin. Ann. Math., Ser. A 25, No. 3, 397--406 (2004; Zbl 1062.11069) OpenURL
Leu, Ming-Guang; Li, Guan-Wei The Diophantine equation \(2x^2+1=3^n\). (English) Zbl 1090.11022 Proc. Am. Math. Soc. 131, No. 12, 3643-3645 (2003). Reviewer: Le Maohua (Zhanjiang) MSC: 11D61 PDF BibTeX XML Cite \textit{M.-G. Leu} and \textit{G.-W. Li}, Proc. Am. Math. Soc. 131, No. 12, 3643--3645 (2003; Zbl 1090.11022) Full Text: DOI OpenURL
Cohn, J. H. E. The Diophantine equation \(x^2+C=y^n\). II. (English) Zbl 1058.11024 Acta Arith. 109, No. 2, 205-206 (2003). Reviewer: Maurice Mignotte (Strasbourg) MSC: 11D61 PDF BibTeX XML Cite \textit{J. H. E. Cohn}, Acta Arith. 109, No. 2, 205--206 (2003; Zbl 1058.11024) Full Text: DOI OpenURL
Cipu, Mihai A bound for the solutions of the Diophantine equation \(D_1x^2+D_2^m=4y^n\). (English) Zbl 1028.11018 Proc. Japan Acad., Ser. A 78, No. 10, 179-180 (2002). Reviewer: Maurice Mignotte (Strasbourg) MSC: 11D61 PDF BibTeX XML Cite \textit{M. Cipu}, Proc. Japan Acad., Ser. A 78, No. 10, 179--180 (2002; Zbl 1028.11018) Full Text: DOI OpenURL
Bugeaud, Yann; Shorey, T. N. On the number of solutions of the generalized Ramanujan-Nagell equation. (English) Zbl 0995.11027 J. Reine Angew. Math. 539, 55-74 (2001). Reviewer: Nikos Tzanakis (Iraklion) MSC: 11D61 PDF BibTeX XML Cite \textit{Y. Bugeaud} and \textit{T. N. Shorey}, J. Reine Angew. Math. 539, 55--74 (2001; Zbl 0995.11027) Full Text: DOI OpenURL
Bugeaud, Yann On some exponential Diophantine equations. (English) Zbl 1014.11023 Monatsh. Math. 132, No. 2, 93-97 (2001). Reviewer: Le Maohua (Zhanjiang) MSC: 11D61 PDF BibTeX XML Cite \textit{Y. Bugeaud}, Monatsh. Math. 132, No. 2, 93--97 (2001; Zbl 1014.11023) Full Text: DOI OpenURL
Yuan, Pingzhi Multiplicity of generalized Lucas sequences and the number of solutions of the related diophantine equations. (Chinese. English summary) Zbl 0987.11022 Appl. Math., Ser. A (Chin. Ed.) 15, No. 3, 253-259 (2000). Reviewer: Le Maohua (Zhanjiang) MSC: 11D61 11B39 PDF BibTeX XML Cite \textit{P. Yuan}, Appl. Math., Ser. A (Chin. Ed.) 15, No. 3, 253--259 (2000; Zbl 0987.11022) OpenURL
Le, Maohua On the diophantine equation \((x^3-1)/(x-1)=(y^n-1)/(y-1)\). (English) Zbl 0927.11014 Trans. Am. Math. Soc. 351, No. 3, 1063-1074 (1999). Reviewer: Maurice Mignotte (Strasbourg) MSC: 11D61 11J86 PDF BibTeX XML Cite \textit{M. Le}, Trans. Am. Math. Soc. 351, No. 3, 1063--1074 (1999; Zbl 0927.11014) Full Text: DOI OpenURL
Chen, Xigeng; Guo, Yongdong; Le, Maohua On the number of solutions of the generalized Ramanujan-Nagell equation \(x^2+D=k^n\). (Chinese. English summary) Zbl 1005.11010 Acta Math. Sin. 41, No. 6, 1249-1254 (1998). MSC: 11D61 11D45 PDF BibTeX XML Cite \textit{X. Chen} et al., Acta Math. Sin. 41, No. 6, 1249--1254 (1998; Zbl 1005.11010) OpenURL
Yuan, Pingzhi On the number of the solutions of \(x^2-D=p^n\). (English) Zbl 0923.11057 J. Sichuan Univ., Nat. Sci. Ed. 35, No. 3, 311-316 (1998). Reviewer: Le Maohua (Zhanjiang) MSC: 11D61 11J86 PDF BibTeX XML Cite \textit{P. Yuan}, J. Sichuan Univ., Nat. Sci. Ed. 35, No. 3, 311--316 (1998; Zbl 0923.11057) OpenURL
Le, Maohua A note on the number of solutions of the generalized Ramanujan-Nagell equation \(D_ 1x^ 2+D_ 2=4p^ n\). (English) Zbl 0869.11029 J. Number Theory 62, No. 1, 100-106 (1997). Reviewer: E.L.Cohen (Ottawa) MSC: 11D61 PDF BibTeX XML Cite \textit{M. Le}, J. Number Theory 62, No. 1, 100--106 (1997; Zbl 0869.11029) Full Text: DOI OpenURL
Chen, Xigeng; Le, Maohua On the number of solutions of the generalized Ramanujan-Nagell equation \(x^ 2- D= k^ n\). (English) Zbl 0887.11017 Publ. Math. Debr. 49, No. 1-2, 85-92 (1996). Reviewer: N.Tzanakis (Iraklion) MSC: 11D61 11J86 PDF BibTeX XML Cite \textit{X. Chen} and \textit{M. Le}, Publ. Math. Debr. 49, No. 1--2, 85--92 (1996; Zbl 0887.11017) OpenURL
Le, Maohua A note on the number of solutions of the generalized Ramanujan-Nagell equation \(x^ 2-D=k^ n\). (English) Zbl 0869.11028 Acta Arith. 78, No. 1, 11-18 (1996). Reviewer: E.L.Cohen (Ottawa) MSC: 11D61 PDF BibTeX XML Cite \textit{M. Le}, Acta Arith. 78, No. 1, 11--18 (1996; Zbl 0869.11028) Full Text: DOI EuDML OpenURL
Le, Maohua A note on the generalized Ramanujan-Nagell equation. (English) Zbl 0821.11020 J. Number Theory 50, No. 2, 193-201 (1995). Reviewer: B.Brindza (Debrecen) MSC: 11D61 PDF BibTeX XML Cite \textit{M. Le}, J. Number Theory 50, No. 2, 193--201 (1995; Zbl 0821.11020) Full Text: DOI OpenURL
Le, Maohua Applications of Baker’s method. XIV. (Chinese. English summary) Zbl 0891.11028 J. Zhanjiang Teach. Coll. 16, No. 1, 1-3 (1995). MSC: 11D61 11J86 PDF BibTeX XML OpenURL
Le, Maohua On the number of solutions of the generalized Ramanujan-Nagell equation \(x^ 2-D=p^ n\). (English) Zbl 0820.11022 Publ. Math. Debr. 45, No. 3-4, 239-254 (1994). Reviewer: N.Tzanakis (Iraklion) MSC: 11D61 11J86 PDF BibTeX XML Cite \textit{M. Le}, Publ. Math. Debr. 45, No. 3--4, 239--254 (1994; Zbl 0820.11022) OpenURL
Le, Maohua On the generalized Ramanujan-Nagell equation \(x^ 2-D=2^{n+2}\). (English) Zbl 0769.11018 Trans. Am. Math. Soc. 334, No. 2, 809-825 (1992). Reviewer: R.J.Stroeker (Rotterdam) MSC: 11D61 PDF BibTeX XML Cite \textit{M. Le}, Trans. Am. Math. Soc. 334, No. 2, 809--825 (1992; Zbl 0769.11018) Full Text: DOI OpenURL
Le, Maohua On the generalized Ramanujan-Nagell equation \(x^ 2-D=p^ n\). (English) Zbl 0736.11020 Acta Arith. 58, No. 3, 289-298 (1991). Reviewer: E.L.Cohen (Ottawa) MSC: 11D41 PDF BibTeX XML Cite \textit{M. Le}, Acta Arith. 58, No. 3, 289--298 (1991; Zbl 0736.11020) Full Text: DOI EuDML OpenURL
de Weger, B. M. M. Algorithms for diophantine equations. (English) Zbl 0687.10013 CWI Tract, 65. Amsterdam: Centrum voor Wiskunde en Informatica. viii, 212 p. Dfl. 33.00 (1989). Reviewer: István Gaál (Debrecen) MSC: 11Y50 11D61 11-02 11D41 11D59 11J86 PDF BibTeX XML Cite \textit{B. M. M. de Weger}, Algorithms for diophantine equations. Amsterdam: Centrum voor Wiskunde en Informatica (1989; Zbl 0687.10013) OpenURL
Le, Maohua The diophantine equation \(x^ 2+D^ m=p^ n\). (English) Zbl 0629.10014 Acta Arith. 52, No. 3, 255-265 (1989). MSC: 11D61 PDF BibTeX XML Cite \textit{M. Le}, Acta Arith. 52, No. 3, 255--265 (1989; Zbl 0629.10014) Full Text: DOI EuDML OpenURL
de Weger, B. M. M. Products of prime powers in binary recurrence sequences. II: The elliptic case, with an application to a mixed quadratic-exponential equation. (English) Zbl 0623.10012 Math. Comput. 47, 729-739 (1986). Reviewer: Ray Phillip Steiner (Bowling Green) MSC: 11D61 11B37 PDF BibTeX XML Cite \textit{B. M. M. de Weger}, Math. Comput. 47, 729--739 (1986; Zbl 0623.10012) Full Text: DOI OpenURL
Pethö, A.; de Weger, B. M. M. Products of prime powers in binary recurrence sequences. I: The hyperbolic case, with an application to the generalized Ramanujan-Nagell equation. (English) Zbl 0623.10011 Math. Comput. 47, 713-727 (1986). Reviewer: Ray Phillip Steiner (Bowling Green) MSC: 11D61 11B37 PDF BibTeX XML Cite \textit{A. Pethö} and \textit{B. M. M. de Weger}, Math. Comput. 47, 713--727 (1986; Zbl 0623.10011) Full Text: DOI OpenURL
Beukers, F. On the generalized Ramanujan-Nagell equation. II. (English) Zbl 0377.10012 Acta Arith. 39, 113-123 (1981). MSC: 11D61 PDF BibTeX XML Cite \textit{F. Beukers}, Acta Arith. 39, 113--123 (1981; Zbl 0377.10012) Full Text: DOI EuDML OpenURL