Fu, Xueshan; Jung, Seoung Dal Liouville type theorem for \((\mathcal{F},\mathcal{F}')_p\)-harmonic maps on foliations. (English) Zbl 07686785 Result. Math. 78, No. 4, Paper No. 131, 21 p. (2023). MSC: 53C12 53C21 58J50 PDF BibTeX XML Cite \textit{X. Fu} and \textit{S. D. Jung}, Result. Math. 78, No. 4, Paper No. 131, 21 p. (2023; Zbl 07686785) Full Text: DOI arXiv OpenURL
Meena, Kiran; Yadav, Akhilesh Conformal submersions whose total manifolds admit a Ricci soliton. (English) Zbl 07686488 Mediterr. J. Math. 20, No. 3, Paper No. 168, 26 p. (2023). MSC: 53B20 53C12 53C25 53C43 PDF BibTeX XML Cite \textit{K. Meena} and \textit{A. Yadav}, Mediterr. J. Math. 20, No. 3, Paper No. 168, 26 p. (2023; Zbl 07686488) Full Text: DOI arXiv OpenURL
Ferraris, Francisco; Moas, Ruth Paola; Salvai, Marcos Harmonic unit normal sections of Grassmannians associated with cross products. (English) Zbl 07683437 Rev. Mat. Complut. 36, No. 2, 443-468 (2023). MSC: 17A35 53C15 53C30 53C43 58E20 PDF BibTeX XML Cite \textit{F. Ferraris} et al., Rev. Mat. Complut. 36, No. 2, 443--468 (2023; Zbl 07683437) Full Text: DOI arXiv OpenURL
Park, Kwang Soon; Szabo, Sylvia On the almost h-conformal semi-invariant Riemannian maps. (English) Zbl 07681686 Quaest. Math. 46, No. 2, 375-392 (2023). MSC: 53C15 53C26 53C43 PDF BibTeX XML Cite \textit{K. S. Park} and \textit{S. Szabo}, Quaest. Math. 46, No. 2, 375--392 (2023; Zbl 07681686) Full Text: DOI OpenURL
Benoist, Yves; Hulin, Dominique Harmonic quasi-isometric maps. III: Quotients of Hadamard manifolds. (English) Zbl 07681241 Geom. Dedicata 217, No. 3, Paper No. 52, 37 p. (2023). MSC: 53C43 53C24 53C35 58E20 20H10 PDF BibTeX XML Cite \textit{Y. Benoist} and \textit{D. Hulin}, Geom. Dedicata 217, No. 3, Paper No. 52, 37 p. (2023; Zbl 07681241) Full Text: DOI arXiv OpenURL
Pillai, Mohandas Infinite time blow-up solutions to the energy critical wave maps equation. (English) Zbl 07679300 Memoirs of the American Mathematical Society 1407. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-5993-2/pbk; 978-1-4704-7445-4/ebook). v, 242 p. (2023). MSC: 35-02 35L71 35Q75 PDF BibTeX XML Cite \textit{M. Pillai}, Infinite time blow-up solutions to the energy critical wave maps equation. Providence, RI: American Mathematical Society (AMS) (2023; Zbl 07679300) Full Text: DOI arXiv OpenURL
Deng, Bin; Sun, Liming; Wei, Juncheng Non-degeneracy and quantitative stability of half-harmonic maps from \(\mathbb{R}\) to \(\mathbb{S}\). (English) Zbl 07679036 Adv. Math. 420, Article ID 108979, 42 p. (2023). MSC: 35B38 35B06 58E20 PDF BibTeX XML Cite \textit{B. Deng} et al., Adv. Math. 420, Article ID 108979, 42 p. (2023; Zbl 07679036) Full Text: DOI arXiv OpenURL
Belishev, Mikhail I.; Korikov, Dmitrii V. Stability of determination of Riemann surface from its DN-map in terms of holomorphic immersions. (English) Zbl 07674280 J. Inverse Ill-Posed Probl. 31, No. 2, 159-176 (2023). MSC: 35R30 46J15 46J20 30F15 PDF BibTeX XML Cite \textit{M. I. Belishev} and \textit{D. V. Korikov}, J. Inverse Ill-Posed Probl. 31, No. 2, 159--176 (2023; Zbl 07674280) Full Text: DOI OpenURL
Levi, Mark; Zhou, Jing Arnold tongues in area-preserving maps. (English) Zbl 07673751 Arch. Ration. Mech. Anal. 247, No. 3, Paper No. 32, 18 p. (2023). MSC: 70K42 70K60 35Q70 39A23 PDF BibTeX XML Cite \textit{M. Levi} and \textit{J. Zhou}, Arch. Ration. Mech. Anal. 247, No. 3, Paper No. 32, 18 p. (2023; Zbl 07673751) Full Text: DOI arXiv OpenURL
Kar, Manas; Railo, Jesse; Zimmermann, Philipp The fractional \(p\)-biharmonic systems: optimal Poincaré constants, unique continuation and inverse problems. (English) Zbl 07672479 Calc. Var. Partial Differ. Equ. 62, No. 4, Paper No. 130, 36 p. (2023). MSC: 35R30 26A33 35B60 35J92 42B37 46F12 PDF BibTeX XML Cite \textit{M. Kar} et al., Calc. Var. Partial Differ. Equ. 62, No. 4, Paper No. 130, 36 p. (2023; Zbl 07672479) Full Text: DOI arXiv OpenURL
Alama, Stan; Bronsard, Lia; Lamy, Xavier; Venkatraman, Raghavendra Far-field expansions for harmonic maps and the electrostatics analogy in nematic suspensions. (English) Zbl 07667631 J. Nonlinear Sci. 33, No. 3, Paper No. 39, 27 p. (2023). MSC: 35J20 31B05 PDF BibTeX XML Cite \textit{S. Alama} et al., J. Nonlinear Sci. 33, No. 3, Paper No. 39, 27 p. (2023; Zbl 07667631) Full Text: DOI arXiv OpenURL
Izeki, Hiroyasu Isometric group actions with vanishing rate of escape on \(\mathrm{CAT}(0)\) spaces. (English) Zbl 07662890 Geom. Funct. Anal. 33, No. 1, 170-244 (2023). Reviewer: V. V. Gorbatsevich (Moskva) MSC: 53C23 20F65 PDF BibTeX XML Cite \textit{H. Izeki}, Geom. Funct. Anal. 33, No. 1, 170--244 (2023; Zbl 07662890) Full Text: DOI arXiv OpenURL
Kadaoui Abbassi, Mohamed Tahar; Lakrini, Ibrahim Some classes of harmonic functions on vector bundles. (English) Zbl 07661904 Beitr. Algebra Geom. 64, No. 1, 175-196 (2023). MSC: 53C07 53C24 53C25 PDF BibTeX XML Cite \textit{M. T. Kadaoui Abbassi} and \textit{I. Lakrini}, Beitr. Algebra Geom. 64, No. 1, 175--196 (2023; Zbl 07661904) Full Text: DOI OpenURL
Inoguchi, Jun-ichi; Munteanu, Marian Ioan Magnetic unit vector fields. (English) Zbl 07658155 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 2, Paper No. 71, 23 p. (2023). MSC: 53B25 53C22 53C43 53D25 PDF BibTeX XML Cite \textit{J.-i. Inoguchi} and \textit{M. I. Munteanu}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 2, Paper No. 71, 23 p. (2023; Zbl 07658155) Full Text: DOI arXiv OpenURL
Toft, Joachim; Bhimani, Divyang G.; Manna, Ramesh Trace mappings on quasi-Banach modulation spaces and applications to pseudo-differential operators of amplitude type. (English) Zbl 1507.35359 Anal. Appl., Singap. 21, No. 2, 453-495 (2023). MSC: 35S05 46F05 42B35 PDF BibTeX XML Cite \textit{J. Toft} et al., Anal. Appl., Singap. 21, No. 2, 453--495 (2023; Zbl 1507.35359) Full Text: DOI arXiv OpenURL
Edmunds, D. E.; Lang, J. Non-compact embeddings of Sobolev spaces. (English) Zbl 07638343 J. Approx. Theory 286, Article ID 105848, 6 p. (2023). MSC: 41-XX 42-XX 46E35 47B06 47H08 PDF BibTeX XML Cite \textit{D. E. Edmunds} and \textit{J. Lang}, J. Approx. Theory 286, Article ID 105848, 6 p. (2023; Zbl 07638343) Full Text: DOI OpenURL
Lu, Canhui; Chen, Xingdi Unicity theorem for generalized Gauss maps of immersed harmonic surfaces. (English) Zbl 1502.32002 J. Math. Anal. Appl. 519, No. 2, Article ID 126827, 22 p. (2023). MSC: 32H30 53A10 PDF BibTeX XML Cite \textit{C. Lu} and \textit{X. Chen}, J. Math. Anal. Appl. 519, No. 2, Article ID 126827, 22 p. (2023; Zbl 1502.32002) Full Text: DOI OpenURL
Li, Jiayu; Zhu, Chaona; Zhu, Miaomiao The qualitative behavior for \(\alpha \)-harmonic maps from a surface with boundary into a sphere. (English) Zbl 07618835 Trans. Am. Math. Soc. 376, No. 1, 391-417 (2023). Reviewer: Adela-Gabriela Mihai (Bucureşti) MSC: 53C43 58E20 PDF BibTeX XML Cite \textit{J. Li} et al., Trans. Am. Math. Soc. 376, No. 1, 391--417 (2023; Zbl 07618835) Full Text: DOI OpenURL
Branding, Volker; Siffert, Anna On the equivariant stability of harmonic self-maps of cohomogeneity one manifolds. (English) Zbl 1504.58011 J. Math. Anal. Appl. 517, No. 2, Article ID 126635, 19 p. (2023). Reviewer: Vladimir Balan (Bucureşti) MSC: 58E20 53C43 PDF BibTeX XML Cite \textit{V. Branding} and \textit{A. Siffert}, J. Math. Anal. Appl. 517, No. 2, Article ID 126635, 19 p. (2023; Zbl 1504.58011) Full Text: DOI arXiv OpenURL
Sung, Chiung-Jue Anna Convex hull property for ancient harmonic map heat flows. (English) Zbl 07681983 Math. Res. Lett. 29, No. 5, 1571-1594 (2022). MSC: 53E99 35K55 PDF BibTeX XML Cite \textit{C.-J. A. Sung}, Math. Res. Lett. 29, No. 5, 1571--1594 (2022; Zbl 07681983) Full Text: DOI OpenURL
Srivastava, S. K.; Sood, K.; Srivastava, K. Characterization of biharmonic hypersurface. (English) Zbl 07666061 Res. Math. 30, No. 2, 34-54 (2022). MSC: 53C40 58E20 53C15 PDF BibTeX XML Cite \textit{S. K. Srivastava} et al., Res. Math. 30, No. 2, 34--54 (2022; Zbl 07666061) Full Text: DOI OpenURL
Qian, Chao; Tang, Zizhou; Yan, Wenjiao Clifford systems, harmonic maps and metrics with nonnegative curvature. (English) Zbl 07655341 Pac. J. Math. 320, No. 2, 391-424 (2022). Reviewer: Guy Boyde (Utrecht) MSC: 55R25 53C20 55Q40 58E20 PDF BibTeX XML Cite \textit{C. Qian} et al., Pac. J. Math. 320, No. 2, 391--424 (2022; Zbl 07655341) Full Text: DOI arXiv OpenURL
Kikuchi, Keiichi; Takeuchi, Tsukasa Integrability theorems of free systems and symplectic Haantjes structures. (English) Zbl 07636582 J. Geom. Symmetry Phys. 63, 39-64 (2022). MSC: 37J35 37J39 53C43 53D05 70H03 70H06 PDF BibTeX XML Cite \textit{K. Kikuchi} and \textit{T. Takeuchi}, J. Geom. Symmetry Phys. 63, 39--64 (2022; Zbl 07636582) Full Text: DOI OpenURL
Abbes, Mohammed Elmahdi; Ouakkas, Seddik On generalized \(\mathcal{D}\)-conformal deformations of almost contact metric manifolds and harmonic maps. (English) Zbl 07615971 Jordan J. Math. Stat. 15, No. 3B, 683-700 (2022). MSC: 53C25 53D15 58E20 PDF BibTeX XML Cite \textit{M. E. Abbes} and \textit{S. Ouakkas}, Jordan J. Math. Stat. 15, No. 3B, 683--700 (2022; Zbl 07615971) Full Text: DOI OpenURL
Cao, Xiangzhi; Chen, Qun Existence for \(VT\)-harmonic maps from compact manifolds with boundary. (English) Zbl 1506.58008 Sci. China, Math. 65, No. 11, 2371-2378 (2022). Reviewer: Antonio Masiello (Bari) MSC: 58E15 58E20 53C27 58A05 PDF BibTeX XML Cite \textit{X. Cao} and \textit{Q. Chen}, Sci. China, Math. 65, No. 11, 2371--2378 (2022; Zbl 1506.58008) Full Text: DOI OpenURL
Pérez-Ayala, Samuel Extremal metrics for the Paneitz operator on closed four-manifolds. (English) Zbl 1498.58011 J. Geom. Phys. 182, Article ID 104666, 26 p. (2022). MSC: 58E11 53C18 58D17 PDF BibTeX XML Cite \textit{S. Pérez-Ayala}, J. Geom. Phys. 182, Article ID 104666, 26 p. (2022; Zbl 1498.58011) Full Text: DOI arXiv OpenURL
Yeung, Sai-Kee Torelli locus and rigidity. (English) Zbl 1499.14050 Mich. Math. J. 72, 643-654 (2022). Reviewer: Nathan Grieve (Kingston) MSC: 14H15 14K10 53C24 53C43 PDF BibTeX XML Cite \textit{S.-K. Yeung}, Mich. Math. J. 72, 643--654 (2022; Zbl 1499.14050) Full Text: DOI Link OpenURL
Zarvalis, Konstantinos Characterizations of convergence by a given set of angles in simply connected domains. (English) Zbl 1502.30032 Bull. Sci. Math. 180, Article ID 103180, 25 p. (2022). MSC: 30C35 30D40 PDF BibTeX XML Cite \textit{K. Zarvalis}, Bull. Sci. Math. 180, Article ID 103180, 25 p. (2022; Zbl 1502.30032) Full Text: DOI arXiv OpenURL
Huang, Shaochuang; Tam, Luen-Fai Short-time existence for harmonic map heat flow with time-dependent metrics. (English) Zbl 1506.53104 J. Geom. Anal. 32, No. 12, Paper No. 287, 32 p. (2022). MSC: 53E20 35K58 53C43 PDF BibTeX XML Cite \textit{S. Huang} and \textit{L.-F. Tam}, J. Geom. Anal. 32, No. 12, Paper No. 287, 32 p. (2022; Zbl 1506.53104) Full Text: DOI arXiv OpenURL
Nakauchi, Nobumitsu Two results for symphonic maps under assumptions on \(m\)-symphonic energy. (English) Zbl 1498.58017 Result. Math. 77, No. 6, Paper No. 216, 23 p. (2022). MSC: 58E99 58E20 53C43 PDF BibTeX XML Cite \textit{N. Nakauchi}, Result. Math. 77, No. 6, Paper No. 216, 23 p. (2022; Zbl 1498.58017) Full Text: DOI OpenURL
Aal, Osama F. Abdel; Aal, Mohammad Abdel; Al Qaisia, Ahmad Nonlinear dynamic response of a stiffened imperfect beam under primary resonance excitation. (English) Zbl 1497.74016 J. Appl. Nonlinear Dyn. 11, No. 3, 667-702 (2022). MSC: 74H45 74K10 74H55 74H60 PDF BibTeX XML Cite \textit{O. F. A. Aal} et al., J. Appl. Nonlinear Dyn. 11, No. 3, 667--702 (2022; Zbl 1497.74016) Full Text: DOI OpenURL
Acet, Bilal Eftal; Kiy, Ferhat A study on bi-\(f\)-harmonic curves. (English) Zbl 1501.53026 Palest. J. Math. 11, No. 2, 420-429 (2022). MSC: 53C15 53B30 53B25 53C43 PDF BibTeX XML Cite \textit{B. E. Acet} and \textit{F. Kiy}, Palest. J. Math. 11, No. 2, 420--429 (2022; Zbl 1501.53026) Full Text: Link OpenURL
Benoist, Yves; Hulin, Dominique Harmonic quasi-isometries of pinched Hadamard surfaces are injective. (English) Zbl 1503.53129 Tunis. J. Math. 4, No. 2, 307-328 (2022). Reviewer: Vladimir Balan (Bucureşti) MSC: 53C43 30C62 58E20 PDF BibTeX XML Cite \textit{Y. Benoist} and \textit{D. Hulin}, Tunis. J. Math. 4, No. 2, 307--328 (2022; Zbl 1503.53129) Full Text: DOI arXiv OpenURL
Gumenyuk, Pavel; Roth, Oliver On the squeezing function for finitely connected planar domains. (English) Zbl 1504.30028 Math. Ann. 384, No. 1-2, 551-574 (2022). Reviewer: Dmitri V. Prokhorov (Saratov) MSC: 30C75 30C35 30C85 PDF BibTeX XML Cite \textit{P. Gumenyuk} and \textit{O. Roth}, Math. Ann. 384, No. 1--2, 551--574 (2022; Zbl 1504.30028) Full Text: DOI arXiv OpenURL
Bhattacharyya, Sombuddha; Ghosh, Tuhin An inverse problem on determining second order symmetric tensor for perturbed biharmonic operator. (English) Zbl 1497.35511 Math. Ann. 384, No. 1-2, 457-489 (2022). Reviewer: Giovanni S. Alberti (Genova) MSC: 35R30 35J40 31B20 31B30 PDF BibTeX XML Cite \textit{S. Bhattacharyya} and \textit{T. Ghosh}, Math. Ann. 384, No. 1--2, 457--489 (2022; Zbl 1497.35511) Full Text: DOI arXiv OpenURL
Yampolsky, Alexander On properties of the Reeb vector field of \((\alpha, \beta)\) trans-Sasakian structure. (English) Zbl 1503.53101 Turk. J. Math. 46, No. 6, 2321-2334 (2022). MSC: 53C25 PDF BibTeX XML Cite \textit{A. Yampolsky}, Turk. J. Math. 46, No. 6, 2321--2334 (2022; Zbl 1503.53101) Full Text: DOI OpenURL
Colombo, Giulio; Mari, Luciano; Rigoli, Marco Einstein-type structures, Besse’s conjecture, and a uniqueness result for a \(\varphi \)-CPE metric in its conformal class. (English) Zbl 1501.53044 J. Geom. Anal. 32, No. 11, Paper No. 267, 32 p. (2022). Reviewer: Andreas Arvanitoyeorgos (Patras) MSC: 53C20 53C25 53C21 35J47 58J60 PDF BibTeX XML Cite \textit{G. Colombo} et al., J. Geom. Anal. 32, No. 11, Paper No. 267, 32 p. (2022; Zbl 1501.53044) Full Text: DOI arXiv OpenURL
Yin, Hao Higher-order neck analysis of harmonic maps and its applications. (English) Zbl 1494.31015 Ann. Global Anal. Geom. 62, No. 2, 457-477 (2022). MSC: 31B05 53C43 58E20 PDF BibTeX XML Cite \textit{H. Yin}, Ann. Global Anal. Geom. 62, No. 2, 457--477 (2022; Zbl 1494.31015) Full Text: DOI arXiv OpenURL
Lin, Fang-Hua Relaxed energies, defect measures, and minimal currents. (English) Zbl 1496.58004 Frank, Rupert L. (ed.) et al., The physics and mathematics of Elliott Lieb. The 90th anniversary. Volume II. Berlin: European Mathematical Society (EMS). 19-29 (2022). Reviewer: Vladimir Balan (Bucureşti) MSC: 58E20 46E35 PDF BibTeX XML Cite \textit{F.-H. Lin}, in: The physics and mathematics of Elliott Lieb. The 90th anniversary. Volume II. Berlin: European Mathematical Society (EMS). 19--29 (2022; Zbl 1496.58004) Full Text: Link OpenURL
Monteil, Antonin; Rodiac, Rémy; Van Schaftingen, Jean Renormalised energies and renormalisable singular harmonic maps into a compact manifold on planar domains. (English) Zbl 1494.58005 Math. Ann. 383, No. 3-4, 1061-1125 (2022). Reviewer: Dumitru Motreanu (Perpignan) MSC: 58E20 49Q10 53C22 55S35 PDF BibTeX XML Cite \textit{A. Monteil} et al., Math. Ann. 383, No. 3--4, 1061--1125 (2022; Zbl 1494.58005) Full Text: DOI arXiv OpenURL
Nakauchi, Nobumitsu Conformality of rotationally symmetric maps. (English) Zbl 1493.58006 J. Geom. Phys. 179, Article ID 104575, 11 p. (2022). MSC: 58E99 58E20 53C43 53C21 PDF BibTeX XML Cite \textit{N. Nakauchi}, J. Geom. Phys. 179, Article ID 104575, 11 p. (2022; Zbl 1493.58006) Full Text: DOI OpenURL
Garcia, Ronaldo; Reznik, Dan A matryoshka of Brocard porisms. (English) Zbl 1494.51006 Eur. J. Math. 8, Suppl. 1, S308-S329 (2022). MSC: 51M04 51N20 53A04 PDF BibTeX XML Cite \textit{R. Garcia} and \textit{D. Reznik}, Eur. J. Math. 8, S308--S329 (2022; Zbl 1494.51006) Full Text: DOI OpenURL
Liu, Zhixue; Li, Yezhou; Chen, Xingdi The value distribution of Gauss maps of immersed harmonic surfaces with ramification. (English) Zbl 07560242 Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 1, 172-186 (2022). MSC: 32H25 30D35 53C42 30C65 PDF BibTeX XML Cite \textit{Z. Liu} et al., Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 1, 172--186 (2022; Zbl 07560242) Full Text: DOI OpenURL
Branding, Volker Dirac-harmonic maps with potential. (English) Zbl 1489.53073 Lett. Math. Phys. 112, No. 4, Paper No. 67, 23 p. (2022). MSC: 53C27 58E20 35J61 PDF BibTeX XML Cite \textit{V. Branding}, Lett. Math. Phys. 112, No. 4, Paper No. 67, 23 p. (2022; Zbl 1489.53073) Full Text: DOI arXiv OpenURL
Kohout, James; Rupflin, Melanie; Topping, Peter M. Uniqueness and nonuniqueness of limits of Teichmüller harmonic map flow. (English) Zbl 1507.53098 Adv. Calc. Var. 15, No. 3, 369-384 (2022). Reviewer: Andreas Gastel (Essen) MSC: 53E99 53C43 58E20 PDF BibTeX XML Cite \textit{J. Kohout} et al., Adv. Calc. Var. 15, No. 3, 369--384 (2022; Zbl 1507.53098) Full Text: DOI arXiv Link OpenURL
Bamler, Richard H.; Kleiner, Bruce Uniqueness and stability of Ricci flow through singularities. (English) Zbl 1504.53104 Acta Math. 228, No. 1, 1-215 (2022). Reviewer: Emil Saucan (Karmiel) MSC: 53E20 35K55 57R45 PDF BibTeX XML Cite \textit{R. H. Bamler} and \textit{B. Kleiner}, Acta Math. 228, No. 1, 1--215 (2022; Zbl 1504.53104) Full Text: DOI arXiv OpenURL
Gupta, Garima; Sachdeva, Rashmi; Kumar, Rakesh; Rani, Rachna On conformal Riemannian maps whose total manifold admits a Ricci soliton. (English) Zbl 1496.53077 J. Geom. Phys. 178, Article ID 104539, 19 p. (2022). MSC: 53C43 53C18 53B20 53E20 PDF BibTeX XML Cite \textit{G. Gupta} et al., J. Geom. Phys. 178, Article ID 104539, 19 p. (2022; Zbl 1496.53077) Full Text: DOI OpenURL
Zeng, Qingwei; Ge, Hongying; Fu, Junfeng; Gong, Lihua; Zou, Weiping Quantum watermarking algorithm based on quantum Haar wavelet transform and Hénon map. (English) Zbl 1497.81034 Int. J. Theor. Phys. 61, No. 6, Paper No. 167, 23 p. (2022). MSC: 81P68 90B80 68U05 68U10 42C40 PDF BibTeX XML Cite \textit{Q. Zeng} et al., Int. J. Theor. Phys. 61, No. 6, Paper No. 167, 23 p. (2022; Zbl 1497.81034) Full Text: DOI OpenURL
Ono, Masataka \(t\)-adic symmetrization map on the harmonic algebra. (English) Zbl 07541261 J. Algebra 606, 654-669 (2022). Reviewer: Sami Omar (Sukhair) MSC: 11M32 05C05 PDF BibTeX XML Cite \textit{M. Ono}, J. Algebra 606, 654--669 (2022; Zbl 07541261) Full Text: DOI arXiv OpenURL
Chai, Xiaoxiang; Kim, Inkang Scalar curvature, mean curvature and harmonic maps to the circle. (English) Zbl 1498.53087 Ann. Global Anal. Geom. 62, No. 1, 201-219 (2022). Reviewer: Gabriel Eduard Vilcu (Ploieşti) MSC: 53C43 53C21 53C25 PDF BibTeX XML Cite \textit{X. Chai} and \textit{I. Kim}, Ann. Global Anal. Geom. 62, No. 1, 201--219 (2022; Zbl 1498.53087) Full Text: DOI arXiv OpenURL
Nakauchi, Nobumitsu Rotationally symmetric symphonic maps. (English) Zbl 1494.58007 Ann. Global Anal. Geom. 62, No. 1, 83-92 (2022). Reviewer: Gabriel Eduard Vilcu (Ploieşti) MSC: 58E99 58E20 53C43 58D15 46T10 PDF BibTeX XML Cite \textit{N. Nakauchi}, Ann. Global Anal. Geom. 62, No. 1, 83--92 (2022; Zbl 1494.58007) Full Text: DOI OpenURL
Benaissa, Abdelmalek; Madani, Khaldia; Ouakkas, Seddik Conformal deformation, biharmonic and triharmonic maps. (English) Zbl 1495.58005 Lobachevskii J. Math. 43, No. 2, 324-336 (2022). Reviewer: Andreas Gastel (Essen) MSC: 58E20 53C43 31B30 PDF BibTeX XML Cite \textit{A. Benaissa} et al., Lobachevskii J. Math. 43, No. 2, 324--336 (2022; Zbl 1495.58005) Full Text: DOI OpenURL
Aldawsari, Murdhy; Savina, Tatiana On non-homogeneous Robin reflection for harmonic functions. (English) Zbl 1490.31001 Appl. Anal. 101, No. 5, 1699-1714 (2022). MSC: 31A05 PDF BibTeX XML Cite \textit{M. Aldawsari} and \textit{T. Savina}, Appl. Anal. 101, No. 5, 1699--1714 (2022; Zbl 1490.31001) Full Text: DOI OpenURL
Baird, Paul; Fardoun, Ali; Regbaoui, Rachid Heat flow for harmonic maps from graphs into Riemannian manifolds. (English) Zbl 1496.37038 J. Geom. Phys. 176, Article ID 104496, 11 p. (2022). MSC: 37E25 58J35 53C43 58E20 PDF BibTeX XML Cite \textit{P. Baird} et al., J. Geom. Phys. 176, Article ID 104496, 11 p. (2022; Zbl 1496.37038) Full Text: DOI OpenURL
Kim, Inkang; Wan, Xueyuan; Zhang, Genkai Plurisubharmonicity and geodesic convexity of energy function on Teichmüller space. (English) Zbl 1502.30132 Indiana Univ. Math. J. 71, No. 1, 1-36 (2022). Reviewer: Gueo Grantcharov (Miami) MSC: 30F60 58E20 PDF BibTeX XML Cite \textit{I. Kim} et al., Indiana Univ. Math. J. 71, No. 1, 1--36 (2022; Zbl 1502.30132) Full Text: DOI arXiv OpenURL
Chow, Tsz-Kiu Aaron Ricci flow on manifolds with boundary with arbitrary initial metric. (English) Zbl 07503397 J. Reine Angew. Math. 783, 159-216 (2022). MSC: 53E20 58J60 PDF BibTeX XML Cite \textit{T.-K. A. Chow}, J. Reine Angew. Math. 783, 159--216 (2022; Zbl 07503397) Full Text: DOI arXiv OpenURL
Choi, Kyeongsu; Mantoulidis, Christos Ancient gradient flows of elliptic functionals and Morse index. (English) Zbl 1489.53124 Am. J. Math. 144, No. 2, 541-573 (2022). MSC: 53E10 35K55 PDF BibTeX XML Cite \textit{K. Choi} and \textit{C. Mantoulidis}, Am. J. Math. 144, No. 2, 541--573 (2022; Zbl 1489.53124) Full Text: DOI OpenURL
Gao, Liu; Lu, Lingen; Yang, Guilin Liouville theorems of subelliptic harmonic maps. (English) Zbl 1484.58009 Ann. Global Anal. Geom. 61, No. 2, 293-307 (2022). MSC: 58E20 53C17 35H20 PDF BibTeX XML Cite \textit{L. Gao} et al., Ann. Global Anal. Geom. 61, No. 2, 293--307 (2022; Zbl 1484.58009) Full Text: DOI OpenURL
Šikić, Hrvoje; Slamić, Ivana Maximal cyclic subspaces for dual integrable representations. (English) Zbl 1495.43003 J. Math. Anal. Appl. 511, No. 1, Article ID 126071, 25 p. (2022). MSC: 43A65 22D10 PDF BibTeX XML Cite \textit{H. Šikić} and \textit{I. Slamić}, J. Math. Anal. Appl. 511, No. 1, Article ID 126071, 25 p. (2022; Zbl 1495.43003) Full Text: DOI OpenURL
Moriya, Katsuhiro Polar varieties and bipolar surfaces of minimal surfaces in the \(n\)-sphere. (English) Zbl 1487.53081 Ann. Global Anal. Geom. 61, No. 1, 21-36 (2022). MSC: 53C42 53C43 PDF BibTeX XML Cite \textit{K. Moriya}, Ann. Global Anal. Geom. 61, No. 1, 21--36 (2022; Zbl 1487.53081) Full Text: DOI OpenURL
Gursky, Matthew J.; Pérez-Ayala, Samuel Variational properties of the second eigenvalue of the conformal Laplacian. (English) Zbl 1497.53073 J. Funct. Anal. 282, No. 8, Article ID 109371, 60 p. (2022). Reviewer: Matthew Randall (Nanjing) MSC: 53C18 53C21 58J50 PDF BibTeX XML Cite \textit{M. J. Gursky} and \textit{S. Pérez-Ayala}, J. Funct. Anal. 282, No. 8, Article ID 109371, 60 p. (2022; Zbl 1497.53073) Full Text: DOI arXiv OpenURL
Abbassi, Mohamed T. K.; Lakrini, Ibrahim Harmonic sections of vector bundles with spherically symmetric metrics. (English) Zbl 1486.53032 Adv. Geom. 22, No. 1, 135-150 (2022). MSC: 53C07 53C24 53C25 PDF BibTeX XML Cite \textit{M. T. K. Abbassi} and \textit{I. Lakrini}, Adv. Geom. 22, No. 1, 135--150 (2022; Zbl 1486.53032) Full Text: DOI OpenURL
Misawa, Masashi; Nakauchi, Nobumitsu Two examples of harmonic maps into spheres. (English) Zbl 1486.53078 Adv. Geom. 22, No. 1, 23-31 (2022). MSC: 53C43 58E20 PDF BibTeX XML Cite \textit{M. Misawa} and \textit{N. Nakauchi}, Adv. Geom. 22, No. 1, 23--31 (2022; Zbl 1486.53078) Full Text: DOI OpenURL
Fang, Jianbo; Liang, Lin The tension field of the conformal Gauss map. (English) Zbl 1486.53024 Colloq. Math. 167, No. 2, 207-218 (2022). MSC: 53B25 53A10 53A31 PDF BibTeX XML Cite \textit{J. Fang} and \textit{L. Liang}, Colloq. Math. 167, No. 2, 207--218 (2022; Zbl 1486.53024) Full Text: DOI OpenURL
Kadaoui Abbassi, Mohamed Tahar; Doua, Souhail On the biharmonicity of vector fields and unit vector fields. (English) Zbl 1482.58007 J. Geom. Anal. 32, No. 3, Paper No. 82, 52 p. (2022). MSC: 58E20 53C20 53C07 PDF BibTeX XML Cite \textit{M. T. Kadaoui Abbassi} and \textit{S. Doua}, J. Geom. Anal. 32, No. 3, Paper No. 82, 52 p. (2022; Zbl 1482.58007) Full Text: DOI arXiv OpenURL
Sun, Yuchin Morse index bound for minimal two spheres. (English) Zbl 1491.53074 J. Geom. Anal. 32, No. 3, Paper No. 72, 45 p. (2022). Reviewer: Hang Chen (Xi’an) MSC: 53C42 53C20 PDF BibTeX XML Cite \textit{Y. Sun}, J. Geom. Anal. 32, No. 3, Paper No. 72, 45 p. (2022; Zbl 1491.53074) Full Text: DOI arXiv OpenURL
Liu, Lei; Song, Chong; Zhu, Miaomiao Harmonic maps with free boundary from degenerating bordered Riemann surfaces. (English) Zbl 1489.58006 J. Geom. Anal. 32, No. 2, Paper No. 49, 21 p. (2022). Reviewer: Vladimir Balan (Bucureşti) MSC: 58E20 35J50 35R35 PDF BibTeX XML Cite \textit{L. Liu} et al., J. Geom. Anal. 32, No. 2, Paper No. 49, 21 p. (2022; Zbl 1489.58006) Full Text: DOI arXiv OpenURL
Jost, Jürgen; Liu, Lei; Zhu, Miaomiao Asymptotic analysis and qualitative behavior at the free boundary for Sacks-Uhlenbeck \(\alpha \)-harmonic maps. (English) Zbl 1492.53085 Adv. Math. 396, Article ID 108105, 68 p. (2022). Reviewer: Bruno Simoes (Lisboa) MSC: 53C43 58E20 PDF BibTeX XML Cite \textit{J. Jost} et al., Adv. Math. 396, Article ID 108105, 68 p. (2022; Zbl 1492.53085) Full Text: DOI OpenURL
Ferreira, Lucas C. F.; Pérez-López, Jhean E. On the well-posedness of the incompressible Euler equations in a larger space of Besov-Morrey type. (English) Zbl 1490.35269 Dyn. Partial Differ. Equ. 19, No. 1, 23-49 (2022). MSC: 35Q31 35Axx 42B35 46E30 46E35 76B03 PDF BibTeX XML Cite \textit{L. C. F. Ferreira} and \textit{J. E. Pérez-López}, Dyn. Partial Differ. Equ. 19, No. 1, 23--49 (2022; Zbl 1490.35269) Full Text: DOI OpenURL
Fu, Xueshan; Jung, Seoung Dal Liouville type theorem for transversally harmonic maps. (English) Zbl 1483.53044 J. Geom. 113, No. 1, Paper No. 2, 9 p. (2022). MSC: 53C12 58E20 PDF BibTeX XML Cite \textit{X. Fu} and \textit{S. D. Jung}, J. Geom. 113, No. 1, Paper No. 2, 9 p. (2022; Zbl 1483.53044) Full Text: DOI OpenURL
Ouakas, Seddik; Abderrazak, Halimi On the bi-\(p\)-harmonic maps and the conformal maps. (English) Zbl 1499.31016 Facta Univ., Ser. Math. Inf. 36, No. 5, 1155-1168 (2021). MSC: 31B30 53C43 58E20 53C18 PDF BibTeX XML Cite \textit{S. Ouakas} and \textit{H. Abderrazak}, Facta Univ., Ser. Math. Inf. 36, No. 5, 1155--1168 (2021; Zbl 1499.31016) Full Text: DOI OpenURL
Kobayashi, Toshiyuki Admissible restrictions of irreducible representations of reductive Lie groups: symplectic geometry and discrete decomposability. (English) Zbl 1504.22016 Pure Appl. Math. Q. 17, No. 4, 1321-1343 (2021). MSC: 22E46 22E45 43A77 53D50 PDF BibTeX XML Cite \textit{T. Kobayashi}, Pure Appl. Math. Q. 17, No. 4, 1321--1343 (2021; Zbl 1504.22016) Full Text: DOI OpenURL
Biswas, Indranil; Bradlow, Steven; Dumitrescu, Sorin; Heller, Sebastian Uniformization of branched surfaces and Higgs bundles. (English) Zbl 1483.30078 Int. J. Math. 32, No. 13, Article ID 2150096, 19 p. (2021). MSC: 30F10 14H60 14D21 53C43 PDF BibTeX XML Cite \textit{I. Biswas} et al., Int. J. Math. 32, No. 13, Article ID 2150096, 19 p. (2021; Zbl 1483.30078) Full Text: DOI arXiv OpenURL
Gao, Yuan; Kirkpatrick, Kay; Marzuola, Jeremy; Mattingly, Jonathan; Newhall, Katherine A. Limiting behaviors of high dimensional stochastic spin ensembles. (English) Zbl 1478.58012 Commun. Math. Sci. 19, No. 2, 453-494 (2021). MSC: 58J65 60H10 60J10 60J60 65C05 82C05 PDF BibTeX XML Cite \textit{Y. Gao} et al., Commun. Math. Sci. 19, No. 2, 453--494 (2021; Zbl 1478.58012) Full Text: DOI arXiv OpenURL
Jang, Cheongjae; Noh, Yung-Kyun; Park, Frank Chongwoo A Riemannian geometric framework for manifold learning of non-Euclidean data. (English) Zbl 07433034 Adv. Data Anal. Classif., ADAC 15, No. 3, 673-699 (2021). MSC: 53A35 53B21 58C35 58E20 PDF BibTeX XML Cite \textit{C. Jang} et al., Adv. Data Anal. Classif., ADAC 15, No. 3, 673--699 (2021; Zbl 07433034) Full Text: DOI OpenURL
Sagman, Nathaniel A factorization theorem for harmonic maps. (English) Zbl 1477.58009 J. Geom. Anal. 31, No. 12, 11714-11740 (2021). MSC: 58E20 53A10 53C43 14H55 30F50 PDF BibTeX XML Cite \textit{N. Sagman}, J. Geom. Anal. 31, No. 12, 11714--11740 (2021; Zbl 1477.58009) Full Text: DOI arXiv Link OpenURL
Dorfmeister, Josef F.; Wang, Peng Weierstrass-Kenmotsu representation of Willmore surfaces in spheres. (English) Zbl 1485.53014 Nagoya Math. J. 244, 35-59 (2021). Reviewer: Atsushi Fujioka (Osaka) MSC: 53A31 53C42 53C30 53C35 PDF BibTeX XML Cite \textit{J. F. Dorfmeister} and \textit{P. Wang}, Nagoya Math. J. 244, 35--59 (2021; Zbl 1485.53014) Full Text: DOI arXiv OpenURL
Medjadj, Abdallah; Elhendi, Hichem; Belarbi, Lakehal Some biharmonic problems on the tangent bundle with a Berger-type deformed Sasaki metric. (English) Zbl 1488.53197 J. Indian Math. Soc., New Ser. 88, No. 3-4, 217-236 (2021). MSC: 53C50 53B30 PDF BibTeX XML Cite \textit{A. Medjadj} et al., J. Indian Math. Soc., New Ser. 88, No. 3--4, 217--236 (2021; Zbl 1488.53197) OpenURL
Chen, Xin; Ye, Wenjie A probabilistic representation for heat flow of harmonic map on manifolds with time-dependent Riemannian metric. (English) Zbl 1474.60173 Stat. Probab. Lett. 177, Article ID 109165, 10 p. (2021). MSC: 60H30 58E20 58J35 PDF BibTeX XML Cite \textit{X. Chen} and \textit{W. Ye}, Stat. Probab. Lett. 177, Article ID 109165, 10 p. (2021; Zbl 1474.60173) Full Text: DOI arXiv OpenURL
Jost, Jürgen; Zhu, Jingyong Existence of (Dirac-)harmonic maps from degenerating (spin) surfaces. (English) Zbl 1485.53084 J. Geom. Anal. 31, No. 11, 11165-11189 (2021). Reviewer: Jan Kurek (Lublin) MSC: 53C43 58E20 PDF BibTeX XML Cite \textit{J. Jost} and \textit{J. Zhu}, J. Geom. Anal. 31, No. 11, 11165--11189 (2021; Zbl 1485.53084) Full Text: DOI arXiv OpenURL
Breiner, Christine; Mese, Chikako Harmonic branched coverings and uniformization of \(\operatorname{CAT}(k)\) spheres. (English) Zbl 1482.53083 J. Reine Angew. Math. 779, 123-166 (2021). Reviewer: Gabriel Eduard Vilcu (Ploieşti) MSC: 53C43 58E20 PDF BibTeX XML Cite \textit{C. Breiner} and \textit{C. Mese}, J. Reine Angew. Math. 779, 123--166 (2021; Zbl 1482.53083) Full Text: DOI arXiv OpenURL
Zhang, Shaoteng; Jiao, Xiaoxiang Minimal two-spheres with constant curvature in \(\mathbb{H} \mathrm{P}^n\). (English) Zbl 1480.53076 Front. Math. China 16, No. 3, 901-923 (2021). MSC: 53C42 58E20 PDF BibTeX XML Cite \textit{S. Zhang} and \textit{X. Jiao}, Front. Math. China 16, No. 3, 901--923 (2021; Zbl 1480.53076) Full Text: DOI OpenURL
Pretty, Alexander; Davies, Christopher; Thomas, Christian Onset of absolutely unstable behaviour in the Stokes layer: a Floquet approach to the Briggs method. (English) Zbl 1496.76056 J. Fluid Mech. 928, Paper No. A23, 32 p. (2021). MSC: 76E15 76E05 76D10 76M22 PDF BibTeX XML Cite \textit{A. Pretty} et al., J. Fluid Mech. 928, Paper No. A23, 32 p. (2021; Zbl 1496.76056) Full Text: DOI OpenURL
Chiang, Yuan-Jen Stability of exponentially harmonic maps. (English) Zbl 1479.58014 J. Topol. Anal. 13, No. 2, 499-513 (2021). Reviewer: Anestis Fotiadis (Thessaloniki) MSC: 58E20 53C20 58B20 PDF BibTeX XML Cite \textit{Y.-J. Chiang}, J. Topol. Anal. 13, No. 2, 499--513 (2021; Zbl 1479.58014) Full Text: DOI OpenURL
Sire, Yannick; Wei, Juncheng; Zheng, Youquan Infinite time blow-up for half-harmonic map flow from \(\mathbb{R}\) into \(\mathbb{S}^1\). (English) Zbl 1473.35639 Am. J. Math. 143, No. 4, 1261-1335 (2021). Reviewer: Xavier Lamy (Toulouse) MSC: 35R11 35A21 35B44 35K15 35R09 35B53 PDF BibTeX XML Cite \textit{Y. Sire} et al., Am. J. Math. 143, No. 4, 1261--1335 (2021; Zbl 1473.35639) Full Text: DOI arXiv OpenURL
Sidler, Hubert; Wenger, Stefan Harmonic quasi-isometric maps into Gromov hyperbolic \(\operatorname{CAT}(0)\)-spaces. (English) Zbl 1476.53066 J. Differ. Geom. 118, No. 3, 555-572 (2021). MSC: 53C23 53C43 58E20 PDF BibTeX XML Cite \textit{H. Sidler} and \textit{S. Wenger}, J. Differ. Geom. 118, No. 3, 555--572 (2021; Zbl 1476.53066) Full Text: DOI arXiv OpenURL
Savas-Halilaj, Andreas Graphical mean curvature flow. (English) Zbl 1476.53015 Rassias, Themistocles M. (ed.), Nonlinear analysis, differential equations, and applications. Cham: Springer. Springer Optim. Appl. 173, 493-577 (2021). MSC: 53-02 53E10 PDF BibTeX XML Cite \textit{A. Savas-Halilaj}, Springer Optim. Appl. 173, 493--577 (2021; Zbl 1476.53015) Full Text: DOI OpenURL
Afuni, Ahmad Local regularity for the harmonic map and Yang-Mills heat flows. (English) Zbl 1472.35075 J. Geom. Anal. 31, No. 10, 9677-9707 (2021). MSC: 35B65 35K55 53C07 53C43 58E20 58J35 PDF BibTeX XML Cite \textit{A. Afuni}, J. Geom. Anal. 31, No. 10, 9677--9707 (2021; Zbl 1472.35075) Full Text: DOI OpenURL
Yadav, Akhilesh; Meena, Kiran Riemannian maps whose total manifolds admit a Ricci soliton. (English) Zbl 1472.53027 J. Geom. Phys. 168, Article ID 104317, 13 p. (2021). MSC: 53B20 53C25 53C43 PDF BibTeX XML Cite \textit{A. Yadav} and \textit{K. Meena}, J. Geom. Phys. 168, Article ID 104317, 13 p. (2021; Zbl 1472.53027) Full Text: DOI arXiv OpenURL
Aminian, Mehran; Namjoo, Mehran \(fL_k\)-harmonic maps and \(fL_k\)-harmonic morphisms. (English) Zbl 1487.58010 Acta Math. Vietnam. 46, No. 3, 499-507 (2021). Reviewer: Andreas Gastel (Essen) MSC: 58E20 PDF BibTeX XML Cite \textit{M. Aminian} and \textit{M. Namjoo}, Acta Math. Vietnam. 46, No. 3, 499--507 (2021; Zbl 1487.58010) Full Text: DOI OpenURL
Liu, Xiangao; Liu, Zixuan; Wang, Kui Interior estimates of harmonic heat flow. (English) Zbl 1468.35030 Int. J. Math. 32, No. 7, Article ID 2150039, 14 p. (2021). MSC: 35B65 35B45 35K58 35R01 58J35 PDF BibTeX XML Cite \textit{X. Liu} et al., Int. J. Math. 32, No. 7, Article ID 2150039, 14 p. (2021; Zbl 1468.35030) Full Text: DOI OpenURL
Lee, Sungwook Maximal spacelike surfaces in a certain homogeneous Lorentzian 3-manifold. (English) Zbl 1473.53083 J. Geom. 112, No. 2, Paper No. 27, 13 p. (2021). MSC: 53C42 53A10 53C30 53C50 PDF BibTeX XML Cite \textit{S. Lee}, J. Geom. 112, No. 2, Paper No. 27, 13 p. (2021; Zbl 1473.53083) Full Text: DOI arXiv OpenURL
Chen, Bo; Song, Chong Isolated singularities of Yang-Mills-Higgs fields on surfaces. (English) Zbl 1473.53044 Int. Math. Res. Not. 2021, No. 1, 551-581 (2021). MSC: 53C07 58E15 PDF BibTeX XML Cite \textit{B. Chen} and \textit{C. Song}, Int. Math. Res. Not. 2021, No. 1, 551--581 (2021; Zbl 1473.53044) Full Text: DOI arXiv OpenURL
Liu, Lei; Zhu, Miaomiao Boundary value problems for Dirac-harmonic maps and their heat flows. (English) Zbl 1472.53080 Vietnam J. Math. 49, No. 2, 577-596 (2021). MSC: 53C43 58E20 PDF BibTeX XML Cite \textit{L. Liu} and \textit{M. Zhu}, Vietnam J. Math. 49, No. 2, 577--596 (2021; Zbl 1472.53080) Full Text: DOI OpenURL
Cao, Xiangzhi; Chen, Qun Existence of harmonic maps with two-form and scalar potentials. (English) Zbl 1469.58008 Vietnam J. Math. 49, No. 2, 349-361 (2021). Reviewer: Adrian Muntean (Karlstad) MSC: 58E20 35K55 53C08 53C80 PDF BibTeX XML Cite \textit{X. Cao} and \textit{Q. Chen}, Vietnam J. Math. 49, No. 2, 349--361 (2021; Zbl 1469.58008) Full Text: DOI OpenURL
Laux, Tim; Liu, Yuning Nematic-isotropic phase transition in liquid crystals: a variational derivation of effective geometric motions. (English) Zbl 1468.76008 Arch. Ration. Mech. Anal. 241, No. 3, 1785-1814 (2021). MSC: 76A15 76M30 35Q35 PDF BibTeX XML Cite \textit{T. Laux} and \textit{Y. Liu}, Arch. Ration. Mech. Anal. 241, No. 3, 1785--1814 (2021; Zbl 1468.76008) Full Text: DOI arXiv OpenURL
Yamada, Sumio Harmonic maps and the Einstein equation. (English) Zbl 1470.83018 Giga, Yoshikazu (ed.) et al., The role of metrics in the theory of partial differential equations. Proceedings of the 11th Mathematical Society of Japan, Seasonal Institute (MSJ-SI), Nagoya University, Japan, July 2–13 2018. Tokyo: Mathematical Society of Japan. Adv. Stud. Pure Math. 85, 525-532 (2021). MSC: 83C05 83C15 83E15 35Q76 53C43 53C80 PDF BibTeX XML Cite \textit{S. Yamada}, Adv. Stud. Pure Math. 85, 525--532 (2021; Zbl 1470.83018) Full Text: DOI OpenURL
Belishev, M. I.; Korikov, D. V. On the EIT problem for nonorientable surfaces. (English) Zbl 1469.35246 J. Inverse Ill-Posed Probl. 29, No. 3, 339-349 (2021). MSC: 35R30 35J25 35R01 46J15 46J20 30F15 PDF BibTeX XML Cite \textit{M. I. Belishev} and \textit{D. V. Korikov}, J. Inverse Ill-Posed Probl. 29, No. 3, 339--349 (2021; Zbl 1469.35246) Full Text: DOI arXiv OpenURL
Baake, Michael; Coons, Michael; Evans, James; Gohlke, Philipp On a family of singular continuous measures related to the doubling map. (English) Zbl 1490.60013 Indag. Math., New Ser. 32, No. 4, 847-860 (2021). MSC: 60B05 28A12 37A46 37B10 PDF BibTeX XML Cite \textit{M. Baake} et al., Indag. Math., New Ser. 32, No. 4, 847--860 (2021; Zbl 1490.60013) Full Text: DOI arXiv OpenURL
Wei, Shihshu Walter Dualities in comparison theorems and bundle-valued generalized harmonic forms on noncompact manifolds. (English) Zbl 1477.53068 Sci. China, Math. 64, No. 7, 1649-1702 (2021). Reviewer: Mohammed El Aïdi (Bogotá) MSC: 53C21 81T13 53C20 58E20 PDF BibTeX XML Cite \textit{S. W. Wei}, Sci. China, Math. 64, No. 7, 1649--1702 (2021; Zbl 1477.53068) Full Text: DOI arXiv OpenURL