×

Thermal quantum correlation and entanglement in the Bose-Hubbard Hamiltonian. (English) Zbl 1400.81029

Summary: We study a two-qutrit system which is described by the Bose-Hubbard Hamiltonian with two external magnetic fields. The entanglement (through the negativity) and quantum correlation (through the geometric discord) between the qutrits are calculated as functions of the magnetic field (\(B\)), the temperature (\(T\)), the linear and nonlinear coupling constants among two spins (\(J\) and \(K\)). Then, we compare the effect of these parameters on entanglement and quantum correlation of this system. For some values of system parameters, we show that the negativity is zero while, the geometric discord is nonzero. Moreover, we investigate the effect of finite external magnetic fields direction on these measures. This study leads to some new and interesting results as well.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
81P15 Quantum measurement theory, state operations, state preparations
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
81P05 General and philosophical questions in quantum theory
81V10 Electromagnetic interaction; quantum electrodynamics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ollivier, H.; Zurek, WH, Quantum discord: a measure of the quantumness of correlations, Phys. Rev. Lett., 88, 017901, (2001) · Zbl 1255.81071 · doi:10.1103/PhysRevLett.88.017901
[2] Luo, S.; Fu, S., Geometric measure of quantum discord, Phys. Rev. A, 82, 034302, (2010) · Zbl 1255.81092 · doi:10.1103/PhysRevA.82.034302
[3] Zou, HM; Fang, MF, Discord and entanglement in non-Markovian environments at finite temperatures, Chin. Phys. B, 25, 090302, (2016) · doi:10.1088/1674-1056/25/9/090302
[4] You-Neng, G.; Mao-Fa, F.; Xiang, L.; Bai-Yuan, Y., Dynamics of quantum discord in a two-qubit system under classical noise, Chin. Phys. B, 23, 034204, (2014) · doi:10.1088/1674-1056/23/3/034204
[5] Werlang, T.; Souza, S.; Fanchini, FF; Boas, CV, Robustness of quantum discord to sudden death, Phys. Rev. A, 80, 024103, (2009) · doi:10.1103/PhysRevA.80.024103
[6] Jaghouri, H.; Sarbishaei, M.; Javidan, K., Evolution of entropy in different types of non-Markovian three-level systems: single reservoir vs. two independent reservoirs, Pramana, 86, 997, (2016) · doi:10.1007/s12043-015-1121-6
[7] Guo, YN; Fang, MF; Wang, GY; Zeng, K., Distillability sudden death and sudden birth in a two-qutrit system under decoherence at finite temperature, Quantum Inf. Process., 15, 2851, (2016) · Zbl 1348.81083 · doi:10.1007/s11128-016-1296-x
[8] Jiang, H.; Mao-Fa, F.; Bai-Yuan, Y.; Xiang, L., Distillability sudden death in a two qutrit systems under a thermal reservoir, Chin. Phys. B, 21, 084205, (2012) · doi:10.1088/1674-1056/21/8/084205
[9] Caves, CM; Milburn, GJ, Qutrit entanglement, Opt. Commun., 179, 439, (2000) · doi:10.1016/S0030-4018(99)00693-8
[10] Xiao, X.; Li, YL, Protecting qutrit-qutrit entanglement by weak measurement and reversal, Eur. Phys. J. D, 67, 204, (2013) · doi:10.1140/epjd/e2013-40036-3
[11] Yan, XQ; Liu, GH; Chee, J., Sudden change in quantum discord accompanying the transition from bound to free entanglement, Phys. Rev. A, 87, 022340, (2013) · doi:10.1103/PhysRevA.87.022340
[12] Jaghouri, H.; Sarbishaei, M.; Javidan, K., Thermal entanglement and lower bound of the geometric discord for a two-qutrit system with linear coupling and nonuniform external magnetic field, Quantum Inf. Process., 16, 124, (2017) · Zbl 1373.81068 · doi:10.1007/s11128-017-1551-9
[13] Yuan, YL; Hou, XW, Thermal geometric discords in a two-qutrit system, Int. J. Quantum Inf., 14, 1650016, (2016) · Zbl 1346.81023 · doi:10.1142/S0219749916500167
[14] Hou, XW; Lei, XF; Chen, B., Thermal quantum and classical correlations in a two-qutrit system, Eur. Phys. J. D, 67, 1, (2013) · doi:10.1140/epjd/e2013-30730-5
[15] Greiner, M.; Mandel, O.; Esslinger, T.; Hänsch, TW; Bloch, I., Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature, 415, 39, (2002) · doi:10.1038/415039a
[16] Yip, SK, Dimer state of spin-1 bosons in an optical lattice, Phys. Rev. Lett., 90, 250402, (2003) · doi:10.1103/PhysRevLett.90.250402
[17] Zhang, GF; Li, SS, The effects of nonlinear couplings and external magnetic field on the thermal entanglement in a two-spin-qutrit system, Opt. Commun., 260, 347, (2006) · doi:10.1016/j.optcom.2005.10.039
[18] Zhang, GF; Li, SS; Liang, JQ, Thermal entanglement in spin-1 biparticle system, Opt. Commun., 245, 457, (2005) · doi:10.1016/j.optcom.2004.10.045
[19] Scarola, VW; Sarma, SD, Quantum phases of the extended Bose-Hubbard Hamiltonian: possibility of a supersolid state of cold atoms in optical lattices, Phys. Rev. Lett., 95, 033003, (2005) · doi:10.1103/PhysRevLett.95.033003
[20] Jaksch, D.; Bruder, C.; Cirac, JI; Gardiner, CW; Zoller, P., Cold bosonic atoms in optical lattices, Phys. Rev. Lett., 81, 3108, (1998) · doi:10.1103/PhysRevLett.81.3108
[21] Sargolzahi, I.; Mirafzali, SY; Sarbishaei, M., Thermal entanglement in a two-qutrit system with nonlinear coupling under nonuniform external magnetic field, Int. J. Quantum Inf., 6, 867, (2008) · Zbl 1152.81806 · doi:10.1142/S0219749908004158
[22] Peres, A., Separability criterion for density matrices, Phys. Rev. Lett., 77, 1413, (1996) · Zbl 0947.81003 · doi:10.1103/PhysRevLett.77.1413
[23] Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K., Quantum entanglement, Rev. Mod. Phys., 81, 865, (2009) · Zbl 1205.81012 · doi:10.1103/RevModPhys.81.865
[24] Galve, F.; Giorgi, GL; Zambrini, R., Orthogonal measurements are almost sufficient for quantum discord of two qubits, EPL, 96, 40005, (2011) · doi:10.1209/0295-5075/96/40005
[25] Li, G.; Liu, Y.; Tang, H.; Yin, X.; Zhang, Z., Analytic expression of quantum correlations in qutrit Werner states undergoing local and nonlocal unitary operations, Quantum Inf. Process., 14, 559, (2015) · Zbl 1311.81032 · doi:10.1007/s11128-014-0888-6
[26] Piani, M., Problem with geometric discord, Phys. Rev. A, 86, 034101, (2012) · doi:10.1103/PhysRevA.86.034101
[27] Bellomo, B.; Franco, RL; Compagno, G., Dynamics of geometric and entropic quantifiers of correlations in open quantum systems, Phys. Rev. A, 86, 012312, (2012) · doi:10.1103/PhysRevA.86.012312
[28] Galve, F.; Plastina, F.; Paris, MG; Zambrini, R., Discording power of quantum evolutions, Phys. Rev. Lett., 110, 010501, (2013) · doi:10.1103/PhysRevLett.110.010501
[29] Altintas, F.; Eryigit, R., Creation of quantum correlations between two atoms in a dissipative environment from an initial vacuum state, Phys. Lett. A, 376, 1791, (2012) · doi:10.1016/j.physleta.2012.04.023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.