×

Optimal double stopping problems for maxima and minima of geometric Brownian motions. (English) Zbl 1490.60097

Summary: We present closed-form solutions to some double optimal stopping problems with payoffs representing linear functions of the running maxima and minima of a geometric Brownian motion. It is shown that the optimal stopping times are th first times at which the underlying process reaches some lower or upper stochastic boundaries depending on the current values of its running maximum or minimum. The proof is based on the reduction of the original double optimal stopping problems to sequences of single optimal stopping problems for the resulting three-dimensional continuous Markov process. The latter problems are solved as the equivalent free-boundary problems by means of the smooth-fit and normal-reflection conditions for the value functions at the optimal stopping boundaries and the edges of the three-dimensional state space. We show that the optimal stopping boundaries are determined as the extremal solutions of the associated first-order nonlinear ordinary differential equations. The obtained results are related to the valuation of perpetual real double lookback options with floating sunk costs in the Black-Merton-Scholes model.

MSC:

60G40 Stopping times; optimal stopping problems; gambling theory
91G20 Derivative securities (option pricing, hedging, etc.)
60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Asmussen, S.; Avram, F.; Pistorius, M., Russian and American put options under exponential phase-type Lévy models, Stochastic Processes and their Applications, 109, 79-111 (2003) · Zbl 1075.60037 · doi:10.1016/j.spa.2003.07.005
[2] Avram, F.; Kyprianou, AE; Pistorius, M., Exit problems for spectrally negative Lévy processes and applications to (Canadized) Russian options, Ann Appl Probab, 14, 1, 215-238 (2004) · Zbl 1042.60023 · doi:10.1214/aoap/1075828052
[3] Beibel M, Lerche HR (1997) A new look at warrant pricing and related optimal stopping problems. Empirical Bayes, sequential analysis and related topics in statistics and probability (New Brunswick, NJ, 1995). Statististica Sinica 7:93-108 · Zbl 0895.60048
[4] Borodin, AN; Salminen, P., Handbook of Brownian Motion (2002), Basel: Birkhäuser, Basel · Zbl 1012.60003
[5] Brynjolfsson, E.; Hitt, L., Computing productivity: firm-level evidence, Rev Econ Stat, 85, 4, 793-808 (2003) · doi:10.1162/003465303772815736
[6] Brynjolfsson, E.; Rock, D.; Syverson, C., Artificial intelligence and the modern productivity paradox: a clash of expectations and statistics, The National Bureau of Economic Research (2017) · doi:10.3386/w24001
[7] Carmona, R.; Dayanik, S., Optimal multiple-stopping of linear diffusions, Math Oper Res, 33, 2, 446-460 (2008) · Zbl 1221.60061 · doi:10.1287/moor.1070.0301
[8] Carmona, R.; Touzi, N., Optimal multiple stopping and valuation of swing options, Math Finance, 18, 2, 239-268 (2008) · Zbl 1133.91499 · doi:10.1111/j.1467-9965.2007.00331.x
[9] Chiarella C, Kang B (2009) The evaluation of American compound option prices under stochastic volatility using the sparse grid approach. Research Centre Research Paper No. 245, February, 2009, University of Technology, Sydney, Quantitative Finance
[10] Dixit, AK; Pindyck, RS, Investment under uncertainty (1994), New Jersey: Princeton University Press, New Jersey · doi:10.1515/9781400830176
[11] Dubins, L.; Shepp, LA; Shiryaev, AN, Optimal stopping rules and maximal inequalities for Bessel processes, Theory of Probability and its Applications, 38, 2, 226-261 (1993) · Zbl 0807.60040 · doi:10.1137/1138024
[12] Duckworth, JK; Zervos, M., An investment model with entry and exit decisions, J Appl Probab, 37, 547-559 (2000) · Zbl 0959.93058 · doi:10.1239/jap/1014842558
[13] Gapeev, PV, Discounted optimal stopping for maxima of some jump-diffusion processes, J Appl Probab, 44, 713-731 (2007) · Zbl 1146.60037 · doi:10.1017/S0021900200003387
[14] Gapeev, PV, Solving the dual Russian option problem by using change-of-measure arguments, High Frequency (Special Issue in Memory of Larry Shepp), 2, 2, 76-84 (2019)
[15] Gapeev PV (2020) Optimal stopping problems for running minima with positive discounting rates. Statist Probab Lett 167:108899 · Zbl 1464.60036
[16] Gapeev PV (2022) Perpetual American double lookback options on drawdowns and drawups with floating strikes. To appear in Methodology and Computing in Applied Probability. pp 40
[17] Gapeev, PV; Kort, PM; Lavrutich, MN, Discounted optimal stopping problems for maxima of geometric Brownian motions with switching payoffs, Adv Appl Probab, 53, 1, 189-219 (2021) · Zbl 1497.60059 · doi:10.1017/apr.2020.57
[18] Gapeev PV, Li L (2021) Optimal stopping problems for maxima and minima in models with asymmetric information. Published online first in Stochastics. pp 28 · Zbl 1497.60060
[19] Gapeev PV, Al Motairi H (2021) Discounted optimal stopping problems in first-passage time models with random thresholds. To appear in Journal of Applied Probability. pp 20
[20] Gapeev PV, Rodosthenous N (2014a) On the pricing of perpetual American compound options. In: Kabanov, Yu M, Rutkowski M, Zariphopoulou TH (eds) In the Volume Inspired by Finance - The Musiela Festschrift. Springer, pp 283-304 · Zbl 1418.91513
[21] Gapeev, PV; Rodosthenous, N., Optimal stopping problems in diffusion-type models with running maxima and drawdowns, J Appl Probab, 51, 3, 799-817 (2014) · Zbl 1312.60044 · doi:10.1239/jap/1409932675
[22] Gapeev, PV; Rodosthenous, N., On the drawdowns and drawups in diffusion-type models with running maxima and minima, J Math Anal Appl, 434, 1, 413-431 (2016) · Zbl 1329.60229 · doi:10.1016/j.jmaa.2015.09.013
[23] Gapeev, PV; Rodosthenous, N., Perpetual American options in diffusion-type models with running maxima and drawdowns, Stochastic Processes and their Applications, 126, 7, 2038-2061 (2016) · Zbl 1337.60072 · doi:10.1016/j.spa.2016.01.003
[24] Graversen, SE; Peskir, G., Optimal stopping and maximal inequalities for geometric Brownian motion, J Appl Probab, 35, 4, 856-872 (1998) · Zbl 0929.60027 · doi:10.1239/jap/1032438381
[25] Glover, K.; Hulley, H.; Peskir, G., Three-dimensional Brownian motion and the golden ratio rule, Ann Appl Probab, 23, 895-922 (2013) · Zbl 1408.60032 · doi:10.1214/12-AAP859
[26] Guo, X.; Shepp, LA, Some optimal stopping problems with nontrivial boundaries for pricing exotic options, J Appl Probab, 38, 3, 647-658 (2001) · Zbl 1026.91048 · doi:10.1239/jap/1005091029
[27] Guo X, Zervos M \((2010) \pi\) options. Stoch Process Appl 120(7):1033-1059 · Zbl 1200.91290
[28] Kyprianou, AE; Ott, C., A capped optimal stopping problem for the maximum process, Acta Appl Math, 129, 147-174 (2014) · Zbl 1312.60046 · doi:10.1007/s10440-013-9833-4
[29] Liptser RS, Shiryaev AN (2001) Statistics of random processes I. (Second Edition, First Edition 1977). Springer, Berlin · Zbl 0364.60004
[30] Ott, C., Optimal stopping problems for the maximum process with upper and lower caps, Ann Appl Probab, 23, 2327-2356 (2013) · Zbl 1290.60048 · doi:10.1214/12-AAP903
[31] Pedersen, JL, Discounted optimal stopping problems for the maximum process, J Appl Probab, 37, 4, 972-983 (2000) · Zbl 0980.60050 · doi:10.1239/jap/1014843077
[32] Peskir, G., Optimal stopping of the maximum process: The maximality principle, Ann Probab, 26, 4, 1614-1640 (1998) · Zbl 0935.60025 · doi:10.1214/aop/1022855875
[33] Peskir G (2007) A change-of-variable formula with local time on surfaces. Séminaire de Probabilité XL. Lecture Notes in Mathematics 1899. Springer, pp 69-96 · Zbl 1141.60035
[34] Peskir, G., Optimal detection of a hidden target: The median rule, Stochastic Processes and their Applications, 122, 2249-2263 (2012) · Zbl 1253.60055 · doi:10.1016/j.spa.2012.02.004
[35] Peskir, G., Quickest detection of a hidden target and extremal surfaces, Ann Appl Probab, 24, 6, 2340-2370 (2014) · Zbl 1338.60115 · doi:10.1214/13-AAP979
[36] Peskir, G.; Shiryaev, AN, Optimal stopping and free-boundary problems (2006), Basel: Birkhäuser, Basel · Zbl 1115.60001
[37] Revuz, D.; Yor, M., Continuous Martingales and Brownian motion (1999), Berlin: Springer, Berlin · Zbl 0917.60006 · doi:10.1007/978-3-662-06400-9
[38] Rodosthenous, N.; Zervos, M., Watermark options, Finance Stochast, 21, 1, 157-186 (2017) · Zbl 1380.91134 · doi:10.1007/s00780-016-0319-x
[39] Shepp, LA; Shiryaev, AN, The Russian option: reduced regret, Ann Appl Probab, 3, 3, 631-640 (1993) · Zbl 0783.90011 · doi:10.1214/aoap/1177005355
[40] Shepp, LA; Shiryaev, AN, A new look at the pricing of Russian options, Theory Probability and Applications, 39, 1, 103-119 (1994) · Zbl 0834.60072 · doi:10.1137/1139004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.