Denich, Eleonora Error estimates for a Gaussian rule involving Bessel functions. (English) Zbl 07738684 J. Comput. Appl. Math. 436, Article ID 115448, 12 p. (2024). MSC: 33C10 33C45 65D32 PDF BibTeX XML Cite \textit{E. Denich}, J. Comput. Appl. Math. 436, Article ID 115448, 12 p. (2024; Zbl 07738684) Full Text: DOI arXiv
Mohammed, Asmaa Orabi; Rakha, Medhat Ahmed; Rathie, Arjun K. A note on certain transformation formulas related to Appell, Horn and Kampé de Fériet functions. (English) Zbl 07741912 Commun. Korean Math. Soc. 38, No. 3, 807-819 (2023). MSC: 33B15 33C05 33C15 33C65 33C20 PDF BibTeX XML Cite \textit{A. O. Mohammed} et al., Commun. Korean Math. Soc. 38, No. 3, 807--819 (2023; Zbl 07741912) Full Text: DOI
Chopra, Purnima; Gupta, Mamta; Modi, Kanak Fractional integration and differentiation of the \((p,q)\)-extended modified Bessel function of the second kind and integral transforms. (English) Zbl 07741909 Commun. Korean Math. Soc. 38, No. 3, 755-772 (2023). MSC: 26A33 33B20 33C20 26A09 33B15 33C05 PDF BibTeX XML Cite \textit{P. Chopra} et al., Commun. Korean Math. Soc. 38, No. 3, 755--772 (2023; Zbl 07741909) Full Text: DOI
Kumar, B. R. Srivatsa; Lim, Dongkyu; Rathie, Arjun K. A note on two new closed-form evaluations of the generalized hypergeometric function \({}_5 F_4\) with argument \(\dfrac{1}{256}\). (English) Zbl 07738430 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 30, No. 2, 131-138 (2023). MSC: 33C05 33C15 05A15 11B68 33C20 PDF BibTeX XML Cite \textit{B. R. S. Kumar} et al., J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 30, No. 2, 131--138 (2023; Zbl 07738430) Full Text: DOI
Mathai, A. M.; Sebastian, Nicy On distributions of covariance structures. (English) Zbl 07736148 Commun. Stat., Theory Methods 52, No. 20, 7370-7384 (2023). MSC: 62H10 15A63 15B52 33C15 44A10 PDF BibTeX XML Cite \textit{A. M. Mathai} and \textit{N. Sebastian}, Commun. Stat., Theory Methods 52, No. 20, 7370--7384 (2023; Zbl 07736148) Full Text: DOI
Chen, Yajun; Wu, Jiahui; Zhao, Tiehong On the absolute monotonicity of generalized elliptic integral of the first kind. (English) Zbl 07733899 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 4, Paper No. 143, 24 p. (2023). Reviewer: Thomas Ernst (Uppsala) MSC: 33E05 26E60 PDF BibTeX XML Cite \textit{Y. Chen} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 4, Paper No. 143, 24 p. (2023; Zbl 07733899) Full Text: DOI
Lim, Dongkyu; Kulkarni, Vidha; Vyas, Yashoverdhan; Rathie, Arjun K. On a new class of summation formulas involving generalized hypergeometric functions. (English) Zbl 07731439 Proc. Jangjeon Math. Soc. 26, No. 3, 325-340 (2023). MSC: 33C05 33C15 33C20 33C99 65B10 PDF BibTeX XML Cite \textit{D. Lim} et al., Proc. Jangjeon Math. Soc. 26, No. 3, 325--340 (2023; Zbl 07731439) Full Text: DOI
Karp, Dmitrii; Zhang, Yi Convergent expansions and bounds for the incomplete elliptic integral of the second kind near the logarithmic singularity. (English) Zbl 07729927 Math. Comput. 92, No. 344, 2769-2794 (2023). MSC: 33E05 33F10 33C20 33C60 PDF BibTeX XML Cite \textit{D. Karp} and \textit{Y. Zhang}, Math. Comput. 92, No. 344, 2769--2794 (2023; Zbl 07729927) Full Text: DOI arXiv
Shilin, I. A.; Choi, Junesang On some relations between hyper Bessel-Clifford, Macdonald and Meijer functions and hyper Hankel-Clifford integral transforms. (English) Zbl 07726281 Integral Transforms Spec. Funct. 34, No. 10, 788-798 (2023). MSC: 33C10 33C80 33C20 44A20 PDF BibTeX XML Cite \textit{I. A. Shilin} and \textit{J. Choi}, Integral Transforms Spec. Funct. 34, No. 10, 788--798 (2023; Zbl 07726281) Full Text: DOI
Saib, Abdessadek On the quasi-orthogonality and Hahn-classical \(d\)-orthogonal polynomials. (English) Zbl 07726278 Integral Transforms Spec. Funct. 34, No. 10, 737-754 (2023). MSC: 33C20 33C47 42C05 PDF BibTeX XML Cite \textit{A. Saib}, Integral Transforms Spec. Funct. 34, No. 10, 737--754 (2023; Zbl 07726278) Full Text: DOI
Tchorbadjieff, Assen; Mayster, Penka Wright function in the solution to the Kolmogorov equation of the Markov branching process with geometric reproduction of particles. (English) Zbl 07725400 Lith. Math. J. 63, No. 2, 223-240 (2023). MSC: 60J80 11B83 33C20 33E20 PDF BibTeX XML Cite \textit{A. Tchorbadjieff} and \textit{P. Mayster}, Lith. Math. J. 63, No. 2, 223--240 (2023; Zbl 07725400) Full Text: DOI
Branquinho, Amílcar; Díaz, Juan E. F.; Foulquié-Moreno, Ana; Mañas, Manuel Hahn multiple orthogonal polynomials of type I: hypergeometric expressions. (English) Zbl 07725210 J. Math. Anal. Appl. 528, No. 1, Article ID 127471, 27 p. (2023). MSC: 33Cxx 42Cxx 41Axx PDF BibTeX XML Cite \textit{A. Branquinho} et al., J. Math. Anal. Appl. 528, No. 1, Article ID 127471, 27 p. (2023; Zbl 07725210) Full Text: DOI arXiv
Saikia, Neelam Zeros of hypergeometric functions in the \(p\)-adic setting. (English) Zbl 07720235 Ramanujan J. 61, No. 4, 1339-1355 (2023). MSC: 33E50 33C20 33C99 11S80 11T24 PDF BibTeX XML Cite \textit{N. Saikia}, Ramanujan J. 61, No. 4, 1339--1355 (2023; Zbl 07720235) Full Text: DOI arXiv
Cohl, Howard S.; Ritter, Lisa Two-dimensional contiguous relations for the linearization coefficients of classical orthogonal polynomials. (English) Zbl 07719592 Integral Transforms Spec. Funct. 34, No. 9, 635-658 (2023). MSC: 33C45 33C20 PDF BibTeX XML Cite \textit{H. S. Cohl} and \textit{L. Ritter}, Integral Transforms Spec. Funct. 34, No. 9, 635--658 (2023; Zbl 07719592) Full Text: DOI
Li, Zhonghua; Song, Yutong Ohno-Zagier type relations for multiple \(t\)-values. (English) Zbl 07716582 Bull. Aust. Math. Soc. 107, No. 2, 215-226 (2023). MSC: 11M32 33C20 PDF BibTeX XML Cite \textit{Z. Li} and \textit{Y. Song}, Bull. Aust. Math. Soc. 107, No. 2, 215--226 (2023; Zbl 07716582) Full Text: DOI arXiv
Vieira, Nelson Quaternionic convolutional neural networks with trainable Bessel activation functions. (English) Zbl 07716126 Complex Anal. Oper. Theory 17, No. 6, Paper No. 82, 16 p. (2023). MSC: 68T07 68Q32 30G35 33C90 33C10 PDF BibTeX XML Cite \textit{N. Vieira}, Complex Anal. Oper. Theory 17, No. 6, Paper No. 82, 16 p. (2023; Zbl 07716126) Full Text: DOI
Allen, Michael On some hypergeometric supercongruence conjectures of Long. (English) Zbl 07713340 Ramanujan J. 61, No. 3, 957-987 (2023). MSC: 33C20 11F33 PDF BibTeX XML Cite \textit{M. Allen}, Ramanujan J. 61, No. 3, 957--987 (2023; Zbl 07713340) Full Text: DOI arXiv
Breden, Maxime A posteriori validation of generalized polynomial chaos expansions. (English) Zbl 07712414 SIAM J. Appl. Dyn. Syst. 22, No. 2, 765-801 (2023). MSC: 33C45 34F05 37H10 41A58 60H35 65P30 PDF BibTeX XML Cite \textit{M. Breden}, SIAM J. Appl. Dyn. Syst. 22, No. 2, 765--801 (2023; Zbl 07712414) Full Text: DOI arXiv
Loualid, El Mehdi; Elgargati, Abdelghani; Daher, Radouan Discrete Fourier-Jacobi transform and generalized Lipschitz classes. (English) Zbl 07712405 Acta Math. Vietnam. 48, No. 2, 259-269 (2023). MSC: 42A38 42A16 42B35 26A16 33D15 PDF BibTeX XML Cite \textit{E. M. Loualid} et al., Acta Math. Vietnam. 48, No. 2, 259--269 (2023; Zbl 07712405) Full Text: DOI
Srivastava, H. M. Some applications of the Lagrange expansion theorem associated with general polynomial systems. (English) Zbl 07709332 J. Nonlinear Convex Anal. 24, No. 5, 1113-1127 (2023). Reviewer: Bujar Fejzullahu (Presevo) MSC: 33C20 26A06 44A10 PDF BibTeX XML Cite \textit{H. M. Srivastava}, J. Nonlinear Convex Anal. 24, No. 5, 1113--1127 (2023; Zbl 07709332) Full Text: Link
Witte, N. S.; Greenwood, P. E. On the density arising from the domain of attraction of an operator interpolating between sum and supremum: the \(\alpha\)-sun operator. (English) Zbl 1517.60026 J. Math. Anal. Appl. 527, No. 1, Part 2, Article ID 127371, 31 p. (2023). MSC: 60E07 33C20 60G70 PDF BibTeX XML Cite \textit{N. S. Witte} and \textit{P. E. Greenwood}, J. Math. Anal. Appl. 527, No. 1, Part 2, Article ID 127371, 31 p. (2023; Zbl 1517.60026) Full Text: DOI
Pathan, M. A.; Qureshi, M. I.; Majid, J. Analytical expression for the exact curved surface area and volume of hyperboloid of two sheets via Mellin-Barnes type contour integration. (English) Zbl 07708001 J. Mahani Math. Res. Cent. 12, No. 2, 77-104 (2023). MSC: 33C20 33C70 97G30 97G40 PDF BibTeX XML Cite \textit{M. A. Pathan} et al., J. Mahani Math. Res. Cent. 12, No. 2, 77--104 (2023; Zbl 07708001) Full Text: DOI arXiv
Meena, Rekha; Bhabor, Ajit Kumar Bicomplex hypergeometric function and its properties. (English) Zbl 07702676 Integral Transforms Spec. Funct. 34, No. 6, 478-494 (2023). MSC: 30G35 PDF BibTeX XML Cite \textit{R. Meena} and \textit{A. K. Bhabor}, Integral Transforms Spec. Funct. 34, No. 6, 478--494 (2023; Zbl 07702676) Full Text: DOI
Srivastava, H. M.; Yadav, Sitaram; Upadhyay, S. K. The Weinstein transform associated with a family of generalized distributions. (English) Zbl 07700364 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 3, Paper No. 132, 32 p. (2023). MSC: 46F12 44A15 44A20 46F05 33D15 42A85 46F10 PDF BibTeX XML Cite \textit{H. M. Srivastava} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 3, Paper No. 132, 32 p. (2023; Zbl 07700364) Full Text: DOI
Chu, Wenchang Transformation formulae for terminating balanced \(_4F_3\)-series and implications. (English) Zbl 07700119 Hacet. J. Math. Stat. 52, No. 2, 391-397 (2023). MSC: 33C20 33C90 PDF BibTeX XML Cite \textit{W. Chu}, Hacet. J. Math. Stat. 52, No. 2, 391--397 (2023; Zbl 07700119) Full Text: DOI
Pal, Ankit; Jana, R. K.; Nieto, Juan J.; Shukla, A. K. Some results on the \({}_p R_q (\lambda,\mu; z)\) function involving pathway fractional integral operator and statistical distribution. (English) Zbl 07699168 S\(\vec{\text{e}}\)MA J. 80, No. 1, 159-173 (2023). MSC: 33C60 26A33 33E12 44A99 PDF BibTeX XML Cite \textit{A. Pal} et al., S\(\vec{\text{e}}\)MA J. 80, No. 1, 159--173 (2023; Zbl 07699168) Full Text: DOI
Tripathi, Mohit Appell series over finite fields and modular forms. (English) Zbl 07697560 Finite Fields Appl. 90, Article ID 102230, 20 p. (2023). MSC: 33C65 11F30 33C05 33C20 PDF BibTeX XML Cite \textit{M. Tripathi}, Finite Fields Appl. 90, Article ID 102230, 20 p. (2023; Zbl 07697560) Full Text: DOI
Gasper, George Extensions to generalizations of hypergeometric and basic hypergeometric functions of inequalities for quotients of hypergeometric functions that arose in research on financing efficiency of securities-based crowdfunding. (English) Zbl 07695112 Ramanujan J. 61, No. 2, 415-423 (2023). MSC: 33C05 33C20 33C90 33D15 33E20 91G99 PDF BibTeX XML Cite \textit{G. Gasper}, Ramanujan J. 61, No. 2, 415--423 (2023; Zbl 07695112) Full Text: DOI
Ortner, Norbert; Wagner, Peter A distributional version of Frullani’s integral. (English) Zbl 07693659 Bull. Sci. Math. 186, Article ID 103272, 16 p. (2023). MSC: 33C15 44A35 46F10 PDF BibTeX XML Cite \textit{N. Ortner} and \textit{P. Wagner}, Bull. Sci. Math. 186, Article ID 103272, 16 p. (2023; Zbl 07693659) Full Text: DOI
Li, Junhang; Tang, Yezhenyang; Wang, Chen Some congruences from the Karlsson-Minton summation formula. (English) Zbl 07689530 Result. Math. 78, No. 4, Paper No. 138, 11 p. (2023). MSC: 11A07 33C20 05A10 11B65 33E50 PDF BibTeX XML Cite \textit{J. Li} et al., Result. Math. 78, No. 4, Paper No. 138, 11 p. (2023; Zbl 07689530) Full Text: DOI arXiv
Saadi, Faouaz; Daher, Radouan Absolutely convergent Fourier-Bessel series and generalized Lipschitz classes. (English) Zbl 07688466 Mediterr. J. Math. 20, No. 3, Paper No. 125, 10 p. (2023). MSC: 43A30 42C10 43A50 46E35 33D60 PDF BibTeX XML Cite \textit{F. Saadi} and \textit{R. Daher}, Mediterr. J. Math. 20, No. 3, Paper No. 125, 10 p. (2023; Zbl 07688466) Full Text: DOI
Wang, Chen; Hu, Dian-Wang Proof of some supercongruences concerning truncated hypergeometric series. (English) Zbl 07686529 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 3, Paper No. 99, 18 p. (2023). MSC: 33C20 11A07 11B65 05A10 PDF BibTeX XML Cite \textit{C. Wang} and \textit{D.-W. Hu}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 3, Paper No. 99, 18 p. (2023; Zbl 07686529) Full Text: DOI arXiv
Apelblat, Alexander; González-Santander, Juan Luis Differentiation of integral Mittag-Leffler and integral wright functions with respect to parameters. (English) Zbl 1511.33012 Fract. Calc. Appl. Anal. 26, No. 2, 567-598 (2023). MSC: 33E12 33B15 33C20 PDF BibTeX XML Cite \textit{A. Apelblat} and \textit{J. L. González-Santander}, Fract. Calc. Appl. Anal. 26, No. 2, 567--598 (2023; Zbl 1511.33012) Full Text: DOI
He, Bing On a generalized homogeneous Hahn polynomial. (English) Zbl 07685344 Sci. China, Math. 66, No. 5, 957-976 (2023). MSC: 33C45 33D15 05A15 30E15 30C15 11A07 05A10 PDF BibTeX XML Cite \textit{B. He}, Sci. China, Math. 66, No. 5, 957--976 (2023; Zbl 07685344) Full Text: DOI
Kimoto, Kazufumi; Wakayama, Masato Apéry-like numbers for non-commutative harmonic oscillators and automorphic integrals. (English) Zbl 07684671 Ann. Inst. Henri Poincaré D, Comb. Phys. Interact. (AIHPD) 10, No. 2, 205-275 (2023). MSC: 11M41 11A07 33C20 PDF BibTeX XML Cite \textit{K. Kimoto} and \textit{M. Wakayama}, Ann. Inst. Henri Poincaré D, Comb. Phys. Interact. (AIHPD) 10, No. 2, 205--275 (2023; Zbl 07684671) Full Text: DOI arXiv
Ebisu, Akihito; Haraoka, Yoshishige; Kaneko, Masanobu; Ochiai, Hiroyuki; Sasaki, Takeshi; Yoshida, Masaaki Addendum to: “A study of a Fuchsian system of rank 8 in 3 variables and the ordinary differential equations as its restrictions”. (English) Zbl 07684558 Osaka J. Math. 60, No. 2, 491-492 (2023). MSC: 33C05 33C20 34M03 PDF BibTeX XML Cite \textit{A. Ebisu} et al., Osaka J. Math. 60, No. 2, 491--492 (2023; Zbl 07684558) Full Text: Link
Saadi, Faouaz; Daher, Radouan Absolutely convergent Fourier-Jacobi series and generalized Lipschitz classes. (English) Zbl 07683291 Integral Transforms Spec. Funct. 34, No. 4, 334-345 (2023). MSC: 43A30 33D60 42C10 PDF BibTeX XML Cite \textit{F. Saadi} and \textit{R. Daher}, Integral Transforms Spec. Funct. 34, No. 4, 334--345 (2023; Zbl 07683291) Full Text: DOI
Faghih, Amin; Rebelo, Magda A spectral approach to non-linear weakly singular fractional integro-differential equations. (English) Zbl 1509.45002 Fract. Calc. Appl. Anal. 26, No. 1, 370-398 (2023). MSC: 45E10 45J05 34K37 33C45 26A33 PDF BibTeX XML Cite \textit{A. Faghih} and \textit{M. Rebelo}, Fract. Calc. Appl. Anal. 26, No. 1, 370--398 (2023; Zbl 1509.45002) Full Text: DOI arXiv
Lima, Hélder Multiple orthogonal polynomials associated with branched continued fractions for ratios of hypergeometric series. (English) Zbl 07680274 Adv. Appl. Math. 147, Article ID 102505, 63 p. (2023). Reviewer: Marcel G. de Bruin (Heemstede) MSC: 11J70 33C45 42C05 05A10 15B99 30B70 30E05 33C20 PDF BibTeX XML Cite \textit{H. Lima}, Adv. Appl. Math. 147, Article ID 102505, 63 p. (2023; Zbl 07680274) Full Text: DOI arXiv
Wang, Chen; Sun, Zhi-Wei A parametric congruence motivated by Orr’s identity. (English) Zbl 1516.11010 J. Difference Equ. Appl. 29, No. 2, 198-207 (2023). MSC: 11A07 11B65 05A10 33C20 PDF BibTeX XML Cite \textit{C. Wang} and \textit{Z.-W. Sun}, J. Difference Equ. Appl. 29, No. 2, 198--207 (2023; Zbl 1516.11010) Full Text: DOI arXiv
Vieira, Nelson Bicomplex neural networks with hypergeometric activation functions. (English) Zbl 07677704 Adv. Appl. Clifford Algebr. 33, No. 2, Paper No. 20, 14 p. (2023). MSC: 68T07 68Q32 30G35 33C90 33C10 PDF BibTeX XML Cite \textit{N. Vieira}, Adv. Appl. Clifford Algebr. 33, No. 2, Paper No. 20, 14 p. (2023; Zbl 07677704) Full Text: DOI
Brisebarre, Nicolas; Salvy, Bruno Differential-difference properties of hypergeometric series. (English) Zbl 07676315 Proc. Am. Math. Soc. 151, No. 6, 2603-2617 (2023). MSC: 33C20 33C45 PDF BibTeX XML Cite \textit{N. Brisebarre} and \textit{B. Salvy}, Proc. Am. Math. Soc. 151, No. 6, 2603--2617 (2023; Zbl 07676315) Full Text: DOI arXiv
Ivanov, V. I. Riesz transform for the one-dimensional \((k,1)\)-generalized Fourier transform. (English. Russian original) Zbl 07676226 Math. Notes 113, No. 3, 356-367 (2023); translation from Mat. Zametki 113, No. 3, 360-373 (2023). MSC: 33Cxx 44Axx 43-XX PDF BibTeX XML Cite \textit{V. I. Ivanov}, Math. Notes 113, No. 3, 356--367 (2023; Zbl 07676226); translation from Mat. Zametki 113, No. 3, 360--373 (2023) Full Text: DOI
He, Zai-Yin; Jiang, Yue-Ping; Wang, Miao-Kun Sharp approximations for the generalized elliptic integral of the first kind. (English) Zbl 1512.33017 Math. Slovaca 73, No. 2, 425-438 (2023). Reviewer: Klaus Schiefermayr (Wels) MSC: 33E05 26D07 PDF BibTeX XML Cite \textit{Z.-Y. He} et al., Math. Slovaca 73, No. 2, 425--438 (2023; Zbl 1512.33017) Full Text: DOI
Nath, Debraj; Carbó-Dorca, Ramon Quantum similarity index and Rényi complexity ratio of Kratzer type potential and compared with that of inverse square and Coulomb type potentials. (English) Zbl 07673458 J. Math. Chem. 61, No. 3, 435-454 (2023). MSC: 81P18 78A25 33C45 33C10 94A17 14Q20 PDF BibTeX XML Cite \textit{D. Nath} and \textit{R. Carbó-Dorca}, J. Math. Chem. 61, No. 3, 435--454 (2023; Zbl 07673458) Full Text: DOI
Aoki, Takashi; Uchida, Shofu Degeneration structure of the Voros coefficients of the generalized hypergeometric differential equations with a large parameter. (English) Zbl 07672793 Filipuk, Galina (ed.) et al., Recent trends in formal and analytic solutions of diff. equations. Virtual conference, University of Alcalá, Alcalá de Henares, Spain, June 28 – July 2, 2021. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 782, 43-56 (2023). Reviewer: Yoshitsugu Takei (Kyoto) MSC: 34M40 34M60 33C05 PDF BibTeX XML Cite \textit{T. Aoki} and \textit{S. Uchida}, Contemp. Math. 782, 43--56 (2023; Zbl 07672793) Full Text: DOI
Agapov, Sergei; Potashnikov, Alexey; Shubin, Vladislav Integrable magnetic geodesic flows on 2-surfaces. (English) Zbl 1514.37073 Nonlinearity 36, No. 4, 2128-2147 (2023). Reviewer: William J. Satzer Jr. (St. Paul) MSC: 37J35 37J39 37E35 37K10 53D25 35C05 70H06 33C05 PDF BibTeX XML Cite \textit{S. Agapov} et al., Nonlinearity 36, No. 4, 2128--2147 (2023; Zbl 1514.37073) Full Text: DOI arXiv
Parmar, Rakesh Kumar; Saravanan, S. Extended generalized Voigt-type functions and related bounds. (English) Zbl 07672204 J. Class. Anal. 21, No. 1, 45-56 (2023). MSC: 26A51 26D05 26D15 33C20 33C65 33E05 33E20 44A20 PDF BibTeX XML Cite \textit{R. K. Parmar} and \textit{S. Saravanan}, J. Class. Anal. 21, No. 1, 45--56 (2023; Zbl 07672204) Full Text: DOI
Voit, Michael Positivity of Gibbs states on distance-regular graphs. (English) Zbl 1511.05067 Infin. Dimens. Anal. Quantum Probab. Relat. Top. 26, No. 1, Article ID 2250026, 23 p. (2023). MSC: 05C12 33C45 43A62 81R12 20N20 43A90 PDF BibTeX XML Cite \textit{M. Voit}, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 26, No. 1, Article ID 2250026, 23 p. (2023; Zbl 1511.05067) Full Text: DOI arXiv
Quan, Junjie; Xu, Ce; Zhang, Xixi Some evaluations of parametric Euler type sums of harmonic numbers. (English) Zbl 1516.11036 Integral Transforms Spec. Funct. 34, No. 2, 162-179 (2023). Reviewer: Sándor Kiss (Budapest) MSC: 11B83 05A10 05A19 11B65 11M06 33D60 33C20 PDF BibTeX XML Cite \textit{J. Quan} et al., Integral Transforms Spec. Funct. 34, No. 2, 162--179 (2023; Zbl 1516.11036) Full Text: DOI arXiv
Abbas, Hafida; Azzouz, Abdelhalim; Zahaf, Mohammed Brahim; Belmekki, Mohammed Generalized extended Riemann-Liouville type fractional derivative operator. (English) Zbl 07661762 Kragujevac J. Math. 47, No. 1, 57-80 (2023). MSC: 26A33 33B15 33B20 33C20 33C65 PDF BibTeX XML Cite \textit{H. Abbas} et al., Kragujevac J. Math. 47, No. 1, 57--80 (2023; Zbl 07661762) Full Text: DOI
Chu, Wenchang; Campbell, John M. Expansions over Legendre polynomials and infinite double series identities. (English) Zbl 07659055 Ramanujan J. 60, No. 2, 317-353 (2023). MSC: 33C45 42C10 11B65 33C20 65B10 PDF BibTeX XML Cite \textit{W. Chu} and \textit{J. M. Campbell}, Ramanujan J. 60, No. 2, 317--353 (2023; Zbl 07659055) Full Text: DOI
Ebisu, Akihito; Haraoka, Yoshishige; Kaneko, Masanobu; Ochiai, Hiroyuki; Sasaki, Takeshi; Yoshida, Masaaki A study of a Fuchsian system of rank 8 in 3 variables and the ordinary differential equations as its restrictions. (English) Zbl 07653602 Osaka J. Math. 60, No. 1, 153-206 (2023). MSC: 33C05 33C20 34M03 PDF BibTeX XML Cite \textit{A. Ebisu} et al., Osaka J. Math. 60, No. 1, 153--206 (2023; Zbl 07653602) Full Text: arXiv Link
Srivastava, H. M.; Şeker, Bilal; Eker, Sevtap Sümer; Çekiç, Bilal A class of Poisson distributions based upon a two-parameter Mittag-Leffler type function. (English) Zbl 1507.60033 J. Nonlinear Convex Anal. 24, No. 2, 475-485 (2023). MSC: 60E05 30C80 33C80 33C20 33E12 PDF BibTeX XML Cite \textit{H. M. Srivastava} et al., J. Nonlinear Convex Anal. 24, No. 2, 475--485 (2023; Zbl 1507.60033) Full Text: Link
Tyr, Othman; Saadi, Faouaz; Daher, Radouan On the generalized Hilbert transform and weighted Hardy spaces in \(q\)-Dunkl harmonic analysis. (English) Zbl 07643075 Ramanujan J. 60, No. 1, 95-122 (2023). MSC: 33D15 46A30 47G10 47B38 PDF BibTeX XML Cite \textit{O. Tyr} et al., Ramanujan J. 60, No. 1, 95--122 (2023; Zbl 07643075) Full Text: DOI
Ferreira, Rui A. C.; Simon, Thomas Convolution of beta prime distribution. (English) Zbl 1505.60021 Trans. Am. Math. Soc. 376, No. 2, 855-890 (2023). MSC: 60E05 26A48 33C15 33C20 33C45 33C65 60E07 60E15 62E15 PDF BibTeX XML Cite \textit{R. A. C. Ferreira} and \textit{T. Simon}, Trans. Am. Math. Soc. 376, No. 2, 855--890 (2023; Zbl 1505.60021) Full Text: DOI arXiv
Kouba, Omran A Chaundy-Bullard type identity involving the Pochhammer symbol. (English) Zbl 1505.05021 Indag. Math., New Ser. 34, No. 1, 186-189 (2023). MSC: 05A19 33C05 33B15 PDF BibTeX XML Cite \textit{O. Kouba}, Indag. Math., New Ser. 34, No. 1, 186--189 (2023; Zbl 1505.05021) Full Text: DOI
Karp, D. B.; Prilepkina, E. G. On Meijer’s \(G\) function \(G^{m,n}_{p,p}\) for \(m + n = p\). (English) Zbl 07632516 Integral Transforms Spec. Funct. 34, No. 1, 88-104 (2023). MSC: 33C60 33C20 PDF BibTeX XML Cite \textit{D. B. Karp} and \textit{E. G. Prilepkina}, Integral Transforms Spec. Funct. 34, No. 1, 88--104 (2023; Zbl 07632516) Full Text: DOI arXiv
Wei, Chuanan A \(q\)-supercongruence from a \(q\)-analogue of Whipple’s \({}_3F_2\) summation formula. (English) Zbl 1506.11007 J. Comb. Theory, Ser. A 194, Article ID 105705, 14 p. (2023). Reviewer: Enzo Bonacci (Latina) MSC: 11A07 05A30 33C20 11B65 11C08 33D15 PDF BibTeX XML Cite \textit{C. Wei}, J. Comb. Theory, Ser. A 194, Article ID 105705, 14 p. (2023; Zbl 1506.11007) Full Text: DOI
Cuchta, Tom; Grow, David; Wintz, Nick Discrete matrix hypergeometric functions. (English) Zbl 07610080 J. Math. Anal. Appl. 518, No. 2, Article ID 126716, 14 p. (2023). MSC: 33C20 15A16 PDF BibTeX XML Cite \textit{T. Cuchta} et al., J. Math. Anal. Appl. 518, No. 2, Article ID 126716, 14 p. (2023; Zbl 07610080) Full Text: DOI
Chou, Tom; Shao, Sihong; Xia, Mingtao Adaptive Hermite spectral methods in unbounded domains. (English) Zbl 1500.65083 Appl. Numer. Math. 183, 201-220 (2023). MSC: 65M70 65M50 65D32 65M15 41A58 33C45 35P05 PDF BibTeX XML Cite \textit{T. Chou} et al., Appl. Numer. Math. 183, 201--220 (2023; Zbl 1500.65083) Full Text: DOI arXiv
Ortner, Norbert; Wagner, Peter The distributional solutions of Kummer’s differential equation. (English) Zbl 07590524 J. Math. Anal. Appl. 517, No. 1, Article ID 126587, 17 p. (2023). Reviewer: John Schmeelk (Henrico) MSC: 46F10 33C15 34B30 PDF BibTeX XML Cite \textit{N. Ortner} and \textit{P. Wagner}, J. Math. Anal. Appl. 517, No. 1, Article ID 126587, 17 p. (2023; Zbl 07590524) Full Text: DOI
Rathie, Arjun K.; Milovanović, Gradimir V.; Paris, Richard B. Hypergeometric representations of Gelfond’s constant and its generalisations. (English) Zbl 07735890 Mat. Vesn. 74, No. 1, 71-77 (2022). MSC: 11Y60 33B10 33C05 33C20 PDF BibTeX XML Cite \textit{A. K. Rathie} et al., Mat. Vesn. 74, No. 1, 71--77 (2022; Zbl 07735890) Full Text: Link
Nagar, Harish; Mishra, Shristi Composition of pathway fractional integral operator on product of special functions. (English) Zbl 07710123 J. Ramanujan Soc. Math. Math. Sci. 10, No. 1, 39-46 (2022). MSC: 33C65 33C20 PDF BibTeX XML Cite \textit{H. Nagar} and \textit{S. Mishra}, J. Ramanujan Soc. Math. Math. Sci. 10, No. 1, 39--46 (2022; Zbl 07710123) Full Text: DOI Link
Gupta, Mamta; Modi, Kanak; Jha, Naveen; Sharma, Mukesh Certain generalized fractional calculus formulas and integral transforms of \((p, q)\)-extended \(\tau \)-hypergeometric function. (English) Zbl 07709868 South East Asian J. Math. Math. Sci. 18, No. 3, 87-100 (2022). MSC: 44A20 33B20 33C20 33B15 33C05 26A33 PDF BibTeX XML Cite \textit{M. Gupta} et al., South East Asian J. Math. Math. Sci. 18, No. 3, 87--100 (2022; Zbl 07709868) Full Text: Link
Mohammad, Chaudhary Wali; Ara, Jahan On some new generating functions of hypergeometric polynomials. (English) Zbl 07709867 South East Asian J. Math. Math. Sci. 18, No. 3, 67-86 (2022). MSC: 33C05 33C20 33C45 33C65 33C70 PDF BibTeX XML Cite \textit{C. W. Mohammad} and \textit{J. Ara}, South East Asian J. Math. Math. Sci. 18, No. 3, 67--86 (2022; Zbl 07709867) Full Text: Link
Chauhan, Bharti; Rai, Prakriti Extended generalized \(\tau \)-Gauss’ hypergeometric functions and their applications. (English) Zbl 07709866 South East Asian J. Math. Math. Sci. 18, No. 3, 55-66 (2022). MSC: 33B15 33B20 33C20 33D05 PDF BibTeX XML Cite \textit{B. Chauhan} and \textit{P. Rai}, South East Asian J. Math. Math. Sci. 18, No. 3, 55--66 (2022; Zbl 07709866) Full Text: Link
Quresh, M. I.; Akhtar, Naved; Husain, Iftikhar; Ara, Jahan Closed form expressions for curved surface area of revolution of hyperbolas: a hypergeometric function approach. (English) Zbl 07682088 Math. Appl., Brno 11, No. 2, 169-180 (2022). MSC: 33C05 33C20 33C70 33C75 PDF BibTeX XML Cite \textit{M. I. Quresh} et al., Math. Appl., Brno 11, No. 2, 169--180 (2022; Zbl 07682088) Full Text: DOI
Fischler, Stéphane; Rivoal, Tanguy On Siegel’s problem for \(E\)-functions. (English) Zbl 1512.33011 Rend. Semin. Mat. Univ. Padova 148, 83-115 (2022). Reviewer: Roberto S. Costas-Santos (Sevilla) MSC: 33C20 11J91 41A60 PDF BibTeX XML Cite \textit{S. Fischler} and \textit{T. Rivoal}, Rend. Semin. Mat. Univ. Padova 148, 83--115 (2022; Zbl 1512.33011) Full Text: DOI arXiv
Younis, J. A.; Jain, S.; Kim, T.; Agarwal, P. 19 Further hypergeometric functions in four variables and their associated properties. (English) Zbl 07673567 Adv. Stud. Contemp. Math., Kyungshang 32, No. 3, 403-422 (2022). MSC: 33C20 33C65 PDF BibTeX XML Cite \textit{J. A. Younis} et al., Adv. Stud. Contemp. Math., Kyungshang 32, No. 3, 403--422 (2022; Zbl 07673567) Full Text: DOI
Chauhan, Bharti; Rai, Prakriti; Chaturvedi, Aparna Properties and further generalization on the extension of \(\tau\)-Gauss hypergeometric function. (English) Zbl 07673544 Proc. Jangjeon Math. Soc. 25, No. 4, 407-414 (2022). MSC: 33B15 33C15 33C20 33D05 PDF BibTeX XML Cite \textit{B. Chauhan} et al., Proc. Jangjeon Math. Soc. 25, No. 4, 407--414 (2022; Zbl 07673544) Full Text: DOI
Dominici, Diego Recurrence relations for the moments of discrete semiclassical orthogonal polynomials. (English) Zbl 07672355 J. Class. Anal. 20, No. 2, 143-180 (2022). MSC: 33C47 33C20 11B37 PDF BibTeX XML Cite \textit{D. Dominici}, J. Class. Anal. 20, No. 2, 143--180 (2022; Zbl 07672355) Full Text: DOI
Park, Kanam A certain generalization of \(q\)-hypergeometric functions and their related connection preserving deformation. II. (English) Zbl 07662509 Funkc. Ekvacioj, Ser. Int. 65, No. 3, 311-328 (2022). MSC: 33D60 33D70 33E17 39A13 PDF BibTeX XML Cite \textit{K. Park}, Funkc. Ekvacioj, Ser. Int. 65, No. 3, 311--328 (2022; Zbl 07662509) Full Text: DOI arXiv
Bao, Qi; Wang, Miao-Kun; Qiu, Song-Liang Monotonicity properties of Gaussian hypergeometric functions with respect to the parameter. (English) Zbl 07662232 Math. Inequal. Appl. 25, No. 4, 1021-1045 (2022). MSC: 33E05 33C75 PDF BibTeX XML Cite \textit{Q. Bao} et al., Math. Inequal. Appl. 25, No. 4, 1021--1045 (2022; Zbl 07662232) Full Text: DOI arXiv
Habbachi, Y.; Bouras, B.; Zdiri, S. A new characterization and a Rodrigues formula for generalized Hermite orthogonal polynomials. (English) Zbl 07661098 Matematiche 77, No. 2, 373-387 (2022). MSC: 33C45 42C05 PDF BibTeX XML Cite \textit{Y. Habbachi} et al., Matematiche 77, No. 2, 373--387 (2022; Zbl 07661098) Full Text: DOI
Kedlaya, Kiran S. Frobenius structures on hypergeometric equations. (English) Zbl 1509.33017 Anni, Samuele (ed.) et al., Arithmetic, geometry, cryptography, and coding theory, AGC2T. 18th international conference, Centre International de Rencontres Mathématiques, Marseille, France, May 31 – June 4, 2021. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 779, 133-158 (2022). MSC: 33C80 12H25 33C20 PDF BibTeX XML Cite \textit{K. S. Kedlaya}, Contemp. Math. 779, 133--158 (2022; Zbl 1509.33017) Full Text: DOI arXiv
Ali, Musharraf; Ghayasuddin, Mohd; Paris, R. B. Generalized beta-type integrals. (English) Zbl 07659988 Indian J. Math. 64, No. 1, 133-145 (2022). MSC: 33B15 33C20 33C65 33E12 PDF BibTeX XML Cite \textit{M. Ali} et al., Indian J. Math. 64, No. 1, 133--145 (2022; Zbl 07659988) Full Text: arXiv
Chopra, Purnima; Gupta, Mamta; Modi, Kanak Certain image formulas of \((p,\nu)\)-extended Gauss’ hypergeometric function and related Jacobi transforms. (English) Zbl 07639927 Commun. Korean Math. Soc. 37, No. 4, 1055-1072 (2022). MSC: 33-XX 26A33 33B20 33C20 26A09 33B15 33C05 PDF BibTeX XML Cite \textit{P. Chopra} et al., Commun. Korean Math. Soc. 37, No. 4, 1055--1072 (2022; Zbl 07639927) Full Text: DOI
Mainardi, Francesco; Paris, Richard B.; Consiglio, Armando Wright functions of the second kind and Whittaker functions. (English) Zbl 1503.33006 Fract. Calc. Appl. Anal. 25, No. 3, 858-875 (2022). MSC: 33C15 33C20 26A33 PDF BibTeX XML Cite \textit{F. Mainardi} et al., Fract. Calc. Appl. Anal. 25, No. 3, 858--875 (2022; Zbl 1503.33006) Full Text: DOI arXiv
Vyas, Yashoverdhan; Fatawat, Kalpana Summations and transformations for very well-poised hypergeometric functions \(_{2q+5}F_{2q+4}(1)\) and \(_{2q+7}F_{2q+6}(1)\) with arbitrary integral parameter differences. (English) Zbl 1513.33024 Miskolc Math. Notes 23, No. 2, 957-973 (2022). MSC: 33C20 33C65 33C90 PDF BibTeX XML Cite \textit{Y. Vyas} and \textit{K. Fatawat}, Miskolc Math. Notes 23, No. 2, 957--973 (2022; Zbl 1513.33024) Full Text: DOI
Wang, Xiaoyuan; Chu, Wenchang Series with harmonic-like numbers and squared binomial coefficients. (English) Zbl 1510.11072 Rocky Mt. J. Math. 52, No. 5, 1849-1866 (2022). MSC: 11B65 05A19 05A10 33C20 65B10 33C75 PDF BibTeX XML Cite \textit{X. Wang} and \textit{W. Chu}, Rocky Mt. J. Math. 52, No. 5, 1849--1866 (2022; Zbl 1510.11072) Full Text: DOI Link
Motohashi, Hayato Differentiation identities for hypergeometric functions. (English) Zbl 07629328 Expo. Math. 40, No. 4, 894-909 (2022). MSC: 33-XX 33Cxx PDF BibTeX XML Cite \textit{H. Motohashi}, Expo. Math. 40, No. 4, 894--909 (2022; Zbl 07629328) Full Text: DOI arXiv
Dembélé, Lassina; Panchishkin, Alexei; Voight, John; Zudilin, Wadim Special hypergeometric motives and their \(L\)-functions: Asai recognition. (English) Zbl 1511.11047 Exp. Math. 31, No. 4, 1278-1290 (2022). Reviewer: Sami Omar (Sukhair) MSC: 11F66 11F41 33C20 33F10 PDF BibTeX XML Cite \textit{L. Dembélé} et al., Exp. Math. 31, No. 4, 1278--1290 (2022; Zbl 1511.11047) Full Text: DOI arXiv
Nadeem, Raghib; Saif, Mohd.; Khan, Nabiullah Fractional integral and derivative formulae for multi-index wright generalized Bessel function. (English) Zbl 1513.33020 Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 253, 10 p. (2022). MSC: 33C20 33B15 PDF BibTeX XML Cite \textit{R. Nadeem} et al., Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 253, 10 p. (2022; Zbl 1513.33020) Full Text: DOI
Bao, Qi; Ren, Xue-Jing; Wang, Miao-Kun A monotonicity theorem for the generalized elliptic integral of the first kind. (English) Zbl 1513.33047 Appl. Anal. Discrete Math. 16, No. 2, 365-378 (2022). MSC: 33E05 33C75 PDF BibTeX XML Cite \textit{Q. Bao} et al., Appl. Anal. Discrete Math. 16, No. 2, 365--378 (2022; Zbl 1513.33047) Full Text: DOI
Teng, Wentao Hardy inequalities for fractional \((k,a)\)-generalized harmonic oscillators. (English) Zbl 07624545 J. Lie Theory 32, No. 4, 1007-1023 (2022). MSC: 22E46 33C45 33C55 43A32 26A33 47D03 PDF BibTeX XML Cite \textit{W. Teng}, J. Lie Theory 32, No. 4, 1007--1023 (2022; Zbl 07624545) Full Text: arXiv Link
Kumabe, Satoshi Dwork hypersurfaces of degree six and Greene’s hypergeometric function. (English) Zbl 1517.11148 Hiroshima Math. J. 52, No. 3, 287-310 (2022). MSC: 11T24 11G25 14G05 33C20 14G15 PDF BibTeX XML Cite \textit{S. Kumabe}, Hiroshima Math. J. 52, No. 3, 287--310 (2022; Zbl 1517.11148) Full Text: DOI arXiv
Srivatsa Kumar, B. R.; Kim, Insuk; Rathie, Arjun K. Several new closed-form evaluations of the generalized hypergeometric function with argument \(\frac{1}{16}\). (English) Zbl 1513.33023 Aust. J. Math. Anal. Appl. 19, No. 1, Article No. 7, 13 p. (2022). MSC: 33C20 05A15 11B68 33C05 33C15 PDF BibTeX XML Cite \textit{B. R. Srivatsa Kumar} et al., Aust. J. Math. Anal. Appl. 19, No. 1, Article No. 7, 13 p. (2022; Zbl 1513.33023) Full Text: Link
Tripathi, Mohit; Meher, Jaban \(_4F_3\)-Gaussian hypergeometric series and traces of Frobenius for elliptic curves. (English) Zbl 1506.11150 Res. Math. Sci. 9, No. 4, Paper No. 63, 24 p. (2022). MSC: 11T24 33C05 33C20 11F30 PDF BibTeX XML Cite \textit{M. Tripathi} and \textit{J. Meher}, Res. Math. Sci. 9, No. 4, Paper No. 63, 24 p. (2022; Zbl 1506.11150) Full Text: DOI
Saadi, Faouaz; Daher, Radouan Fourier-Bessel series of Lipschitz functions in weighted spaces \(L_p([0, 1], t^{2\alpha +1}dt)\). (English) Zbl 1502.42021 Anal. Math. Phys. 12, No. 6, Paper No. 137, 13 p. (2022). MSC: 42C10 42B35 33D15 PDF BibTeX XML Cite \textit{F. Saadi} and \textit{R. Daher}, Anal. Math. Phys. 12, No. 6, Paper No. 137, 13 p. (2022; Zbl 1502.42021) Full Text: DOI
Malik, Shakir Hussain; Qureshi, Mohammad Idris Certain cubic reduction formulas involving hypergeometric functions. (English) Zbl 07610266 Gulf J. Math. 13, No. 2, 94-105 (2022). MSC: 33C05 33C20 33C70 PDF BibTeX XML Cite \textit{S. H. Malik} and \textit{M. I. Qureshi}, Gulf J. Math. 13, No. 2, 94--105 (2022; Zbl 07610266) Full Text: DOI
Abel, Ulrich; Agratini, Octavian Simultaneous approximation by Gauss-Weierstrass-Wachnicki operators. (English) Zbl 07609423 Mediterr. J. Math. 19, No. 6, Paper No. 267, 12 p. (2022). MSC: 41A36 41A60 26A24 PDF BibTeX XML Cite \textit{U. Abel} and \textit{O. Agratini}, Mediterr. J. Math. 19, No. 6, Paper No. 267, 12 p. (2022; Zbl 07609423) Full Text: DOI
Gupta, Mamta; Modi, Kanak; Solanki, N. S.; Ali, Shoukat Fractional integration and differentiation of the \((p, q)\)-extended \(\tau\)-hypergeometric function and related Jacobi transforms. (English) Zbl 07608569 J. Anal. 30, No. 4, 1817-1833 (2022). MSC: 33B20 33C20 33B15 33C05 44A20 PDF BibTeX XML Cite \textit{M. Gupta} et al., J. Anal. 30, No. 4, 1817--1833 (2022; Zbl 07608569) Full Text: DOI
Miclo, Laurent; Patie, Pierre; Sarkar, Rohan Discrete self-similar and ergodic Markov chains. (English) Zbl 07608247 Ann. Probab. 50, No. 6, 2085-2132 (2022). MSC: 60J27 41A60 47G20 33C45 47D07 37A30 60J60 PDF BibTeX XML Cite \textit{L. Miclo} et al., Ann. Probab. 50, No. 6, 2085--2132 (2022; Zbl 07608247) Full Text: DOI arXiv
Fuselier, Jenny; Long, Ling; Ramakrishna, Ravi Kumar; Swisher, Holly; Tu, Fang-Ting Hypergeometric functions over finite fields. (English) Zbl 1510.11164 Memoirs of the American Mathematical Society 1382. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-5433-3/pbk; 978-1-4704-7282-5/ebook). vii, 124 p. (2022). Reviewer: Lalit Mohan Upadhyaya (Dehradun) MSC: 11T23 33E50 11-02 11T24 33C05 33C20 11F80 11S40 PDF BibTeX XML Cite \textit{J. Fuselier} et al., Hypergeometric functions over finite fields. Providence, RI: American Mathematical Society (AMS) (2022; Zbl 1510.11164) Full Text: DOI arXiv
Vinet, Luc; Zhedanov, Alexei Free boson realization of the Dunkl intertwining operator in one dimension. (English) Zbl 1513.81074 Rev. Math. Phys. 34, No. 8, Article ID 2250025, 12 p. (2022). MSC: 81Q80 33C45 PDF BibTeX XML Cite \textit{L. Vinet} and \textit{A. Zhedanov}, Rev. Math. Phys. 34, No. 8, Article ID 2250025, 12 p. (2022; Zbl 1513.81074) Full Text: DOI arXiv
Milla, Lorenz Asymptotic expansions for the truncation error in Ramanujan-type series. (English) Zbl 07603208 Ramanujan J. 59, No. 3, 729-744 (2022). MSC: 33F10 26D15 33B15 33C20 PDF BibTeX XML Cite \textit{L. Milla}, Ramanujan J. 59, No. 3, 729--744 (2022; Zbl 07603208) Full Text: DOI arXiv
Shehata, Ayman; Moustafa, Shimaa I. Some new formulas for Horn’s hypergeometric functions \(\mathbf{H}_1, \mathbf{H}_2, \mathbf{H}_3, \mathbf{H}_4, \mathbf{H}_5, \mathbf{H}_6\) and \(\mathbf{H}_7\). (English) Zbl 07602891 Thai J. Math. 20, No. 2, 1011-1030 (2022). MSC: 33C05 33C20 33C15 11J72 PDF BibTeX XML Cite \textit{A. Shehata} and \textit{S. I. Moustafa}, Thai J. Math. 20, No. 2, 1011--1030 (2022; Zbl 07602891) Full Text: Link
Cai, Chuan-Yu; Chen, Lu; Huang, Ti-Ren; Chu, Yuming New properties for the Ramanujan \(R\)-function. (English) Zbl 1515.33003 Open Math. 20, 724-742 (2022). MSC: 33C05 33B15 26A51 26D20 PDF BibTeX XML Cite \textit{C.-Y. Cai} et al., Open Math. 20, 724--742 (2022; Zbl 1515.33003) Full Text: DOI
Singh, Chandan Kumar; Singh, Satya Prakash; Yadav, Vijay On certain identities involving basic \((q)\) hypergeometric series. (English) Zbl 1513.33022 South East Asian J. Math. Math. Sci. 18, No. 2, 53-64 (2022). MSC: 33C20 33C15 33D15 PDF BibTeX XML Cite \textit{C. K. Singh} et al., South East Asian J. Math. Math. Sci. 18, No. 2, 53--64 (2022; Zbl 1513.33022) Full Text: Link