Bolsinov, Alexey V.; Konyaev, Andrey Yu; Matveev, Vladimir S. Applications of Nijenhuis geometry. II: Maximal pencils of multi-Hamiltonian structures of hydrodynamic type. (English) Zbl 1475.37075 Nonlinearity 34, No. 8, 5136-5162 (2021). Reviewer: Ivan C. Sterling (St. Mary’s City) MSC: 37K25 37K06 37K10 53D17 PDF BibTeX XML Cite \textit{A. V. Bolsinov} et al., Nonlinearity 34, No. 8, 5136--5162 (2021; Zbl 1475.37075) Full Text: DOI arXiv OpenURL
Matveev, Vladimir Sergeevich Quantum integrability for the Beltrami-Laplace operators of projectively equivalent metrics of arbitrary signatures. (English) Zbl 1459.53049 Chebyshevskiĭ Sb. 21, No. 2(74), 275-289 (2020). MSC: 53C22 53C21 53B10 PDF BibTeX XML Cite \textit{V. S. Matveev}, Chebyshevskiĭ Sb. 21, No. 2(74), 275--289 (2020; Zbl 1459.53049) Full Text: DOI arXiv MNR OpenURL
Matveev, Vladimir S. Projectively invariant objects and the index of the group of affine transformations in the group of projective transformations. (English) Zbl 1426.53024 Bull. Iran. Math. Soc. 44, No. 2, 341-375 (2018). MSC: 53B10 35N10 53B20 53C24 37J35 PDF BibTeX XML Cite \textit{V. S. Matveev}, Bull. Iran. Math. Soc. 44, No. 2, 341--375 (2018; Zbl 1426.53024) Full Text: DOI arXiv OpenURL
Šukilović, Tijana Geometric properties of neutral signature metrics on 4-dimensional nilpotent Lie groups. (English) Zbl 1343.53047 Rev. Unión Mat. Argent. 57, No. 1, 23-47 (2016). MSC: 53C30 53B10 53B30 53C22 22E25 PDF BibTeX XML Cite \textit{T. Šukilović}, Rev. Unión Mat. Argent. 57, No. 1, 23--47 (2016; Zbl 1343.53047) Full Text: Link OpenURL
Bokan, N.; Šukilović, T.; Vukmirović, S. Lorentz geometry of 4-dimensional nilpotent Lie groups. (English) Zbl 1326.53065 Geom. Dedicata 177, 83-102 (2015). Reviewer: Uday Chand De (Kolkata) MSC: 53C30 53B15 53B30 53C22 22E25 PDF BibTeX XML Cite \textit{N. Bokan} et al., Geom. Dedicata 177, 83--102 (2015; Zbl 1326.53065) Full Text: DOI OpenURL
Kiosak, Volodymyr; Matveev, Vladimir S. There exist no 4-dimensional geodesically equivalent metrics with the same stress-energy tensor. (English) Zbl 1284.53069 J. Geom. Phys. 78, 1-11 (2014). MSC: 53C50 83C05 PDF BibTeX XML Cite \textit{V. Kiosak} and \textit{V. S. Matveev}, J. Geom. Phys. 78, 1--11 (2014; Zbl 1284.53069) Full Text: DOI arXiv OpenURL
Matveev, Vladimir S. Pseudo-Riemannian metrics on closed surfaces whose geodesic flows admit nontrivial integrals quadratic in momenta, and proof of the projective Obata conjecture for two-dimensional pseudo-Riemannian metrics. (English) Zbl 1251.37058 J. Math. Soc. Japan 64, No. 1, 107-152 (2012). Reviewer: Willard Miller jun. (Minneapolis) MSC: 37J35 53B30 53A45 53B20 53B50 53C22 53D25 58B20 70E40 70H06 PDF BibTeX XML Cite \textit{V. S. Matveev}, J. Math. Soc. Japan 64, No. 1, 107--152 (2012; Zbl 1251.37058) Full Text: DOI arXiv OpenURL
Matveev, Vladimir S. Geodesically equivalent metrics in general relativity. (English) Zbl 1248.83018 J. Geom. Phys. 62, No. 3, 675-691 (2012). Reviewer: Helmut Rumpf (Wien) MSC: 83C20 53B20 PDF BibTeX XML Cite \textit{V. S. Matveev}, J. Geom. Phys. 62, No. 3, 675--691 (2012; Zbl 1248.83018) Full Text: DOI arXiv OpenURL
Kiosak, V. A.; Matveev, V. S.; Mikeš, J.; Shandra, I. G. On the degree of geodesic mobility for Riemannian metrics. (English. Russian original) Zbl 1200.53044 Math. Notes 87, No. 4, 586-587 (2010); translation from Mat. Zametki 87, No. 4, 628-629 (2010). Reviewer: Radu Miron (Iaşi) MSC: 53C22 53B20 PDF BibTeX XML Cite \textit{V. A. Kiosak} et al., Math. Notes 87, No. 4, 586--587 (2010; Zbl 1200.53044); translation from Mat. Zametki 87, No. 4, 628--629 (2010) Full Text: DOI OpenURL
Kiosak, Volodymyr; Matveev, Vladimir S. Proof of the projective Lichnerowicz conjecture for pseudo-Riemannian metrics with degree of mobility greater than two. (English) Zbl 1197.53055 Commun. Math. Phys. 297, No. 2, 401-426 (2010). MSC: 53C22 53C50 53B30 PDF BibTeX XML Cite \textit{V. Kiosak} and \textit{V. S. Matveev}, Commun. Math. Phys. 297, No. 2, 401--426 (2010; Zbl 1197.53055) Full Text: DOI arXiv OpenURL
Bolsinov, Alexey V.; Kiosak, Volodymyr; Matveev, Vladimir S. A Fubini theorem for pseudo-Riemannian geodesically equivalent metrics. (English) Zbl 1175.53022 J. Lond. Math. Soc., II. Ser. 80, No. 2, 341-356 (2009). MSC: 53B10 53B21 53C22 53C50 53D25 70G45 70H06 70H33 58J60 PDF BibTeX XML Cite \textit{A. V. Bolsinov} et al., J. Lond. Math. Soc., II. Ser. 80, No. 2, 341--356 (2009; Zbl 1175.53022) Full Text: DOI arXiv Link OpenURL
Bolsinov, Alexey V.; Matveev, Vladimir S.; Pucacco, Giuseppe Normal forms for pseudo-Riemannian 2-dimensional metrics whose geodesic flows admit integrals quadratic in momenta. (English) Zbl 1169.53054 J. Geom. Phys. 59, No. 7, 1048-1062 (2009). MSC: 53C50 53C25 PDF BibTeX XML Cite \textit{A. V. Bolsinov} et al., J. Geom. Phys. 59, No. 7, 1048--1062 (2009; Zbl 1169.53054) Full Text: DOI arXiv OpenURL
Kiosak, Volodymyr; Matveev, Vladimir S. Complete Einstein metrics are geodesically rigid. (English) Zbl 1170.53025 Commun. Math. Phys. 289, No. 1, 383-400 (2009). Reviewer: Włodzimierz Jelonek (Kraków) MSC: 53C25 53C22 53C24 PDF BibTeX XML Cite \textit{V. Kiosak} and \textit{V. S. Matveev}, Commun. Math. Phys. 289, No. 1, 383--400 (2009; Zbl 1170.53025) Full Text: DOI arXiv OpenURL
Matveev, Vladimir S. On projectively equivalent metrics near points of bifurcation. (English) Zbl 1329.53116 Bolsinov, A. V. et al., Topological methods in the theory of integrable systems. Cambridge: Cambridge Scientific Publishers (ISBN 978-1-904868-42-2/hbk). 215-240 (2006). MSC: 53D25 37J30 37J35 53C22 70H06 PDF BibTeX XML Cite \textit{V. S. Matveev}, in: Topological methods in the theory of integrable systems. Cambridge: Cambridge Scientific Publishers. 215--240 (2006; Zbl 1329.53116) Full Text: arXiv OpenURL
Matveev, Vladimir S. Geometric explanation of the Beltrami theorem. (English) Zbl 1095.53023 Int. J. Geom. Methods Mod. Phys. 3, No. 3, 623-629 (2006). MSC: 53C20 PDF BibTeX XML Cite \textit{V. S. Matveev}, Int. J. Geom. Methods Mod. Phys. 3, No. 3, 623--629 (2006; Zbl 1095.53023) Full Text: DOI OpenURL
Kruglikov, Boris S.; Matveev, Vladimir S. Strictly non-proportional geodesically equivalent metrics have \(h_{\mathrm{top}}(g) = 0\). (English) Zbl 1094.53037 Ergodic Theory Dyn. Syst. 26, No. 1, 247-266 (2006). Reviewer: Akihiko Morimoto (Nagoya) MSC: 53C22 53D25 37A35 PDF BibTeX XML Cite \textit{B. S. Kruglikov} and \textit{V. S. Matveev}, Ergodic Theory Dyn. Syst. 26, No. 1, 247--266 (2006; Zbl 1094.53037) Full Text: DOI arXiv OpenURL
Matveev, Vladimir S. Lichnerowicz-Obata conjecture in dimension two. (English) Zbl 1113.53025 Comment. Math. Helv. 80, No. 3, 541-570 (2005). Reviewer: Ryszard Deszcz (Wroclaw) MSC: 53C22 53C20 53C05 53C15 53C24 PDF BibTeX XML Cite \textit{V. S. Matveev}, Comment. Math. Helv. 80, No. 3, 541--570 (2005; Zbl 1113.53025) Full Text: DOI OpenURL
Matveev, V. S. The eigenvalues of the Sinyukov mapping for geodesically equivalent metrics are globally ordered. (English. Russian original) Zbl 1114.53039 Math. Notes 77, No. 3, 380-390 (2005); translation from Mat. Zametki 77, No. 3, 412-423 (2005). Reviewer: Ryszard Deszcz (Wroclaw) MSC: 53C22 53C20 53C05 53C15 53C24 PDF BibTeX XML Cite \textit{V. S. Matveev}, Math. Notes 77, No. 3, 380--390 (2005; Zbl 1114.53039); translation from Mat. Zametki 77, No. 3, 412--423 (2005) Full Text: DOI OpenURL
Matveev, Vladimir S. Projectively equivalent metrics on the torus. (English) Zbl 1051.37030 Differ. Geom. Appl. 20, No. 3, 251-265 (2004). Reviewer: Peter B. Gilkey (Eugene) MSC: 37J35 70H06 53A07 53B10 PDF BibTeX XML Cite \textit{V. S. Matveev}, Differ. Geom. Appl. 20, No. 3, 251--265 (2004; Zbl 1051.37030) Full Text: DOI OpenURL
Topalov, Peter; Matveev, Vladimir S. Geodesic equivalence via integrability. (English) Zbl 1017.37029 Geom. Dedicata 96, 91-115 (2003). Reviewer: Claudio Bartocci (Genova) MSC: 37J35 53C22 70H06 53A20 PDF BibTeX XML Cite \textit{P. Topalov} and \textit{V. S. Matveev}, Geom. Dedicata 96, 91--115 (2003; Zbl 1017.37029) Full Text: DOI OpenURL
Matveev, Vladimir S.; Topalov, Peter J. Quantum integrability of Beltrami-Laplace operator as geodesic equivalence. (English) Zbl 0998.53025 Math. Z. 238, No. 4, 833-866 (2001). Reviewer: Hasan Özekes (Muǧla) MSC: 53C21 53C22 PDF BibTeX XML Cite \textit{V. S. Matveev} and \textit{P. J. Topalov}, Math. Z. 238, No. 4, 833--866 (2001; Zbl 0998.53025) Full Text: DOI OpenURL
Matveev, Vladimir S.; Topalov, Peter J. Integrability in the theory of geodesically equivalent metrics. (English) Zbl 0983.53024 J. Phys. A, Math. Gen. 34, No. 11, 2415-2433 (2001). Reviewer: R.Iordanescu (Bucureşti) MSC: 53C20 57M50 37D40 53D25 PDF BibTeX XML Cite \textit{V. S. Matveev} and \textit{P. J. Topalov}, J. Phys. A, Math. Gen. 34, No. 11, 2415--2433 (2001; Zbl 0983.53024) Full Text: DOI OpenURL
Matveev, V. S.; Topalov, P. J. Geodesic equivalence of metrics as a particular case of integrability of geodesic flows. (English. Russian original) Zbl 0996.53054 Theor. Math. Phys. 123, No. 2, 651-658 (2000); translation from Teor. Mat. Fiz. 123, No. 2, 285-293 (2000). Reviewer: L.Del Riego (San Luis Potosí) MSC: 53D25 37J35 53C22 PDF BibTeX XML Cite \textit{V. S. Matveev} and \textit{P. J. Topalov}, Theor. Math. Phys. 123, No. 2, 651--658 (2000; Zbl 0996.53054); translation from Teor. Mat. Fiz. 123, No. 2, 285--293 (2000) Full Text: DOI OpenURL
Topalov, Peter Hierarchy of integrable geodesic flows. (English) Zbl 0984.37067 Publ. Mat., Barc. 44, No. 1, 257-276 (2000). Reviewer: Messoud Efendiev (Berlin) MSC: 37J35 53D25 37J15 70G45 PDF BibTeX XML Cite \textit{P. Topalov}, Publ. Mat., Barc. 44, No. 1, 257--276 (2000; Zbl 0984.37067) Full Text: DOI EuDML OpenURL
Venzi, Paulo Geodätische Abbildungen in Riemannschen Mannigfaltigkeiten. (German) Zbl 0419.53010 Tensor, New Ser. 33, 313-321 (1979). MSC: 53B20 PDF BibTeX XML Cite \textit{P. Venzi}, Tensor, New Ser. 33, 313--321 (1979; Zbl 0419.53010) OpenURL