×

Estimating forces during ploughing of a granular bed. (English) Zbl 1421.76252

Summary: We present a method for predicting forces on a plough – modelled as a flat, rigid plate inclined in the direction of motion – as it moves through a granular bed. Our method combines coarse, but representative, discrete element (DE) simulations with continuum mechanics. We first homogenize the kinematic information obtained from DE simulations to obtain a continuum strain field. The strain field is then combined with an appropriate continuum constitutive law for the granular material being ploughed and linear momentum balance to obtain forces acting on the plough. Our method has the advantage that it does not require (i) detailed DE simulations nor (ii) extensive calibration of grain parameters to match experiments which, in turn, requires significant effort and may be system dependent. Both (i) and (ii) are necessary if forces are to be estimated directly from simulations. We confirm the effectiveness of our approach by comparing our predictions with results from calibrated DE simulations and experiments.

MSC:

76T25 Granular flows
35R25 Ill-posed problems for PDEs

Keywords:

granular media

Software:

R
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aguilar, J., Zhang, T., Qian, F., Kingsbury, M., McInroe, B., Mazouchova, N., Li, C., Maladen, R., Gong, C., Travers, M.2016A review on locomotion robophysics: the study of movement at the intersection of robotics, soft matter and dynamical systems. Rep. Prog. Phys.79 (11), 110001.
[2] Alekseevskii, V. P.1966Penetration of a rod into a target at high velocity. Fizika Goreniya I Vzryva (translated Combustion, Explosion, and Shock Waves, pp. 63-66)2, 99-106.
[3] Asaf, Z., Rubinstein, D. & Shmulevich, I.2007Determination of discrete element model parameters required for soil tillage. Soil Till. Res.92 (1), 227-242.
[4] Askari, H. & Kamrin, K.2016Intrusion rheology in grains and other flowable materials. Nat. Mater.15 (12), 1274-1279.
[5] Baligh, M. M.1985Strain path method. J. Geotech. Engng111 (9), 1108-1136.
[6] Barker, T., Schaeffer, D. G., Bohorquez, P. & Gray, J. M. N. T.2015Well-posed and ill-posed behaviour of the mu-rheology for granular flow. J. Fluid Mech.779, 794-818. · Zbl 1360.76338
[7] Bharadwaj, R. L., Wassgren, C. & Zenit, R.2006The unsteady drag force on a cylinder immersed in a dilute granular flow. Phys. Fluids18 (4), 043301.
[8] Bhateja, A., Sharma, I. & Singh, J. K.2016Scaling of granular temperature in vibro-fluidized grains. Phys. Fluids28 (4), 043301.
[9] Bhateja, A., Sharma, I. & Singh, J. K.2017Segregation physics of a macroscale granular ratchet. Phys. Rev. Fluids2 (5), 052301.
[10] Birkhoff, G., MacDougall, D. P., Pugh, E. M. & Taylor, G.1948Explosives with lined cavities. J. Appl. Phys.19, 563-582.
[11] Coetzee, C. J.2014Discrete and continuum modelling of soil cutting. Comput. Part. Mech.1 (4), 409-423.
[12] Coetzee, C. J.2017Calibration of the discrete element method. Powder Technol.310, 104-142.
[13] Coetzee, C. J. & Els, D. N. J.2009Calibration of granular material parameters for DEM modelling and numerical verification by blade – granular material interaction. J. Terramechanics46 (1), 15-26.
[14] Crandall, S. H., Dahl, N. C. & Dill, E. H.1960An Introduction to the Mechanics of Solids. McGraw-Hill.
[15] Cundall, P. A. & Strack, O. D. L.1979A discrete numerical model for granular assemblies. Géotechnique29 (1), 47-65.
[16] Ding, Y., Gravish, N. & Goldman, D. I.2011Drag induced lift in granular media. Phys. Rev. Lett.106 (2), 028001.
[17] Goldrein, H. T., Grantham, S. G., Proud, W. G. & Field, J. E.2002The study of internal deformation fields in granular materials using 3D digital speckle x-ray flash photography. AIP Conf. Proc.620, 1105-1108.
[18] Goldrein, H. T., Palmer, S. J. P. & Huntley, J. M.1995Automated fine grid technique for measurement of large-strain deformation maps. Opt. Lasers Engng23 (5), 305-318.
[19] Grantham, S. G., Proud, W. G., Goldrein, H. T. & Field, J. E.2006Study of internal deformation fields in granular materials using 3D digital speckle x-ray flash photography. In Laser Interferometry X: Techniques and Analysis, vol. 4101, pp. 319-327. International Society for Optics and Photonics.
[20] Gravish, N., Umbanhowar, P. B. & Goldman, D. I.2010Force and flow transition in plowed granular media. Phys. Rev. Lett.105 (12), 128301.
[21] Gravish, N., Umbanhowar, P. B. & Goldman, D. I.2014Force and flow at the onset of drag in plowed granular media. Phys. Rev. E89 (4), 042202.
[22] Guo, H., Goldsmith, J., Delacruz, I., Tao, M., Luo, Y. & Koehler, S. A.2012Semi-infinite plates dragged through granular beds. J. Stat. Mech. Theory Exp.2012 (07), P07013.
[23] Hettiaratchi, D. R. P. & Reece, A. R.1967Symmetrical three-dimensional soil failure. J. Terramechanics4 (3), 45-67.
[24] Hettiaratchi, D. R. P., Witney, B. D. & Reece, A. R.1966The calculation of passive pressure in two-dimensional soil failure. J. Agric. Engng Res.11 (2), 89-107.
[25] Jop, P., Forterre, Y. & Pouliquen, O.2006A constitutive law for dense granular flows. Nature441 (7094), 727-730.
[26] Katsuragi, H. & Durian, D. J.2013Drag force scaling for penetration into granular media. Phys. Rev. E87 (5), 052208.
[27] Li, C., Umbanhowar, P. B., Komsuoglu, H., Koditschek, D. E. & Goldman, D. I.2009Sensitive dependence of the motion of a legged robot on granular media. Proc. Natl Acad. Sci. USA106 (9), 3029-3034.
[28] Li, C., Zhang, T. & Goldman, D. I.2013A terradynamics of legged locomotion on granular media. Science339 (6126), 1408-1412.
[29] Liu, C. H., Nagel, S. R., Schecter, D. A., Coppersmith, S. N., Majumdar, S., Narayan, O. & Witten, T. A.1995Force fluctuations in bead packs. Science269 (5223), 513-515.
[30] Loret de Mola Lemus, D., Kohanbash, D., Moreland, S. & Wettergreen, D.2014Slope descent using plowing to minimize slip for planetary rovers. J. Field Rob.31 (5), 803-819.
[31] McKyes, E.1985Soil Cutting and Tillage, vol. 7. Elsevier.
[32] McKyes, E. & Ali, O. S.1977The cutting of soil by narrow blades. J. Terramechanics14 (2), 43-58.
[33] Metcalfe, G., Tennakoon, S. G. K., Kondic, L., Schaeffer, D. G. & Behringer, R. P.2002Granular friction, coulomb failure, and the fluid-solid transition for horizontally shaken granular materials. Phys. Rev. E65 (3), 031302.
[34] MiDi, G. D. R.2004On dense granular flows. Eur. Phys. J. E14 (4), 341-365.
[35] Moreland, S., Skonieczny, K., Inotsume, H. & Wettergreen, D.2012Soil behavior of wheels with grousers for planetary rovers. In 2012 IEEE Aerospace Conference, pp. 1-8. IEEE.
[36] Murthy, T. G., Gnanamanickam, E. & Chandrasekar, S.2012Deformation field in indentation of a granular ensemble. Phys. Rev. E85 (6), 061306.
[37] Murthy, T. G., Saldana, C., Yadav, S. & Du, F.2013Experimental studies on the kinematics of cutting in granular materials. AIP Conf. Proc.1542, 919-922.
[38] Nedderman, R. M.1992Statics and Kinematics of Granular Materials. Cambridge University Press.
[39] Obermayr, M., Dressler, K., Vrettos, C. & Eberhard, P.2011Prediction of draft forces in cohesionless soil with the discrete element method. J. Terramechanics48 (5), 347-358.
[40] Oldroyd, J. G.1947A rational formulation of the equations of plastic flow for a Bingham solid. Math. Proc. Camb. Phil. Soc.43, 100-105. · Zbl 0029.32702
[41] Ono, I., Nakashima, H., Shimizu, H., Miyasaka, J. & Ohdoi, K.2013Investigation of elemental shape for 3D DEM modeling of interaction between soil and a narrow cutting tool. J. Terramechanics50 (4), 265-276.
[42] Palmer, A. C.1999Speed effects in cutting and ploughing. Gèotechnique49 (3), 285-294.
[43] Pawar, H.2013 Interaction laws in discrete element method. MTech thesis, Indian Institute of Technology, Kanpur, India.
[44] Percier, B., Manneville, S., McElwaine, J. N., Morris, S. W. & Taberlet, N.2011Lift and drag forces on an inclined plow moving over a granular surface. Phys. Rev. E84 (5), 051302.
[45] Pitman, E. B. & Schaeffer, D. G.1987Stability of time dependent compressible granular flow in two dimensions. Commun. Pure Appl. Maths40 (4), 421-447. · Zbl 0676.76046
[46] Pouliquen, O. & Forterre, Y.2009A non-local rheology for dense granular flows. Proc. R. Soc. Lond. A367 (1909), 5091-5107. · Zbl 1192.76062
[47] Prager, W.1961Introduction to Mechanics of Continua. Ginn and Co. · Zbl 0094.18602
[48] Qiong, G., Pitt, R. E. & Ruina, A.1986A model to predict soil forces on the plough mouldboard. J. Agric. Engng Res.35 (3), 141-155.
[49] R Core Team2013R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.
[50] Rubin, M. B.2012Analytical formulas for penetration of a long rigid projectile including the effect of cavitation. Intl J. Impact Engng40, 1-9.
[51] Sauret, A., Balmforth, N. J., Caulfield, C. P. & McElwaine, J. N.2014Bulldozing of granular material. J. Fluid Mech.748, 143-174.
[52] Schaeffer, D. G.1987Instability in the evolution equations describing incompressible granular flow. J. Differ. Equ.66 (1), 19-50. · Zbl 0647.35037
[53] Schaeffer, D. G.1990Instability and ill-posedness in the deformation of granular materials. Intl J. Num. Anal. Meth. Geomech.14 (4), 253-278. · Zbl 0727.73026
[54] Schaeffer, D. G. & Pitman, E. B.1988Ill-posedness in three-dimensional plastic flow. Commun. Pure Appl. Maths41 (7), 879-890. · Zbl 0644.73037
[55] Seguin, A., Bertho, Y., Gondret, P. & Crassous, J.2011Dense granular flow around a penetrating object: experiment and hydrodynamic model. Phys. Rev. Lett.107 (4), 048001.
[56] Sevenhuijsen, P. J., Sirkis, J. S. & Bremand, F.1993Current trends in obtaining deformation data from grids. Expl Techn.17 (3), 22-26.
[57] Sharma, I.2017Shapes and Dynamics of Granular Minor Planets: The Dynamics of Deformable Bodies Applied to Granular Objects in the Solar System. Springer International Publishing.
[58] Sharma, I.2019High-speed impacts of slender bodies into non-smooth, complex fluids. J. Fluid Mech.861, R1. · Zbl 1415.76719
[59] Shmulevich, I., Asaf, Z. & Rubinstein, D.2007Interaction between soil and a wide cutting blade using the discrete element method. Soil Till. Res.97 (1), 37-50.
[60] Silbert, L. E., Ertaş, D., Grest, G. S., Halsey, T. C., Levine, D. & Plimpton, S. J.2001Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E64 (5), 051302.
[61] Slonaker, J., Motley, D. C., Zhang, Q., Townsend, S., Senatore, C., Iagnemma, K. & Kamrin, K.2017General scaling relations for locomotion in granular media. Phys. Rev. E95 (5), 052901.
[62] Sokolovski, V. V.1960Statics of Solid Media. Butterworths Scientific Publications.
[63] Tanaka, H., Momozu, M., Oida, A. & Yamazaki, M.2000Simulation of soil deformation and resistance at bar penetration by the distinct element method. J. Terramechanics37 (1), 41-56.
[64] Tate, A.1967A theory for the deceleration of long rods after impact. J. Mech. Phys. Solids15, 387-399.
[65] Tate, A.1969Further results in the theory of long rod penetration. J. Mech. Phys. Solids17, 141-150.
[66] Tate, A.1978A simple hydrodynamic model for the strain field produced in a target by the penetration of a high speed long rod projectile. Intl J. Engng Sci.16, 845-858.
[67] Tate, A.1986aLong rod penetration models. Part I. A flow field model for high speed long rod penetration. Intl J. Mech. Sci.28, 535-548.
[68] Tate, A.1986bLong rod penetration models. Part II. Extensions to the hydrodynamic theory of penetration. Intl J. Mech. Sci.28, 599-612.
[69] Thomas, B. J. & Schaeffer, D. G.1988Nonlinear behavior of model equations which are linearly ill-posed. Commun. Partial Diff. Eq.13 (4), 423-467. · Zbl 0679.35082
[70] Tripathi, A. & Khakhar, D. V.2010Steady flow of smooth, inelastic particles on a bumpy inclined plane: hard and soft particle simulations. Phys. Rev. E81 (4), 041307.
[71] Tsuji, T., Nakagawa, Y., Matsumoto, N., Kadono, Y., Takayama, T. & Tanaka, T.20123-D DEM simulation of cohesive soil-pushing behavior by bulldozer blade. J. Terramechanics49 (1), 37-47.
[72] Wettergreen, D., Moreland, S., Skonieczny, K., Jonak, D., Kohanbash, D. & Teza, J.2010Design and field experimentation of a prototype lunar prospector. Intl J. Rob. Res.29 (12), 1550-1564.
[73] Wieghardt, K.1975Experiments in granular flow. Annu. Rev. Fluid Mech.7 (1), 89-114. · Zbl 0355.76005
[74] Yadav, S., Saldana, C. & Murthy, T. G.2015Deformation field evolution in indentation of a porous brittle solid. Intl J. Solids Struct.66, 35-45.
[75] Yarin, A. L., Rubin, M. B. & Roisman, I. V.1995Penetration of a rigid projectile into an elastic-plastic target of finite thickness. Intl J. Impact Engng16, 801-831.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.