×

Fluctuations in transcription factor binding can explain the graded and binary responses observed in inducible gene expression. (English) Zbl 1439.92088

Summary: Inducible genes are expressed in the presence of an external stimulus. Individual cells may exhibit either a binary or graded response to such signals. It has been hypothesized that the chemical kinetics of transcription factor/DNA interactions can account for both these scenarios [M. S. H. Ko et al., “The dose dependence of glucocorticoid-inducible gene expression results from changes in the number of transcriptionally active templates”, EMBO. J. 9, No. 9, 2835–2842 (1990); M. S. H. Ko, “Induction mechanism of a single gene molecule: stochastic or deterministic?”, Bio Essays 14, No. 5, 341–346 (1992; doi:10.1002/bies.950140510)]. To explore this question, we have conducted work based on the experimental results of S. Fiering et al. [“Single cell assay of a transcription factor reveals a threshold in transcription activated by signals emanating from the t-cell antigen receptor”, Genes Dev. 4, No. 10, 1823–1834 (1990; doi:10.1101/gad.4.10.1823)]. In these experiments, three upstream NF-AT binding sites control transcription of the lacZ gene, which codes for the enzyme \(\beta\)-galactosidase. The experimental data show a binary response for this system. We consider the effects of fluctuations in NF-AT binding on the response of the system. Our modeling results are in good qualitative agreement with the experimental data, and illustrate how the binary and graded responses can stem from the same underlying mechanism.

MSC:

92C40 Biochemistry, molecular biology
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Becskei, A.; Seraphin, B.; Serrano, L., Positive feedback in eukaryotic gene networkscell differentiation by graded to binary response conversion, EMBO J, 20, 10, 2528-2535 (2001)
[2] Bennett, D. C., Differentiation in mouse melanoma cellsinitial reversibility and an on-off stochastic model, Cell, 34, 445-453 (1983)
[3] Biggar, S. R.; Crabtree, G. R., Cell signaling can direct either binary or graded transcriptional responses, EMBO J, 20, 12, 3167-3176 (2001)
[4] Blake, W. J.; Kaern, M.; Cantor, C. R.; Collins, J. J., Noise in eukaryotic gene expression, Nature, 422, 633-637 (2003)
[5] Cook, D. L.; Gerber, A. N.; Tapscott, S. J., Modeling stochastic gene expressionimplications for haploinsufficiency, Proc. Natl. Acad. Sci. USA, 95, 26, 15641-15646 (1998)
[6] Fall, C. P.; Marland, E. S.; Tyson, J. J.; Wagner, J. M., Computational Cell Biology (2002), Springer: Springer New York · Zbl 1010.92019
[7] Ferrell, J. E.; Machleder, E. M., The biochemical basis of an all-or-none cell fate switch in xenopus oocytes, Science, 280, 895-898 (1998)
[8] Fiering, S.; Northrop, J. P.; Nolan, G. P.; Mattila, P. S.; Crabtree, G. R.; Herzenberg, L. A., Single cell assay of a transcription factor reveals a threshold in transcription activated by signals emanating from the t-cell antigen receptor, Genes Dev., 4, 10, 1823-1834 (1990)
[9] Fiering, S.; Whitelaw, E.; Martin, D. I.K., To be or not to be activethe stochastic nature of enhancer action, BioEssays, 22, 381-387 (2000)
[10] Gardiner, C. W., Handbook of Stochastic Methods: for Physics, Chemistry and the Natural Sciences (1996), Springer: Springer New York · Zbl 0862.60050
[11] Gibson, M. A.; Bruck, J., Efficient exact stochastic simulation of chemical systems with many species and many channels, J. Phys. Chem., 104, 1876-1889 (2000)
[12] Gillespie, D. T., A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys., 22, 403-434 (1976)
[13] Gillespie, D. T., Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81, 25, 2340-2361 (1977)
[14] Hazzalin, C. A.; Mahadevan, L. C., Mapk-regulated transcriptiona continuously variable gene switch?, Mol. Cell Biol., 3, 30-40 (2002)
[15] Hume, D. A., Probability in transcriptional regulation and its implications for leukocyte differentiation and inducible gene expression, Blood, 96, 7, 2323-2328 (2000)
[16] Kepler, T. B.; Elston, T. C., Stochasticity in transcriptional regulationorigins, consequences, and mathematical representations, Biophys. J., 81, 6, 3116-3136 (2001)
[17] Kloeden, P. E.; Platen, E., Numerical Solution of Stochastic Differential Equations (1997), Springer: Springer New York · Zbl 0701.60054
[18] Ko, M. S.H., A stochastic model for gene induction, J. Theor. Biol., 153, 181-194 (1991)
[19] Ko, M. S.H., Induction mechanism of a single gene moleculestochastic or deterministic?, BioEssays, 14, 5, 341-346 (1992)
[20] Ko, M. S.H.; Nakauchi, H.; Takahashi, N., The dose dependence of glucocorticoid-inducible gene expression results from changes in the number of transcriptionally active templates, EMBO. J., 9, 9, 2835-2842 (1990)
[21] Kringstein, A. M.; Rossi, F. M.; Hofmann, A.; Blau, H. M., Graded transcriptional response to different concentrations of a single transactivator, Proc. Natl. Acad. Sci. USA, 95, 23, 13670-13675 (1998)
[22] Lemon, B.; Tjian, R., Orchestrated responsea symphony of transcription factors for gene control, Genes. Dev., 14, 20, 2551-2569 (2000)
[23] Magis, W.; Fiering, S.; Groudine, M.; Martin, D. I.K., An upstream activator of transcription coordinately increases the level and epigenetic stability of gene expression, Proc. Natl. Acad. Sci. USA, 93, 13914-13918 (1996)
[24] Newlands, S.; Levitt, L. K.; Robinson, C. S.; Karpf, A. B.C.; Hodgson, V. R.M.; Wade, R. P.; Hardeman, E. C., Transcription occurs in pulses in muscle fibers, Genes & Dev., 12, 2748-2758 (1998)
[25] Rossi, F. M.; Kringstein, A. M.; Spicher, A.; Guicherit, O. M.; Blau, H. M., Transcriptional controlrheostat converted to on/off switch, Mol. Cell, 6, 3, 723-728 (2000)
[26] van Roon, M. A.; Aten, J. A.; van Oven, C. H.; Charles, R.; Lamers, W. H., The initiation of hepatocyte-specific gene expression within embryonic hepatocytes is a stochastic event, Dev. Biol., 136, 508-516 (1989)
[27] Vilar, J. M.G.; Guet, C. C.; Leibler, S., Modeling network dynamicsthe lac operon, a case study, J. Cell Biol., 161, 3, 471-476 (2003)
[28] Walters, M. C.; Fiering, S.; Eidemiller, J.; Magis, W.; Groudine, M.; Martin, D. I.K., Enhancers increase the probability but not the level of gene expression, Proc. Natl. Acad. Sci. USA, 92, 7125-7129 (1995)
[29] Weintraub, H., Formation of stable transcription complexes as assayed by analysis of individual templates, Proc. Natl. Acad. Sci. USA, 85, 5819-5823 (1988)
[30] Zdinak, L. A.; Greenberg, I. B.; Szewczyk, N. J.; Barmada, S. J.; Cardamone-Raynor, M.; Hartman, J. J.; Jacobson, L. A., Transgene-coded chimeric proteins as reporters of intracellular proteolysisstarvation-induced catabolism of a lacz fusion protein in muscle cells of Caenorhabditis elegans, J. Cell Biochem., 67, 143-153 (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.