×

Inf-sup stable finite element methods for the Landau-Lifshitz-Gilbert and harmonic map heat flow equations. (English) Zbl 1403.65070

Summary: In this paper we propose and analyze a finite element method for both the harmonic map heat and Landau-Lifshitz-Gilbert equations, the time variable remaining continuous. Our starting point is to set out a unified saddle point approach for both problems in order to impose the unit sphere constraint at the nodes. A proper inf-sup condition is proved for the Lagrange multiplier leading to the well-posedness of the unified formulation. A priori energy estimates are shown for the proposed method. When time integrations are combined with the saddle point finite element approximation some extra elaborations are required in order to ensure both a priori energy estimates for the director or magnetization vector depending on the model and an inf-sup condition for the Lagrange multiplier. These extra elaborations are needed due to the fact that any crude time integration either does not keep the unit length at the nodes or does not satisfy an energy law. We will carry out a linear Euler-like time-stepping method and a nonlinear Crank-Nicolson-like time-stepping method, which satisfy the desired properties. The Crank-Nicolson method is solved by using the idea of linearization for the Euler method as iterations.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35K55 Nonlinear parabolic equations
35Q60 PDEs in connection with optics and electromagnetic theory
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs

Software:

feeLLGood
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] F. Alouges, {\it A new finite element scheme for Landau-Lifchitz equations}, Discrete Contin. Dyn. Syst. Ser. S, 1 (2008), pp. 187-196. · Zbl 1152.35304
[2] F. Alouges and P. Jaisson, {\it Convergence of a finite element discretization for the Landau-Lifshitz equations in micromagnetism,} Math. Models Methods Appl. Sci., 16 (2006), pp. 299-316. · Zbl 1102.35333
[3] F. Alouges, E. Kritsikis, and J.-C. Toussaint, {\it A convergent finite element approximation for the Landau-Lifschitz-Gilbert equation}, Phys. B, 407 (2012), pp. 1345-1349.
[4] F. Alouges, E. Kritsikis, J. Steiner, and J.-C. Toussaint, {\it A convergent and precise finite element scheme for Landau-Lifschitz-Gilbert equation}, Numer. Math., 128 (2014), pp. 407-430. · Zbl 1334.78039
[5] S. Badia, F. Guillén-González, and J. V. Gutiérrez-Santacreu, {\it An overview on numerical analyses of nematic liquid crystal flows,} Arch. Comput. Methods Eng., 18 (2011), pp. 285-313. · Zbl 1284.76247
[6] S. Badia, F. Guillén-González, and J. V. Gutiérrez-Santacreu, {\it Finite element approximation of nematic liquid crystal flows using a saddle-point structure}, J. Comput. Phys., 230 (2011), pp. 1686-1706. · Zbl 1211.82056
[7] S. Bartels, {\it Stability and convergence of finite-element approximation schemes for harmonic maps}, SIAM J. Numer. Anal., 43 (2005), pp. 220-238. · Zbl 1090.35014
[8] S. Bartels and A. Prohl, {\it Convergence of an implicit finite element method for the Landau-Lifshitz-Gilbert equation}, SIAM J. Numer. Anal., 44 (2006), pp. 1405-1419. · Zbl 1124.65088
[9] S. Bartels and A. Prohl, {\it Constraint preserving implicit finite element discretization of harmonic map flow into spheres}, Math. Comp., 76 (2007), pp. 1847-1859. · Zbl 1124.65089
[10] S. Bartels, C. Lubich, and A. Prohl, {\it Convergent discretization of heat and wave map flows to spheres using approximate discrete Lagrange multipliers}, Math. Comp., 78 (2009), pp. 1269-1292. · Zbl 1198.65178
[11] R. Becker, X. Feng, and A. Prohl, {\it Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow}, SIAM J. Numer. Anal., 46 (2008), pp. 1704-1731. · Zbl 1187.82130
[12] F. Brezzi and M. Fortin, {\it Mixed and Hybrid Finite Element Methods}, Springer Ser. Comput. Math., 15, Springer, New York, 1991. · Zbl 0788.73002
[13] S. C. Brenner and L. R. Scott, {\it The Mathematical Theory of Finite Element Methods}, 3rd ed., Texts in Appl. Math., 15, Springer, New York, 2008. · Zbl 1135.65042
[14] J. Douglas, Jr., T. Dupont, and L. Wahlbin, {\it The stability in \(L^q\) of the \(L^2\)-projection into finite element function spaces}, Numer. Math., 23 (1975), pp. 193-197. · Zbl 0297.41022
[15] R. C. Cabrales, F. Guillén-González, and J. V. Gutiérrez-Santacreu, {\it A time-splitting finite-element stable approximation for the Ericksen-Leslie equations}, SIAM J. Sci. Comput., 37 (2015), pp. B261-B282. · Zbl 1321.35153
[16] I. Cimrák, {\it Error estimates for a semi-implicit numerical scheme solving the Landau-Lifshitz equation with an exchange field}, IMA J. Numer. Anal., 25 (2005), pp. 611-634. · Zbl 1116.78025
[17] I. Cimrák, {\it A survey on the numerics and computations for the Landau-Lifshitz equation of micromagnetism}, Arch. Comput. Methods Eng., 15 (2008), pp. 277-309. · Zbl 1206.78008
[18] Q. Du, B. Guo, and J. Shen, {\it Fourier spectral approximation to a dissipative system modeling the flow of liquid crystals}, SIAM J. Numer. Anal., 39 (2000), pp. 735-762. · Zbl 1007.76057
[19] V. Girault and P. A. Raviart, {\it Finite Element Method for Navier-Stokes Equations: Theory and Algorithms}, Springer, New York, 1981. · Zbl 0441.65081
[20] H. C. Elman and G. H. Golub, {\it Inexact and preconditioned Uzawa algorithms for saddle point problems}, SIAM J. Numer. Anal., 31 (1994), pp. 1645-1661. · Zbl 0815.65041
[21] J. Ericksen, {\it Conservation laws for liquid crystals}, Trans. Soc. Rheology, 5 (1961), pp. 22-34.
[22] J. Ericksen, {\it Continuum theory of nematic liquid crystals}, Res. Mechanica, 21 (1987), pp. 381-392.
[23] A. Ern and J.-L. Guermond, {\it Theory and Practice of Finite Elements}, Appl. Math. Sci., 159. Springer, New York, 2004. · Zbl 1059.65103
[24] T. L. Gilbert, {\it A Lagrangian formulation of the gyromagnetic equation of the magnetization fields}, Phys. Rev., 100 (1955), 1243.
[25] T. L. Gilbert, {\it A phenomenological theory of damping in ferromagnetic materials}, IEEE Trans. Magn., 40 (2004), pp. 3443-3449.
[26] F. Guillén-González and J. V. Gutiérrez-Santacreu, {\it A linear mixed finite element scheme for a nematic Ericksen-Leslie liquid crystal model}, ESAIM Math. Model. Numer. Anal., 47 (2013), pp. 1433-1464. · Zbl 1290.82031
[27] F. Guillén-Gonzalez and J. Koko, {\it A splitting in time scheme and augmented Lagrangian method for a nematic liquid crystal problem}, J. Sci. Comput., 65 (2015), pp. 1129-1144. · Zbl 1330.76068
[28] C. Johnson, A. Szepessy, and P. Hansbo, {\it On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws}, Math. Comput., 54 (1990), pp. 107-129. · Zbl 0685.65086
[29] E. Kritsikis, A. Vaysset, L. D. Buda-Prejbeanu, F. Alouges, and J.-C. Toussaint, {\it Beyond first-order finite element schemes in micromagnetics}, J. Comput. Phys., 256 (2014), pp. 357-366. · Zbl 1349.78068
[30] M. Kruzik and A. Prohl, {\it Recent developments in the modeling, analysis, and numerics of ferromagnetism,} SIAM Rev., 48 (2006), pp. 439-483. · Zbl 1126.49040
[31] L. D. Landau and E. M. Lifshitz, {\it On the theory of the dispersion of magnetic permeability in ferromagnetic bodies}, Phys. Z. Sowietunion, 8 (1935), pp. 101-114. · Zbl 0012.28501
[32] F. Leslie, {\it Some constitutive equations for liquid crystals}, Arch. Ration. Mech. Anal., 28 (1968), pp. 265-283. · Zbl 0159.57101
[33] F. Leslie, {\it Theory of flow phenomena in liquid crystals}, in Advances in Liquid Crystals, Vol. 4, G. H. Brown, ed., Academic Press, New York, 1979, pp. 1-81.
[34] C. Liu and N. J. Walkington, {\it Approximation of liquid crystal flows}, SIAM J. Numer. Anal., 37 (2000), pp. 725-741. · Zbl 1040.76036
[35] C. Liu and N. J. Walkington, {\it Mixed methods for the approximation of liquid crystal flows}, ESAIM Math. Model. Numer. Anal., 36 (2002), pp. 205-222. · Zbl 1032.76035
[36] M. Mu and X. Zhu, {\it Decoupled schemes for a non-stationary mixed Stokes-Darcy model}, Math. Comp., 79 (2010), pp. 707-731. · Zbl 1369.76026
[37] A. Prohl, {\it Computational Micromagnetism}, Adv. Numer. Math., Teubner, Stuttgart, 2001. · Zbl 0988.78001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.