×

A multilevel approach to single- and multiobjective aerodynamic optimization. (English) Zbl 1194.76254

Summary: An optimization platform with multilevel structure, which is capable of efficiently solving design-optimization problems in aerodynamics, is proposed. The multilevel structure relies on a two-way regular exchange of information between successive search levels. Each level can be associated with a different evaluation software, different problem parameterization and/or different search tool, for the minimization of the same objective function(s). The combination of some or all of the aforementioned strategies is possible, although beyond the scope of this paper. The basic optimization tool, which is associated with at least one of the levels, is a metamodel-assisted evolutionary algorithm; candidate solutions that have previously been examined are memorized and serve to train radial basis function networks, operating as local surrogate evaluation models. To handle multiobjective optimization problems with different search techniques at each level, we hybridize an evolutionary algorithm that computes the front of Pareto optimal solutions at the lower level(s) with a gradient-based method at the upper level, for the purpose of refinement through local search. In aerodynamic optimization, the adjoint method is used to compute the gradient of the objective function. For the gradient method to apply to a front of solutions rather than a single individual, an approximation of the SPEA-2 utility function gradient needs to be devised. The multilevel platform is demonstrated on mathematical problems as well as the design of isolated and compressor cascade airfoils.

MSC:

76N25 Flow control and optimization for compressible fluids and gas dynamics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bäck, T., Evolutionary Algorithms in Theory and Practice. Evolution Strategies, Evolutionary Programming, Genetic Algorithms (1996), Oxford University Press: Oxford University Press USA · Zbl 0877.68060
[2] Bäck, T., Handbook of Evolutionary Computation (1997), Oxford University Press: Oxford University Press New York · Zbl 0883.68001
[3] D.J. Doorly, J. Peiró, S. Spooner, Design optimisation using distributed evolutionary methods, AIAA-1999-111, Reno, NV, January 1999.; D.J. Doorly, J. Peiró, S. Spooner, Design optimisation using distributed evolutionary methods, AIAA-1999-111, Reno, NV, January 1999.
[4] Giotis, A.; Giannakoglou, K.; Périaux, J., A reduced-cost multi-objective optimization method based on the Pareto front technique, neural networks and PVM, (Oñate, E.; Bugeda, G.; Suárez, B., ECCOMAS 2000, Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering (2000), CIMNE: CIMNE Barcelona, Spain)
[5] Büche, D.; Schraudolph, N.; Koumoutsakos, P., Accelerating evolutionary algorithms with gaussian process fitness function models, IEEE Trans. Syst. Man Cybernet. - Part C: Appl. Rev., 35, 2, 183-194 (2005)
[6] Karakasis, M.; Giannakoglou, K., On the use of metamodel-assisted, multi-objective evolutionary algorithms, Engrg. Optim., 38, 8, 941-957 (2005)
[7] Emmerich, M.; Giotis, A.; Özdemir, M.; Bäck, T.; Giannakoglou, K., Metamodel-assisted evolution strategies, (Proceedings of the 7th International Conference on Parallel Problem Solving from Nature - PPSN VII. Proceedings of the 7th International Conference on Parallel Problem Solving from Nature - PPSN VII, Lecture Notes in Computer Science, vol. 2439 (2002), Springer-Verlag), 361-370
[8] Ong, Y. S.; Nair, P. B.; Keane, A. J., Evolutionary optimization of computationally expensive problems via surrogate modeling, AIAA J., 41, 4, 687-696 (2003)
[9] Haykin, S., Neural Networks: A Comprehensive Foundation (1999), Prentice Hall: Prentice Hall New Jersey, USA · Zbl 0934.68076
[10] Giannakoglou, K.; Papadimitrou, A.; Kampolis, I., Aerodynamic shape design using evolutionary algorithms and new gradient-assisted metamodels, Comput. Methods Appl. Mech. Engrg., 195, 44-47, 6312-6329 (2006) · Zbl 1178.76310
[11] Myers, R. H.; Montgomery, D. C., Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Probability and Statistics (2002), John Wiley & Sons: John Wiley & Sons New York, USA · Zbl 1161.62393
[12] T. Simpson, T. Mauery, J. Korte, F. Mistree, Comparison of response surface and kriging models for multidisciplinary design optimization, AIAA Paper 98-4755, 1998.; T. Simpson, T. Mauery, J. Korte, F. Mistree, Comparison of response surface and kriging models for multidisciplinary design optimization, AIAA Paper 98-4755, 1998.
[13] Giannakoglou, K.; Giotis, A.; Karakasis, M., Low-cost genetic optimization based on inexact pre-evaluations and the sensitivity analysis of design parameters, J. Inverse Problems Engrg., 9, 4, 389-412 (2001)
[14] Karakasis, M.; Koubogiannis, D.; Giannakoglou, K., Hierarchical distributed evolutionary algorithms in shape optimization, Int. J. Numer. Methods Fluids, 53, 455-469 (2007) · Zbl 1107.65056
[15] D.J. Doorly, J. Peiro, Distributed evolutionary computational methods for multiobjective and multidisciplinary optimization, AIAA-1998-4775, St. Louis, NV, September 1998.; D.J. Doorly, J. Peiro, Distributed evolutionary computational methods for multiobjective and multidisciplinary optimization, AIAA-1998-4775, St. Louis, NV, September 1998.
[16] Karakasis, M.; Giannakoglou, K., Inexact information aided, low-cost, distributed genetic algorithms for aerodynamic shape optimization, Int. J. Numer. Methods Fluids, 43, 10-11, 1149-1166 (2003) · Zbl 1032.76654
[17] Jameson, A., Aerodynamic design via control theory, J. Sci. Comput., 3, 33-260 (1988)
[18] M. Giles, N. Pierce, Improved lift and drag estimates using adjoint Euler equations, AIAA Paper 99-3293, 1999.; M. Giles, N. Pierce, Improved lift and drag estimates using adjoint Euler equations, AIAA Paper 99-3293, 1999.
[19] Papadimitriou, D.; Giannakoglou, K., A continuous adjoint method with objective function derivatives based on boundary integrals for inviscid and viscous flows, J. Comput. Fluids, 36, 2, 325-341 (2007) · Zbl 1177.76369
[20] Muyl, F.; Dumas, L.; Herbert, V., Hybrid method for aerodynamic shape optimization in automotive industry, J. Comput. Fluids, 33, 5-6, 849-858 (2004) · Zbl 1047.76102
[21] Yiu, K.; Liu, Y.; Teo, K., A hybrid descent method for global optimization, J. Global Optim., 28, 2, 229-238 (2004) · Zbl 1114.90163
[22] Lee, Y.; Lee, M., Shape-based block layout approach to facility layout problems using hybrid genetic algorithm, Comput. Ind. Engrg., 42, 2, 237-248 (2002)
[23] K. Giannakoglou, T. Pappou, A. Giotis, D. Koubogiannis, A parallel inverse-design algorithm in aeronautics based on genetic algorithms and the adjoint method, in: ECCOMAS 2000, Barcelona, September 2000.; K. Giannakoglou, T. Pappou, A. Giotis, D. Koubogiannis, A parallel inverse-design algorithm in aeronautics based on genetic algorithms and the adjoint method, in: ECCOMAS 2000, Barcelona, September 2000.
[24] Poloni, C.; Giurgevich, A.; Onesti, L.; Pediroda, V., Hybridization of a multiobjective genetic algorithm, a neural network and a classical optimizer for a complex design problem in fluid dynamics, Comput. Methods Appl. Mech. Engrg., 186, 2, 403-420 (2000) · Zbl 0956.76023
[25] Ishibuchi, H.; Murata, T., A multi-objective genetic local search algorithm and its application to flowshop scheduling, IEEE Trans. Syst. Man Cybernet. Part C, 28, 3, 392-403 (1998)
[26] Ishibuchi, H.; Yoshida, T.; Murata, T., Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling, IEEE Trans. Evolut. Comput., 7, 2, 204-223 (2003)
[27] Jaszkiewicz, A., Genetic local search for multi-objective combinatorial optimization, Eur. J. Oper. Res., 137, 1, 50-71 (2002) · Zbl 1002.90051
[28] Knowles, J.; Corne, D., M-PAES: a memetic algorithm for multiobjective optimization, (Proceedings of the 2000 Congress on Evolutionary Computation CEC00 (2000), IEEE Press), 325-332
[29] Herrera, F.; Lozano, M.; Moraga, C., Hierarchical distributed genetic algorithms, Int. J. Intell. Syst., 14, 9, 1099-1121 (1999) · Zbl 0943.68138
[30] Sefrioui, M.; Périaux, J., A hierarchical genetic algorithm using multiple models for optimization, (Schoenauer, M.; Deb, K.; Rudolph, G.; Yao, X.; Lutton, E.; Guervós, J. J.M.; Schwefel, H.-P., Proceedings of the 6th International Conference on Parallel Problem Solving from Nature - PPSN VI. Proceedings of the 6th International Conference on Parallel Problem Solving from Nature - PPSN VI, Lecture Notes in Computer Science, vol. 1917 (2000), Springer: Springer Paris, France), 879-888
[31] M. Sefrioui, K. Srinivas, P. Periaux, Aerodynamic shape optimization using a hierarchical genetic algorithm, ECCOMAS 2000, Barcelona, September 2000.; M. Sefrioui, K. Srinivas, P. Periaux, Aerodynamic shape optimization using a hierarchical genetic algorithm, ECCOMAS 2000, Barcelona, September 2000.
[32] J. Désidéri, A. Janka, Hierarchical parameterization for multilevel evolutionary shape optimization with application to aerodynamics, in: G. Bugeda, J. Désidéri, J. Periaux, M. Schoenauer, G. Winter (Eds.), International Congress on Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems - EUROGEN 2003, 2003.; J. Désidéri, A. Janka, Hierarchical parameterization for multilevel evolutionary shape optimization with application to aerodynamics, in: G. Bugeda, J. Désidéri, J. Periaux, M. Schoenauer, G. Winter (Eds.), International Congress on Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems - EUROGEN 2003, 2003.
[33] E. Zitzler, M. Laumans, L. Thiele, SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization, in: Eurogen 2001, Evolutionary Methods for Design, Optimisation and Control with Applications to Industrial Problems, CIMNE, Barcelona, 2002, pp. 19-26.; E. Zitzler, M. Laumans, L. Thiele, SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization, in: Eurogen 2001, Evolutionary Methods for Design, Optimisation and Control with Applications to Industrial Problems, CIMNE, Barcelona, 2002, pp. 19-26.
[34] Piegl, L.; Tiller, W., The NURBS Book, Monographs in Visual Communication (1997), Springer-Verlag: Springer-Verlag Germany
[35] Nocedal, J.; Wright, S., Numerical Optimization (1999), Springer-Verlag · Zbl 0930.65067
[36] Zitzler, E.; Thiele, L., Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach, IEEE Trans. Evolut. Comput., 3, 4, 257-271 (1999)
[37] Lambropoulos, N.; Koubogiannis, D.; Giannakoglou, K., Acceleration of a Navier-Stokes equation solver for unstructured grids using agglomeration multigrid and parallel processing, Comput. Methods Appl. Mech. Engrg., 193, 781-803 (2004) · Zbl 1106.76405
[38] P. Spalart, S. Allmaras, A one-equation turbulence model for aerodynamic flows, AIAA Paper 92-0439, 1992.; P. Spalart, S. Allmaras, A one-equation turbulence model for aerodynamic flows, AIAA Paper 92-0439, 1992.
[39] Drela, M.; Giles, M. B., Viscous-inviscid analysis of transonic and low Reynolds number airfoils, AIAA J., 25, 10, 1347-1355 (1987) · Zbl 0635.76057
[40] E. Zitzler, K. Deb, L. Thiele, Comparison of multiobjective evolutionary algorithms, Technical Report 70, Swiss Federal Institute of Technology (ETH), Computer Engineering and Communication Networks Laboratory (TIK), Zurich, Switzerland, 1999.; E. Zitzler, K. Deb, L. Thiele, Comparison of multiobjective evolutionary algorithms, Technical Report 70, Swiss Federal Institute of Technology (ETH), Computer Engineering and Communication Networks Laboratory (TIK), Zurich, Switzerland, 1999.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.