Wen, Qiang; Liu, Bin Global boundedness in an oncolytic virotherapy model with generalized logistic source. (English) Zbl 07643825 Z. Angew. Math. Phys. 74, No. 1, Paper No. 38, 33 p. (2023). MSC: 35B45 35A09 35K51 35K57 92C17 PDF BibTeX XML Cite \textit{Q. Wen} and \textit{B. Liu}, Z. Angew. Math. Phys. 74, No. 1, Paper No. 38, 33 p. (2023; Zbl 07643825) Full Text: DOI OpenURL
Heihoff, Frederic Global solutions to a haptotaxis system with a potentially degenerate diffusion tensor in two and three dimensions. (English) Zbl 07643251 Nonlinearity 36, No. 2, 1245-1278 (2023). MSC: 35D30 35K51 35K59 35K65 35K55 92C17 PDF BibTeX XML Cite \textit{F. Heihoff}, Nonlinearity 36, No. 2, 1245--1278 (2023; Zbl 07643251) Full Text: DOI arXiv OpenURL
Tang, Hui; Yuan, Yunfei Optimal control for a chemotaxis-haptotaxis model in two space dimensions. (English) Zbl 07619609 Bound. Value Probl. 2022, Paper No. 79, 33 p. (2022). Reviewer: Piotr Biler (Wrocław) MSC: 92C17 35Q92 49J20 49K20 PDF BibTeX XML Cite \textit{H. Tang} and \textit{Y. Yuan}, Bound. Value Probl. 2022, Paper No. 79, 33 p. (2022; Zbl 07619609) Full Text: DOI OpenURL
Zhang, Danqing; Jin, Chunhua Global solvability to a cancer invasion model with remodeling of ECM and porous medium diffusion. (English) Zbl 07619349 Commun. Math. Sci. 20, No. 6, 1493-1516 (2022). MSC: 35D30 35K51 35K59 35K61 35K65 92C17 PDF BibTeX XML Cite \textit{D. Zhang} and \textit{C. Jin}, Commun. Math. Sci. 20, No. 6, 1493--1516 (2022; Zbl 07619349) Full Text: DOI OpenURL
Zhao, Qian; Liu, Bin Dampening effects on global boundedness in a quartic haptotactic model with fusogenic oncolytic virus and syncytia. (English) Zbl 07615112 Z. Angew. Math. Phys. 73, No. 6, Paper No. 242, 21 p. (2022). MSC: 35Q92 35A09 35K65 92C17 35A01 PDF BibTeX XML Cite \textit{Q. Zhao} and \textit{B. Liu}, Z. Angew. Math. Phys. 73, No. 6, Paper No. 242, 21 p. (2022; Zbl 07615112) Full Text: DOI OpenURL
Zheng, Jiashan; Xie, Jianing Global classical solutions to a higher-dimensional doubly haptotactic cross-diffusion system modeling oncolytic virotherapy. (English) Zbl 1500.35067 J. Differ. Equations 340, 111-150 (2022). MSC: 35B45 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{J. Zheng} and \textit{J. Xie}, J. Differ. Equations 340, 111--150 (2022; Zbl 1500.35067) Full Text: DOI OpenURL
Xiang, Tian Finite time blow-up in the higher dimensional parabolic-elliptic-ODE minimal chemotaxis-haptotaxis system. (English) Zbl 1496.35109 J. Differ. Equations 336, 44-72 (2022). MSC: 35B44 35B45 35A01 35A09 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{T. Xiang}, J. Differ. Equations 336, 44--72 (2022; Zbl 1496.35109) Full Text: DOI OpenURL
Ito, Akio Quasi-variational structure approach to systems with degenerate diffusions. (English) Zbl 1495.35222 Rend. Semin. Mat. Univ. Padova 147, 169-235 (2022). MSC: 35R70 34G25 47J22 47J35 49J40 35Q92 PDF BibTeX XML Cite \textit{A. Ito}, Rend. Semin. Mat. Univ. Padova 147, 169--235 (2022; Zbl 1495.35222) Full Text: DOI OpenURL
Ito, Akio Perturbation theory of evolution inclusions on real Hilbert spaces with quasi-variational structures for inner products. (English) Zbl 07527617 Rend. Mat. Appl., VII. Ser. 43, No. 3, 173-249 (2022). Reviewer: Daniel C. Biles (Nashville) MSC: 34G25 47J35 47N20 92C17 34D10 PDF BibTeX XML Cite \textit{A. Ito}, Rend. Mat. Appl., VII. Ser. 43, No. 3, 173--249 (2022; Zbl 07527617) Full Text: Link OpenURL
Liu, Meng; Li, Yuxiang Global generalized solutions of a haptotaxis model describing cancer cells invasion and metastatic spread. (English) Zbl 1484.35270 Commun. Pure Appl. Anal. 21, No. 3, 927-942 (2022). MSC: 35K65 35B45 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{M. Liu} and \textit{Y. Li}, Commun. Pure Appl. Anal. 21, No. 3, 927--942 (2022; Zbl 1484.35270) Full Text: DOI OpenURL
Tao, Youshan; Winkler, Michael Asymptotic stability of spatial homogeneity in a haptotaxis model for oncolytic virotherapy. (English) Zbl 1484.35363 Proc. R. Soc. Edinb., Sect. A, Math. 152, No. 1, 81-101 (2022). Reviewer: Vincenzo Vespri (Firenze) MSC: 35Q92 35B40 35B33 35B44 35K57 92C17 PDF BibTeX XML Cite \textit{Y. Tao} and \textit{M. Winkler}, Proc. R. Soc. Edinb., Sect. A, Math. 152, No. 1, 81--101 (2022; Zbl 1484.35363) Full Text: DOI arXiv OpenURL
Dai, Feng; Liu, Bin A new result for global solvability of a two species cancer invasion haptotaxis model with tissue remodeling. (English) Zbl 1481.35252 SIAM J. Math. Anal. 54, No. 1, 1-35 (2022). MSC: 35K51 35K59 35A01 35A09 92C17 35Q92 PDF BibTeX XML Cite \textit{F. Dai} and \textit{B. Liu}, SIAM J. Math. Anal. 54, No. 1, 1--35 (2022; Zbl 1481.35252) Full Text: DOI OpenURL
Dai, Feng; Liu, Bin Global boundedness for a \(N\)-dimensional two species cancer invasion haptotaxis model with tissue remodeling. (English) Zbl 1480.35070 Discrete Contin. Dyn. Syst., Ser. B 27, No. 1, 311-341 (2022). MSC: 35B45 35K51 35K55 35A01 35A09 92C17 PDF BibTeX XML Cite \textit{F. Dai} and \textit{B. Liu}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 1, 311--341 (2022; Zbl 1480.35070) Full Text: DOI OpenURL
Tao, Xueyan; Zhou, Shulin Dampening effects on global boundedness and asymptotic behavior in an oncolytic virotherapy model. (English) Zbl 1479.35119 J. Differ. Equations 308, 57-76 (2022). MSC: 35B40 35K51 35K57 92C17 PDF BibTeX XML Cite \textit{X. Tao} and \textit{S. Zhou}, J. Differ. Equations 308, 57--76 (2022; Zbl 1479.35119) Full Text: DOI OpenURL
Surulescu, Christina; Winkler, Michael Does indirectness of signal production reduce the explosion-supporting potential in chemotaxis-haptotaxis systems? Global classical solvability in a class of models for cancer invasion (and more). (English) Zbl 07629671 Eur. J. Appl. Math. 32, No. 4, 618-651 (2021). MSC: 35Q92 35B44 35K55 92C17 35A01 PDF BibTeX XML Cite \textit{C. Surulescu} and \textit{M. Winkler}, Eur. J. Appl. Math. 32, No. 4, 618--651 (2021; Zbl 07629671) Full Text: DOI arXiv OpenURL
Tao, Youshan; Winkler, Michael A critical virus production rate for efficiency of oncolytic virotherapy. (English) Zbl 07629666 Eur. J. Appl. Math. 32, No. 2, 301-316 (2021). MSC: 35B40 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{Y. Tao} and \textit{M. Winkler}, Eur. J. Appl. Math. 32, No. 2, 301--316 (2021; Zbl 07629666) Full Text: DOI OpenURL
Domgno Kuipou, W.; Mohamadou, A.; Kengne, E. Cellular transport through nonlinear mechanical waves in fibrous and absorbing biological tissues. (English) Zbl 1496.35395 Chaos Solitons Fractals 152, Article ID 111321, 14 p. (2021). MSC: 35Q92 92C17 92C37 92D25 35Q56 PDF BibTeX XML Cite \textit{W. Domgno Kuipou} et al., Chaos Solitons Fractals 152, Article ID 111321, 14 p. (2021; Zbl 1496.35395) Full Text: DOI OpenURL
Jia, Zhe; Yang, Zuodong Global boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion and signal production. (English) Zbl 07572465 Acta Math. Sci., Ser. A, Chin. Ed. 41, No. 5, 1382-1395 (2021). MSC: 35K55 35B35 PDF BibTeX XML Cite \textit{Z. Jia} and \textit{Z. Yang}, Acta Math. Sci., Ser. A, Chin. Ed. 41, No. 5, 1382--1395 (2021; Zbl 07572465) Full Text: Link OpenURL
Jin, Hai-Yang; Xu, Jiao Analysis of the role of convection in a system describing the tumor-induced angiogenesis. (English) Zbl 1479.35103 Commun. Math. Sci. 19, No. 4, 1033-1049 (2021). MSC: 35B40 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{H.-Y. Jin} and \textit{J. Xu}, Commun. Math. Sci. 19, No. 4, 1033--1049 (2021; Zbl 1479.35103) Full Text: DOI OpenURL
Jafarian Khaled-Abad, Leila; Salehi, Rezvan Application of weak Galerkin finite element method for nonlinear chemotaxis and haptotaxis models. (English) Zbl 07425037 Appl. Math. Comput. 409, Article ID 126436, 29 p. (2021). MSC: 35Q92 65M60 65M15 92Bxx 92C17 35B44 35K55 PDF BibTeX XML Cite \textit{L. Jafarian Khaled-Abad} and \textit{R. Salehi}, Appl. Math. Comput. 409, Article ID 126436, 29 p. (2021; Zbl 07425037) Full Text: DOI OpenURL
Jin, Hai-Yang; Xiang, Tian Negligibility of haptotaxis effect in a chemotaxis-haptotaxis model. (English) Zbl 07423866 Math. Models Methods Appl. Sci. 31, No. 7, 1373-1417 (2021). MSC: 35K51 35K55 35B44 35B45 92C17 35A01 35A09 PDF BibTeX XML Cite \textit{H.-Y. Jin} and \textit{T. Xiang}, Math. Models Methods Appl. Sci. 31, No. 7, 1373--1417 (2021; Zbl 07423866) Full Text: DOI arXiv OpenURL
Wang, Hui; Zheng, Pan; Xing, Jie Boundedness in a chemotaxis-haptotaxis model with gradient-dependent flux limitation. (English) Zbl 1480.35382 Appl. Math. Lett. 122, Article ID 107505, 9 p. (2021). Reviewer: Anna Zhigun (Belfast) MSC: 35Q92 35K55 92C17 PDF BibTeX XML Cite \textit{H. Wang} et al., Appl. Math. Lett. 122, Article ID 107505, 9 p. (2021; Zbl 1480.35382) Full Text: DOI OpenURL
Ren, Guoqiang; Liu, Bin Global classical solvability in a three-dimensional haptotaxis system modeling oncolytic virotherapy. (English) Zbl 1475.35363 Math. Methods Appl. Sci. 44, No. 11, 9275-9291 (2021). MSC: 35Q92 92C17 92C50 35K45 35A01 35B45 PDF BibTeX XML Cite \textit{G. Ren} and \textit{B. Liu}, Math. Methods Appl. Sci. 44, No. 11, 9275--9291 (2021; Zbl 1475.35363) Full Text: DOI OpenURL
Ren, Guoqiang; Wei, Jinlong Analysis of a two-dimensional triply haptotactic model with a fusogenic oncolytic virus and syncytia. (English) Zbl 1466.35241 Z. Angew. Math. Phys. 72, No. 4, Paper No. 134, 23 p. (2021). MSC: 35K51 35K59 35A01 35B45 92C17 35Q92 PDF BibTeX XML Cite \textit{G. Ren} and \textit{J. Wei}, Z. Angew. Math. Phys. 72, No. 4, Paper No. 134, 23 p. (2021; Zbl 1466.35241) Full Text: DOI OpenURL
Tao, Xueyan Global classical solutions to an oncolytic viral therapy model with triply haptotactic terms. (English) Zbl 1464.35379 Acta Appl. Math. 171, Paper No. 5, 11 p. (2021). MSC: 35Q92 92C17 92C37 92C50 35A09 35A01 35K57 PDF BibTeX XML Cite \textit{X. Tao}, Acta Appl. Math. 171, Paper No. 5, 11 p. (2021; Zbl 1464.35379) Full Text: DOI OpenURL
Tao, Xueyan Global weak solutions to an oncolytic viral therapy model with doubly haptotactic terms. (English) Zbl 1466.92083 Nonlinear Anal., Real World Appl. 60, Article ID 103276, 22 p. (2021). MSC: 92C50 35D30 34C60 PDF BibTeX XML Cite \textit{X. Tao}, Nonlinear Anal., Real World Appl. 60, Article ID 103276, 22 p. (2021; Zbl 1466.92083) Full Text: DOI OpenURL
Shangerganesh, L.; Sathishkumar, G.; Nyamoradi, N.; Karthikeyan, S. Blow-up phenomena of a cancer invasion model with nonlinear diffusion and haptotaxis term. (English) Zbl 1464.35376 Bull. Malays. Math. Sci. Soc. (2) 44, No. 3, 1215-1231 (2021). MSC: 35Q92 92C17 92C37 35B44 35K57 PDF BibTeX XML Cite \textit{L. Shangerganesh} et al., Bull. Malays. Math. Sci. Soc. (2) 44, No. 3, 1215--1231 (2021; Zbl 1464.35376) Full Text: DOI OpenURL
Niño-Celis, Viviana; Rueda-Gómez, Diego A.; Villamizar-Roa, Élder J. Convergence and positivity of finite element methods for a haptotaxis model of tumoral invasion. (English) Zbl 07336178 Comput. Math. Appl. 89, 20-33 (2021). MSC: 92-XX 65-XX PDF BibTeX XML Cite \textit{V. Niño-Celis} et al., Comput. Math. Appl. 89, 20--33 (2021; Zbl 07336178) Full Text: DOI arXiv OpenURL
Takhirov, J. O. On a free boundary problem for a competition system. (English) Zbl 1488.35646 Uzb. Math. J. 2020, No. 1, 129-143 (2020). MSC: 35R35 92C17 35K51 35Q92 35B40 PDF BibTeX XML Cite \textit{J. O. Takhirov}, Uzb. Math. J. 2020, No. 1, 129--143 (2020; Zbl 1488.35646) Full Text: DOI OpenURL
Chen, Zhen Dampening effect of logistic source in a two-dimensional haptotaxis system with nonlinear zero-order interaction. (English) Zbl 1462.35412 J. Math. Anal. Appl. 492, No. 1, Article ID 124435, 17 p. (2020). MSC: 35Q92 92C17 92C50 35B35 35A01 35A09 PDF BibTeX XML Cite \textit{Z. Chen}, J. Math. Anal. Appl. 492, No. 1, Article ID 124435, 17 p. (2020; Zbl 1462.35412) Full Text: DOI arXiv OpenURL
Eckardt, Maria; Painter, Kevin J.; Surulescu, Christina; Zhigun, Anna Nonlocal and local models for taxis in cell migration: a rigorous limit procedure. (English) Zbl 1458.35422 J. Math. Biol. 81, No. 6-7, 1251-1298 (2020). MSC: 35Q92 92C17 35K55 35R09 47G20 35B45 35D30 35A01 PDF BibTeX XML Cite \textit{M. Eckardt} et al., J. Math. Biol. 81, No. 6--7, 1251--1298 (2020; Zbl 1458.35422) Full Text: DOI arXiv OpenURL
Jin, Chunhua Global solvability and stabilization to a cancer invasion model with remodelling of ECM. (English) Zbl 1451.35236 Nonlinearity 33, No. 10, 5049-5079 (2020). MSC: 35Q92 35M13 92C17 35A09 35B40 PDF BibTeX XML Cite \textit{C. Jin}, Nonlinearity 33, No. 10, 5049--5079 (2020; Zbl 1451.35236) Full Text: DOI OpenURL
Dai, Feng; Liu, Bin Asymptotic stability in a quasilinear chemotaxis-haptotaxis model with general logistic source and nonlinear signal production. (English) Zbl 1458.35052 J. Differ. Equations 269, No. 12, 10839-10918 (2020). Reviewer: Takashi Suzuki (Osaka) MSC: 35B40 35B65 92C17 35K59 35K51 PDF BibTeX XML Cite \textit{F. Dai} and \textit{B. Liu}, J. Differ. Equations 269, No. 12, 10839--10918 (2020; Zbl 1458.35052) Full Text: DOI OpenURL
Liu, Ling; Zheng, Jiashan; Li, Yu; Yan, Weifang A new (and optimal) result for the boundedness of a solution of a quasilinear chemotaxis-haptotaxis model (with a logistic source). (English) Zbl 1448.35518 J. Math. Anal. Appl. 491, No. 1, Article ID 124231, 27 p. (2020). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35B40 92C17 PDF BibTeX XML Cite \textit{L. Liu} et al., J. Math. Anal. Appl. 491, No. 1, Article ID 124231, 27 p. (2020; Zbl 1448.35518) Full Text: DOI OpenURL
Benito, J. J.; García, A.; Gavete, L.; Negreanu, M.; Ureña, F.; Vargas, A. M. Solving a chemotaxis-haptotaxis system in 2D using generalized finite difference method. (English) Zbl 1447.65069 Comput. Math. Appl. 80, No. 5, 762-777 (2020). MSC: 65M60 65M06 65N30 65M12 35K51 92C17 92C37 35Q92 PDF BibTeX XML Cite \textit{J. J. Benito} et al., Comput. Math. Appl. 80, No. 5, 762--777 (2020; Zbl 1447.65069) Full Text: DOI OpenURL
Tao, Youshan; Winkler, Michael A critical virus production rate for blow-up suppression in a haptotaxis model for oncolytic virotherapy. (English) Zbl 1442.35480 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 198, Article ID 111870, 16 p. (2020). MSC: 35Q92 92C17 92C50 35B33 35B40 35K57 PDF BibTeX XML Cite \textit{Y. Tao} and \textit{M. Winkler}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 198, Article ID 111870, 16 p. (2020; Zbl 1442.35480) Full Text: DOI OpenURL
Sweidan, Mohyeedden; Chen, Xiaojun; Zheng, Xiaoming The Shortley-Weller scheme for variable coefficient two-point boundary value problems and its application to tumor growth problem with heterogeneous microenvironment. (English) Zbl 1436.65160 J. Comput. Appl. Math. 376, Article ID 112874, 17 p. (2020). MSC: 65N06 65N12 65N15 92C17 92C37 35Q92 35R05 76Z05 76S05 PDF BibTeX XML Cite \textit{M. Sweidan} et al., J. Comput. Appl. Math. 376, Article ID 112874, 17 p. (2020; Zbl 1436.65160) Full Text: DOI OpenURL
Winkler, Michael; Stinner, Christian Refined regularity and stabilization properties in a degenerate haptotaxis system. (English) Zbl 1437.35434 Discrete Contin. Dyn. Syst. 40, No. 6, 4039-4058 (2020). Reviewer: Piotr Biler (Wrocław) MSC: 35K65 35Q92 35B40 92C17 PDF BibTeX XML Cite \textit{M. Winkler} and \textit{C. Stinner}, Discrete Contin. Dyn. Syst. 40, No. 6, 4039--4058 (2020; Zbl 1437.35434) Full Text: DOI OpenURL
Liu, Changchun; Li, Pingping Global existence for a chemotaxis-haptotaxis model with \(p\)-Laplacian. (English) Zbl 1433.92007 Commun. Pure Appl. Anal. 19, No. 3, 1399-1419 (2020). MSC: 92C17 35K92 35Q92 PDF BibTeX XML Cite \textit{C. Liu} and \textit{P. Li}, Commun. Pure Appl. Anal. 19, No. 3, 1399--1419 (2020; Zbl 1433.92007) Full Text: DOI OpenURL
Tao, Youshan; Winkler, Michael Global classical solutions to a doubly haptotactic cross-diffusion system modeling oncolytic virotherapy. (English) Zbl 1430.35132 J. Differ. Equations 268, No. 9, 4973-4997 (2020). MSC: 35K57 35A01 35Q92 92C17 PDF BibTeX XML Cite \textit{Y. Tao} and \textit{M. Winkler}, J. Differ. Equations 268, No. 9, 4973--4997 (2020; Zbl 1430.35132) Full Text: DOI OpenURL
Liu, Changchun; Li, Pingping Boundedness and global solvability for a chemotaxis-haptotaxis model with \(p\)-Laplacian diffusion. (English) Zbl 1432.92019 Electron. J. Differ. Equ. 2020, Paper No. 16, 16 p. (2020). MSC: 92C17 35K65 35K92 35Q92 PDF BibTeX XML Cite \textit{C. Liu} and \textit{P. Li}, Electron. J. Differ. Equ. 2020, Paper No. 16, 16 p. (2020; Zbl 1432.92019) Full Text: Link OpenURL
Dai, Feng; Liu, Bin Global boundedness of classical solutions to a two species cancer invasion haptotaxis model with tissue remodeling. (English) Zbl 1431.35212 J. Math. Anal. Appl. 483, No. 1, Article ID 123583, 33 p. (2020). MSC: 35Q92 92C17 92C37 35B65 35B45 35A01 35A02 PDF BibTeX XML Cite \textit{F. Dai} and \textit{B. Liu}, J. Math. Anal. Appl. 483, No. 1, Article ID 123583, 33 p. (2020; Zbl 1431.35212) Full Text: DOI OpenURL
Lei, Long; Li, Zhongping Boundedness in a quasilinear chemotaxis-haptotaxis model of parabolic-parabolic-ODE type. (English) Zbl 07634282 Bound. Value Probl. 2019, No. 1, Paper No. 138, 18 p. (2019). MSC: 35B65 35K55 35Q92 92C17 PDF BibTeX XML Cite \textit{L. Lei} and \textit{Z. Li}, Bound. Value Probl. 2019, No. 1, Paper No. 138, 18 p. (2019; Zbl 07634282) Full Text: DOI OpenURL
Jin, Chunhua Global existence and large time behavior of solutions to a haptotaxis model with self-remodeling mechanisms. (Chinese. English summary) Zbl 1499.35432 Sci. Sin., Math. 49, No. 12, 1779-1792 (2019). MSC: 35M10 35A09 35B35 92C17 PDF BibTeX XML Cite \textit{C. Jin}, Sci. Sin., Math. 49, No. 12, 1779--1792 (2019; Zbl 1499.35432) Full Text: DOI OpenURL
Li, Dan; Mu, Chunlai; Yi, Hong Global boundedness in a three-dimensional chemotaxis-haptotaxis model. (English) Zbl 1442.92015 Comput. Math. Appl. 77, No. 9, 2447-2462 (2019). MSC: 92C17 35Q92 PDF BibTeX XML Cite \textit{D. Li} et al., Comput. Math. Appl. 77, No. 9, 2447--2462 (2019; Zbl 1442.92015) Full Text: DOI OpenURL
Shangerganesh, L.; Nyamoradi, N.; Sathishkumar, G.; Karthikeyan, S. Finite-time blow-up of solutions to a cancer invasion mathematical model with haptotaxis effects. (English) Zbl 1442.92017 Comput. Math. Appl. 77, No. 8, 2242-2254 (2019). MSC: 92C17 92C32 35K51 35M33 35Q92 PDF BibTeX XML Cite \textit{L. Shangerganesh} et al., Comput. Math. Appl. 77, No. 8, 2242--2254 (2019; Zbl 1442.92017) Full Text: DOI OpenURL
Zheng, Jiashan Mathematical research for models which is related to chemotaxis system. (English) Zbl 1442.35487 Dutta, Hemen (ed.) et al., Current trends in mathematical analysis and its interdisciplinary applications. Cham: Birkhäuser. 351-444 (2019). MSC: 35Q92 92C17 35Q30 76D05 76Z05 PDF BibTeX XML Cite \textit{J. Zheng}, in: Current trends in mathematical analysis and its interdisciplinary applications. Cham: Birkhäuser. 351--444 (2019; Zbl 1442.35487) Full Text: DOI OpenURL
Pera, Donato; Málaga, Carlos; Simeoni, Chiara; Plaza, Ramón G. On the efficient numerical simulation of heterogeneous anisotropic diffusion models for tumor invasion using GPUs. (English) Zbl 1437.35678 Rend. Mat. Appl., VII. Ser. 40, No. 3-4, 233-255 (2019). MSC: 35Q92 65M06 65Y05 65Y15 65Y20 92C17 92C37 92C50 PDF BibTeX XML Cite \textit{D. Pera} et al., Rend. Mat. Appl., VII. Ser. 40, No. 3--4, 233--255 (2019; Zbl 1437.35678) Full Text: Link OpenURL
Pang, Peter Y. H.; Wang, Yifu Asymptotic behavior of solutions to a tumor angiogenesis model with chemotaxis-haptotaxis. (English) Zbl 1427.35295 Math. Models Methods Appl. Sci. 29, No. 7, 1387-1412 (2019). MSC: 35Q92 92C17 35A01 35B35 35K57 35B40 PDF BibTeX XML Cite \textit{P. Y. H. Pang} and \textit{Y. Wang}, Math. Models Methods Appl. Sci. 29, No. 7, 1387--1412 (2019; Zbl 1427.35295) Full Text: DOI arXiv OpenURL
Xiang, Tian; Zheng, Jiashan A new result for 2D boundedness of solutions to a chemotaxis-haptotaxis model with/without sub-logistic source. (English) Zbl 1425.35110 Nonlinearity 32, No. 12, 4890-4911 (2019). MSC: 35K59 35Q92 35K55 35K20 92C17 PDF BibTeX XML Cite \textit{T. Xiang} and \textit{J. Zheng}, Nonlinearity 32, No. 12, 4890--4911 (2019; Zbl 1425.35110) Full Text: DOI arXiv OpenURL
Chen, Zhen; Tao, Youshan Large-data solutions in a three-dimensional chemotaxis-haptotaxis system with remodeling of non-diffusible attractant: the role of sub-linear production of diffusible signal. (English) Zbl 1423.35194 Acta Appl. Math. 163, 129-143 (2019). MSC: 35K57 35Q92 35A01 35B65 92C17 PDF BibTeX XML Cite \textit{Z. Chen} and \textit{Y. Tao}, Acta Appl. Math. 163, 129--143 (2019; Zbl 1423.35194) Full Text: DOI OpenURL
Dai, Feng; Liu, Bin Optimal control and pattern formation for a haptotaxis model of solid tumor invasion. (English) Zbl 1423.92020 J. Franklin Inst. 356, No. 16, 9364-9406 (2019). MSC: 92C17 92C15 92C50 35Q92 49N90 PDF BibTeX XML Cite \textit{F. Dai} and \textit{B. Liu}, J. Franklin Inst. 356, No. 16, 9364--9406 (2019; Zbl 1423.92020) Full Text: DOI OpenURL
Liu, Ling; Zheng, Jiashan Global existence and boundedness of solution of a parabolic-parabolic-ODE chemotaxis-haptotaxis model with (generalized) logistic source. (English) Zbl 1418.92018 Discrete Contin. Dyn. Syst., Ser. B 24, No. 7, 3357-3377 (2019). MSC: 92C17 35Q92 PDF BibTeX XML Cite \textit{L. Liu} and \textit{J. Zheng}, Discrete Contin. Dyn. Syst., Ser. B 24, No. 7, 3357--3377 (2019; Zbl 1418.92018) Full Text: DOI OpenURL
Zheng, Jiashan; Ke, Yuanyuan Large time behavior of solutions to a fully parabolic chemotaxis-haptotaxis model in \(N\) dimensions. (English) Zbl 1416.92031 J. Differ. Equations 266, No. 4, 1969-2018 (2019). MSC: 92C17 35Q92 PDF BibTeX XML Cite \textit{J. Zheng} and \textit{Y. Ke}, J. Differ. Equations 266, No. 4, 1969--2018 (2019; Zbl 1416.92031) Full Text: DOI OpenURL
Meral, Gülnihal DRBEM-FDM solution of a chemotaxis-haptotaxis model for cancer invasion. (English) Zbl 1418.92019 J. Comput. Appl. Math. 354, 299-309 (2019). MSC: 92C17 92C50 65M38 92-08 PDF BibTeX XML Cite \textit{G. Meral}, J. Comput. Appl. Math. 354, 299--309 (2019; Zbl 1418.92019) Full Text: DOI OpenURL
Tao, Youshan; Winkler, Michael A chemotaxis-haptotaxis system with haptoattractant remodeling: boundedness enforced by mild saturation of signal production. (English) Zbl 1412.35181 Commun. Pure Appl. Anal. 18, No. 4, 2047-2067 (2019). MSC: 35K57 35Q92 35A01 35B65 92C17 PDF BibTeX XML Cite \textit{Y. Tao} and \textit{M. Winkler}, Commun. Pure Appl. Anal. 18, No. 4, 2047--2067 (2019; Zbl 1412.35181) Full Text: DOI OpenURL
Brunk, A.; Kolbe, N.; Sfakianakis, N. Chemotaxis and haptotaxis on cellular level. (English) Zbl 1405.92029 Klingenberg, Christian (ed.) et al., Theory, numerics and applications of hyperbolic problems I, Aachen, Germany, August 2016. Cham: Springer (ISBN 978-3-319-91544-9/hbk; 978-3-319-91545-6/ebook). Springer Proceedings in Mathematics & Statistics 236, 249-261 (2018). MSC: 92C17 35Q92 PDF BibTeX XML Cite \textit{A. Brunk} et al., Springer Proc. Math. Stat. 236, 249--261 (2018; Zbl 1405.92029) Full Text: DOI arXiv OpenURL
Giesselmann, Jan; Kolbe, Niklas; Lukáčová-Medviďová, Mária; Sfakianakis, Nikolaos Existence and uniqueness of global classical solutions to a two dimensional two species cancer invasion haptotaxis model. (English) Zbl 1406.35429 Discrete Contin. Dyn. Syst., Ser. B 23, No. 10, 4397-4431 (2018). MSC: 35Q92 35B09 35B45 35B65 92B05 92C17 35A09 92C37 35A01 35A02 PDF BibTeX XML Cite \textit{J. Giesselmann} et al., Discrete Contin. Dyn. Syst., Ser. B 23, No. 10, 4397--4431 (2018; Zbl 1406.35429) Full Text: DOI arXiv OpenURL
Ke, Yuanyuan; Zheng, Jiashan A note for global existence of a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant. (English) Zbl 1396.92009 Nonlinearity 31, No. 10, 4602-4620 (2018). MSC: 92C17 35K55 35K59 35K20 35Q92 PDF BibTeX XML Cite \textit{Y. Ke} and \textit{J. Zheng}, Nonlinearity 31, No. 10, 4602--4620 (2018; Zbl 1396.92009) Full Text: DOI OpenURL
Jin, Chunhua Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion. (English) Zbl 1396.92008 Discrete Contin. Dyn. Syst., Ser. B 23, No. 4, 1675-1688 (2018). MSC: 92C17 35Q92 35K57 PDF BibTeX XML Cite \textit{C. Jin}, Discrete Contin. Dyn. Syst., Ser. B 23, No. 4, 1675--1688 (2018; Zbl 1396.92008) Full Text: DOI OpenURL
Jin, Chunhua Global classical solution and boundedness to a chemotaxis-haptotaxis model with re-establishment mechanisms. (English) Zbl 1396.92007 Bull. Lond. Math. Soc. 50, No. 4, 598-618 (2018). MSC: 92C17 35Q92 PDF BibTeX XML Cite \textit{C. Jin}, Bull. Lond. Math. Soc. 50, No. 4, 598--618 (2018; Zbl 1396.92007) Full Text: DOI OpenURL
Xu, Tianyuan; Ji, Shanming; Mei, Ming; Yin, Jingxue Global existence of solutions to a chemotaxis-haptotaxis model with density-dependent jump probability and quorum-sensing mechanisms. (English) Zbl 1397.92105 Math. Methods Appl. Sci. 41, No. 11, 4208-4226 (2018). MSC: 92C17 92C50 35Q92 PDF BibTeX XML Cite \textit{T. Xu} et al., Math. Methods Appl. Sci. 41, No. 11, 4208--4226 (2018; Zbl 1397.92105) Full Text: DOI OpenURL
Mizukami, Masaaki; Otsuka, Hirohiko; Yokota, Tomomi Global existence and boundedness in a chemotaxis-haptotaxis system with signal-dependent sensitivity. (English) Zbl 06867351 J. Math. Anal. Appl. 464, No. 1, 354-369 (2018). MSC: 35-XX 32-XX PDF BibTeX XML Cite \textit{M. Mizukami} et al., J. Math. Anal. Appl. 464, No. 1, 354--369 (2018; Zbl 06867351) Full Text: DOI OpenURL
Zhigun, Anna; Surulescu, Christina; Hunt, Alexander A strongly degenerate diffusion-haptotaxis model of tumour invasion under the go-or-grow dichotomy hypothesis. (English) Zbl 1390.35383 Math. Methods Appl. Sci. 41, No. 6, 2403-2428 (2018). MSC: 35Q92 35B45 35D30 35K57 35K65 92C17 65M08 PDF BibTeX XML Cite \textit{A. Zhigun} et al., Math. Methods Appl. Sci. 41, No. 6, 2403--2428 (2018; Zbl 1390.35383) Full Text: DOI arXiv Link OpenURL
Ganesan, Sashikumaar; Lingeshwaran, Shangerganesh A biophysical model of tumor invasion. (English) Zbl 1485.92050 Commun. Nonlinear Sci. Numer. Simul. 46, 135-152 (2017). MSC: 92C50 92C37 92C17 PDF BibTeX XML Cite \textit{S. Ganesan} and \textit{S. Lingeshwaran}, Commun. Nonlinear Sci. Numer. Simul. 46, 135--152 (2017; Zbl 1485.92050) Full Text: DOI OpenURL
Winkler, Michael; Surulescu, Christina Global weak solutions to a strongly degenerate haptotaxis model. (English) Zbl 1390.35164 Commun. Math. Sci. 15, No. 6, 1581-1616 (2017). MSC: 35K57 35K65 35K51 35D30 35K55 35Q30 35Q92 92C17 PDF BibTeX XML Cite \textit{M. Winkler} and \textit{C. Surulescu}, Commun. Math. Sci. 15, No. 6, 1581--1616 (2017; Zbl 1390.35164) Full Text: DOI arXiv OpenURL
Ganesan, Sashikumaar; Lingeshwaran, Shangerganesh Galerkin finite element method for cancer invasion mathematical model. (English) Zbl 1370.92070 Comput. Math. Appl. 73, No. 12, 2603-2617 (2017). MSC: 92C50 65M60 35Q92 PDF BibTeX XML Cite \textit{S. Ganesan} and \textit{S. Lingeshwaran}, Comput. Math. Appl. 73, No. 12, 2603--2617 (2017; Zbl 1370.92070) Full Text: DOI OpenURL
Wang, Liangchen; Mu, Chunlai; Hu, Xuegang; Tian, Ya Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source. (English) Zbl 1369.35102 Math. Methods Appl. Sci. 40, No. 8, 3000-3016 (2017). MSC: 35Q92 92C17 35K55 35B40 PDF BibTeX XML Cite \textit{L. Wang} et al., Math. Methods Appl. Sci. 40, No. 8, 3000--3016 (2017; Zbl 1369.35102) Full Text: DOI OpenURL
Zheng, Jiashan Boundedness of the solution of a higher-dimensional parabolic-ODE-parabolic chemotaxis-haptotaxis model with generalized logistic source. (English) Zbl 1368.92033 Nonlinearity 30, No. 5, 1987-2009 (2017). MSC: 92C17 35K55 35K59 35K20 PDF BibTeX XML Cite \textit{J. Zheng}, Nonlinearity 30, No. 5, 1987--2009 (2017; Zbl 1368.92033) Full Text: DOI arXiv OpenURL
Pang, Peter Y. H.; Wang, Yifu Global existence of a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant. (English) Zbl 1364.35121 J. Differ. Equations 263, No. 2, 1269-1292 (2017). MSC: 35K45 35B45 35K55 35Q92 92C17 PDF BibTeX XML Cite \textit{P. Y. H. Pang} and \textit{Y. Wang}, J. Differ. Equations 263, No. 2, 1269--1292 (2017; Zbl 1364.35121) Full Text: DOI OpenURL
Hu, Xuegang; Wang, Liangchen; Mu, Chunlai; Li, Ling Boundedness in a three-dimensional chemotaxis-haptotaxis model with nonlinear diffusion. (Existence de solution bornée pour les modèles tri-dimensionnels de chimio-haptotaxie avec diffusion non-linéaire.) (English. French summary) Zbl 1359.92014 C. R., Math., Acad. Sci. Paris 355, No. 2, 181-186 (2017). Reviewer: Piotr Biler (Wrocław) MSC: 92C17 35K57 35Q92 PDF BibTeX XML Cite \textit{X. Hu} et al., C. R., Math., Acad. Sci. Paris 355, No. 2, 181--186 (2017; Zbl 1359.92014) Full Text: DOI OpenURL
Zheng, Jiashan Boundedness of solutions to a quasilinear higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion. (English) Zbl 1353.92026 Discrete Contin. Dyn. Syst. 37, No. 1, 627-643 (2017). MSC: 92C17 35K55 35K59 35K20 PDF BibTeX XML Cite \textit{J. Zheng}, Discrete Contin. Dyn. Syst. 37, No. 1, 627--643 (2017; Zbl 1353.92026) Full Text: DOI OpenURL
Zheng, Jiashan; Wang, Yifu Boundedness of solutions to a quasilinear chemotaxis-haptotaxis model. (English) Zbl 1443.92063 Comput. Math. Appl. 71, No. 9, 1898-1909 (2016). MSC: 92C17 35A09 35M33 PDF BibTeX XML Cite \textit{J. Zheng} and \textit{Y. Wang}, Comput. Math. Appl. 71, No. 9, 1898--1909 (2016; Zbl 1443.92063) Full Text: DOI OpenURL
Zhigun, Anna; Surulescu, Christina; Uatay, Aydar Global existence for a degenerate haptotaxis model of cancer invasion. (English) Zbl 1359.35205 Z. Angew. Math. Phys. 67, No. 6, Article ID 146, 29 p. (2016). MSC: 35Q92 35B45 35D30 35K20 35K51 35K59 35K65 92C17 65M08 65M50 PDF BibTeX XML Cite \textit{A. Zhigun} et al., Z. Angew. Math. Phys. 67, No. 6, Article ID 146, 29 p. (2016; Zbl 1359.35205) Full Text: DOI arXiv OpenURL
Stinner, Christian; Surulescu, Christina; Uatay, Aydar Global existence for a go-or-grow multiscale model for tumor invasion with therapy. (English) Zbl 1348.35282 Math. Models Methods Appl. Sci. 26, No. 11, 2163-2201 (2016). MSC: 35Q92 92C17 35K57 35B40 PDF BibTeX XML Cite \textit{C. Stinner} et al., Math. Models Methods Appl. Sci. 26, No. 11, 2163--2201 (2016; Zbl 1348.35282) Full Text: DOI OpenURL
Zheng, Pan Global boundedness and decay for a multi-dimensional chemotaxis-haptotaxis system with nonlinear diffusion. (English) Zbl 1349.35159 Discrete Contin. Dyn. Syst., Ser. B 21, No. 6, 2039-2056 (2016). MSC: 35K40 35B45 35B33 35K57 92C17 PDF BibTeX XML Cite \textit{P. Zheng}, Discrete Contin. Dyn. Syst., Ser. B 21, No. 6, 2039--2056 (2016; Zbl 1349.35159) Full Text: DOI OpenURL
Li, Yan; Lankeit, Johannes Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion. (English) Zbl 1338.35438 Nonlinearity 29, No. 5, 1564-1595 (2016). MSC: 35Q92 35K55 35B40 92C17 PDF BibTeX XML Cite \textit{Y. Li} and \textit{J. Lankeit}, Nonlinearity 29, No. 5, 1564--1595 (2016; Zbl 1338.35438) Full Text: DOI arXiv OpenURL
Liu, Ji; Zheng, Jiashan; Wang, Yifu Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source. (English) Zbl 1342.35412 Z. Angew. Math. Phys. 67, No. 2, Article ID 21, 33 p. (2016). MSC: 35Q92 35B65 35K55 92C17 35K59 PDF BibTeX XML Cite \textit{J. Liu} et al., Z. Angew. Math. Phys. 67, No. 2, Article ID 21, 33 p. (2016; Zbl 1342.35412) Full Text: DOI OpenURL
Cao, Xinru Boundedness in a three-dimensional chemotaxis-haptotaxis model. (English) Zbl 1375.35566 Z. Angew. Math. Phys. 67, No. 1, Article ID 11, 13 p. (2016). MSC: 35Q92 35K57 35B35 35B40 92C17 PDF BibTeX XML Cite \textit{X. Cao}, Z. Angew. Math. Phys. 67, No. 1, Article ID 11, 13 p. (2016; Zbl 1375.35566) Full Text: DOI arXiv OpenURL
Wang, Yifu Boundedness in a multi-dimensional chemotaxis-haptotaxis model with nonlinear diffusion. (English) Zbl 1381.35195 Appl. Math. Lett. 59, 122-126 (2016). MSC: 35Q92 92C17 35K51 35M33 PDF BibTeX XML Cite \textit{Y. Wang}, Appl. Math. Lett. 59, 122--126 (2016; Zbl 1381.35195) Full Text: DOI OpenURL
Zheng, Pan; Mu, Chunlai; Song, Xiaojun On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion. (English) Zbl 1334.35112 Discrete Contin. Dyn. Syst. 36, No. 3, 1737-1757 (2016). MSC: 35K55 35B45 35B33 35K57 92C17 PDF BibTeX XML Cite \textit{P. Zheng} et al., Discrete Contin. Dyn. Syst. 36, No. 3, 1737--1757 (2016; Zbl 1334.35112) Full Text: DOI OpenURL
Wang, Yifu; Ke, Yuanyuan Large time behavior of solution to a fully parabolic chemotaxis-haptotaxis model in higher dimensions. (English) Zbl 1336.35070 J. Differ. Equations 260, No. 9, 6960-6988 (2016). Reviewer: Piotr Biler (Wrocław) MSC: 35B40 92C17 35K55 35Q92 35K51 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{Y. Ke}, J. Differ. Equations 260, No. 9, 6960--6988 (2016; Zbl 1336.35070) Full Text: DOI OpenURL
Wang, Yifu Boundedness in the higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion. (English) Zbl 1332.35152 J. Differ. Equations 260, No. 2, 1975-1989 (2016). MSC: 35K51 35B65 35K55 35Q92 92C17 PDF BibTeX XML Cite \textit{Y. Wang}, J. Differ. Equations 260, No. 2, 1975--1989 (2016; Zbl 1332.35152) Full Text: DOI OpenURL
Qu, Xiaochen Global existence in a fully parabolic two-dimensional chemotaxis-haptotaxis model with tissue remodeling. (Chinese. English summary) Zbl 1349.35190 Basic Sci. J. Text. Univ. 28, No. 4, 431-439 (2015). MSC: 35K57 35A09 35B45 PDF BibTeX XML Cite \textit{X. Qu}, Basic Sci. J. Text. Univ. 28, No. 4, 431--439 (2015; Zbl 1349.35190) Full Text: DOI OpenURL
Muñoz, Ana I.; Ignacio Tello, J. Numerical resolution of a reinforced random walk model arising in haptotaxis. (English) Zbl 1338.92030 Appl. Math. Comput. 256, 415-424 (2015). MSC: 92C17 65M25 65M60 82C41 PDF BibTeX XML Cite \textit{A. I. Muñoz} and \textit{J. Ignacio Tello}, Appl. Math. Comput. 256, 415--424 (2015; Zbl 1338.92030) Full Text: DOI Link OpenURL
Li, Yuhuan; Lin, Ke; Mu, Chunlai Boundedness and asymptotic behavior of solutions to a chemotaxis-haptotaxis model in high dimensions. (English) Zbl 1328.35075 Appl. Math. Lett. 50, 91-97 (2015). MSC: 35K51 92C17 35Q92 35B40 PDF BibTeX XML Cite \textit{Y. Li} et al., Appl. Math. Lett. 50, 91--97 (2015; Zbl 1328.35075) Full Text: DOI OpenURL
Tao, Youshan; Winkler, Michael Large time behavior in a multidimensional chemotaxis-haptotaxis model with slow signal diffusion. (English) Zbl 1328.35103 SIAM J. Math. Anal. 47, No. 6, 4229-4250 (2015). Reviewer: Piotr Biler (Wroclaw) MSC: 35K57 92C17 35B40 35Q92 PDF BibTeX XML Cite \textit{Y. Tao} and \textit{M. Winkler}, SIAM J. Math. Anal. 47, No. 6, 4229--4250 (2015; Zbl 1328.35103) Full Text: DOI OpenURL
Meral, Gülnihal; Stinner, Christian; Surulescu, Christina On a multiscale model involving cell contractivity and its effects on tumor invasion. (English) Zbl 1304.35708 Discrete Contin. Dyn. Syst., Ser. B 20, No. 1, 189-213 (2015). MSC: 35Q92 92C17 35K57 PDF BibTeX XML Cite \textit{G. Meral} et al., Discrete Contin. Dyn. Syst., Ser. B 20, No. 1, 189--213 (2015; Zbl 1304.35708) Full Text: DOI OpenURL
Tao, Youshan; Winkler, Michael Boundedness and stabilization in a multi-dimensional chemotaxis-haptotaxis model. (English) Zbl 1312.35171 Proc. R. Soc. Edinb., Sect. A, Math. 144, No. 5, 1067-1084 (2014). Reviewer: Boris V. Loginov (Ul’yanovsk) MSC: 35Q92 92C17 35B35 35B41 PDF BibTeX XML Cite \textit{Y. Tao} and \textit{M. Winkler}, Proc. R. Soc. Edinb., Sect. A, Math. 144, No. 5, 1067--1084 (2014; Zbl 1312.35171) Full Text: DOI OpenURL
Stinner, Christian; Surulescu, Christina; Winkler, Michael Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion. (English) Zbl 1301.35189 SIAM J. Math. Anal. 46, No. 3, 1969-2007 (2014). Reviewer: Boris V. Loginov (Ul’yanovsk) MSC: 35Q92 92C17 35K57 35B40 35D30 PDF BibTeX XML Cite \textit{C. Stinner} et al., SIAM J. Math. Anal. 46, No. 3, 1969--2007 (2014; Zbl 1301.35189) Full Text: DOI OpenURL
Fan, Jishan; Zhao, Kun A note on a 3D haptotaxis model of cancer invasion. (English) Zbl 1291.35411 AMRX, Appl. Math. Res. Express 2014, No. 1, 74-86 (2014). MSC: 35Q92 92C17 PDF BibTeX XML Cite \textit{J. Fan} and \textit{K. Zhao}, AMRX, Appl. Math. Res. Express 2014, No. 1, 74--86 (2014; Zbl 1291.35411) Full Text: DOI OpenURL
Morales-Rodrigo, Cristian; Tello, J. Ignacio Global existence and asymptotic behavior of a tumor angiogenesis model with chemotaxis and haptotaxis. (English) Zbl 1293.35043 Math. Models Methods Appl. Sci. 24, No. 3, 427-464 (2014). MSC: 35B40 35B35 35K57 92C17 35K51 PDF BibTeX XML Cite \textit{C. Morales-Rodrigo} and \textit{J. I. Tello}, Math. Models Methods Appl. Sci. 24, No. 3, 427--464 (2014; Zbl 1293.35043) Full Text: DOI OpenURL
Pohlmeyer, J. V.; Waters, S. L.; Cummings, L. J. Mathematical model of growth factor driven haptotaxis and proliferation in a tissue engineering scaffold. (English) Zbl 1308.92033 Bull. Math. Biol. 75, No. 3, 393-427 (2013). MSC: 92C40 92C37 PDF BibTeX XML Cite \textit{J. V. Pohlmeyer} et al., Bull. Math. Biol. 75, No. 3, 393--427 (2013; Zbl 1308.92033) Full Text: DOI OpenURL
Hillen, Thomas; Painter, Kevin J.; Winkler, Michael Convergence of a cancer invasion model to a logistic chemotaxis model. (English) Zbl 1263.35204 Math. Models Methods Appl. Sci. 23, No. 1, 165-198 (2013). Reviewer: E. Ahmed (Mansoura) MSC: 35Q92 35B33 92C17 PDF BibTeX XML Cite \textit{T. Hillen} et al., Math. Models Methods Appl. Sci. 23, No. 1, 165--198 (2013; Zbl 1263.35204) Full Text: DOI OpenURL
Perthame, Benoît; Vasseur, Alexis Regularization in Keller-Segel type systems and the De Giorgi method. (English) Zbl 1288.35146 Commun. Math. Sci. 10, No. 2, 463-476 (2012). Reviewer: Yaping Liu (Pittsburg) MSC: 35B65 92C17 35K45 35K59 PDF BibTeX XML Cite \textit{B. Perthame} and \textit{A. Vasseur}, Commun. Math. Sci. 10, No. 2, 463--476 (2012; Zbl 1288.35146) Full Text: DOI Link OpenURL
Logak, Elisabeth; Wang, Chao The singular limit of a haptotaxis model with bistable growth. (English) Zbl 1264.35256 Commun. Pure Appl. Anal. 11, No. 1, 209-228 (2012). MSC: 35Q92 35B25 35K57 35B50 35R35 92C17 PDF BibTeX XML Cite \textit{E. Logak} and \textit{C. Wang}, Commun. Pure Appl. Anal. 11, No. 1, 209--228 (2012; Zbl 1264.35256) Full Text: DOI arXiv OpenURL
Kolev, Mikhail; Zubik-Kowal, Barbara Numerical versus experimental data for prostate tumour growth. (English) Zbl 1404.92097 J. Biol. Syst. 19, No. 1, 33-46 (2011). MSC: 92C50 92C15 35Q92 PDF BibTeX XML Cite \textit{M. Kolev} and \textit{B. Zubik-Kowal}, J. Biol. Syst. 19, No. 1, 33--46 (2011; Zbl 1404.92097) Full Text: DOI OpenURL
Kolev, Mikhail; Zubnik-Kowal, Barbara Numerical experiments with model equations of cancer invasion of tissue. (English) Zbl 1318.92024 Control Cybern. 40, No. 3, 779-791 (2011). MSC: 92C50 92C17 93A30 PDF BibTeX XML Cite \textit{M. Kolev} and \textit{B. Zubnik-Kowal}, Control Cybern. 40, No. 3, 779--791 (2011; Zbl 1318.92024) OpenURL
Andasari, Vivi; Gerisch, Alf; Lolas, Georgios; South, Andrew P.; Chaplain, Mark A. J. Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation. (English) Zbl 1230.92022 J. Math. Biol. 63, No. 1, 141-171 (2011). MSC: 92C50 35K57 92C17 35Q92 PDF BibTeX XML Cite \textit{V. Andasari} et al., J. Math. Biol. 63, No. 1, 141--171 (2011; Zbl 1230.92022) Full Text: DOI OpenURL
Tao, Youshan Global existence for a haptotaxis model of cancer invasion with tissue remodeling. (English) Zbl 1205.35144 Nonlinear Anal., Real World Appl. 12, No. 1, 418-435 (2011). MSC: 35K51 35Q92 35B45 PDF BibTeX XML Cite \textit{Y. Tao}, Nonlinear Anal., Real World Appl. 12, No. 1, 418--435 (2011; Zbl 1205.35144) Full Text: DOI OpenURL