×

A data-driven kernel method assimilation technique for geophysical modelling. (English) Zbl 1365.68372

Summary: Incorporating the quantity and variety of observations in atmospheric and oceanographic assimilation and prediction models has become an increasingly complex task. Data assimilation allows for uneven spatial and temporal data distribution and redundancy to be addressed so that the models can ingest massive data sets. Traditional data assimilation methods introduce Kalman filters and variational approaches. This study introduces a family of algorithms, motivated by advances in machine learning. These algorithms provide an alternative approach to incorporating new observations into the analysis forecast cycle. The application of kernel methods to processing the states of a quasi-geostrophic numerical model is intended to demonstrate the feasibility of the method as a proof-of-concept. The speed, efficiency, accuracy and scalability in recovering unperturbed state trajectories establishes the viability of machine learning for data assimilation.

MSC:

68T05 Learning and adaptive systems in artificial intelligence
86A99 Geophysics

Software:

EnKF
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2 · doi:10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
[2] DOI: 10.1090/S0002-9947-1950-0051437-7 · doi:10.1090/S0002-9947-1950-0051437-7
[3] Athans M., Optimal Control: An Introduction to the Theory and Its Applications (1966)
[4] Bartlett P.L., J. Mach. Learn. Res. 3 pp 463– (2002)
[5] DOI: 10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2 · doi:10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2
[6] DOI: 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2 · doi:10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
[7] DOI: 10.1073/pnas.1015753108 · doi:10.1073/pnas.1015753108
[8] DOI: 10.1029/94JC00572 · doi:10.1029/94JC00572
[9] DOI: 10.1080/10556780902752892 · Zbl 1159.62028 · doi:10.1080/10556780902752892
[10] DOI: 10.1115/1.3658902 · doi:10.1115/1.3658902
[11] Kalnay E., Atmospheric Modeling, Data Assimilation and Predictability (2003)
[12] DOI: 10.1017/CBO9780511526480 · Zbl 1268.62003 · doi:10.1017/CBO9780511526480
[13] DOI: 10.1175/1520-0493(1997)125<1674:PIOAKF>2.0.CO;2 · doi:10.1175/1520-0493(1997)125<1674:PIOAKF>2.0.CO;2
[14] DOI: 10.1088/0951-7715/26/1/201 · Zbl 1262.93024 · doi:10.1088/0951-7715/26/1/201
[15] DOI: 10.1111/j.1600-0870.2004.00076.x · doi:10.1111/j.1600-0870.2004.00076.x
[16] DOI: 10.1007/978-1-4612-4650-3 · doi:10.1007/978-1-4612-4650-3
[17] DOI: 10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2 · doi:10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2
[18] DOI: 10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2 · doi:10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.