Jiang, Yunping Global graph of metric entropy on expanding Blaschke products. (English) Zbl 07314917 Discrete Contin. Dyn. Syst. 41, No. 3, 1469-1482 (2021). MSC: 37A05 37A35 37F15 37A30 PDF BibTeX XML Cite \textit{Y. Jiang}, Discrete Contin. Dyn. Syst. 41, No. 3, 1469--1482 (2021; Zbl 07314917) Full Text: DOI
Montaldo, S.; Oniciuc, C.; Ratto, A. Index and nullity of proper biharmonic maps in spheres. (English) Zbl 07312329 Commun. Contemp. Math. 23, No. 3, Article ID 1950087, 36 p. (2021). MSC: 58E20 53C43 PDF BibTeX XML Cite \textit{S. Montaldo} et al., Commun. Contemp. Math. 23, No. 3, Article ID 1950087, 36 p. (2021; Zbl 07312329) Full Text: DOI
Dibble, James Energy-minimizing maps from manifolds with nonnegative Ricci curvature. (English) Zbl 07312328 Commun. Contemp. Math. 23, No. 3, Article ID 1950083, 20 p. (2021). MSC: 53C21 53C24 53C22 53C43 PDF BibTeX XML Cite \textit{J. Dibble}, Commun. Contemp. Math. 23, No. 3, Article ID 1950083, 20 p. (2021; Zbl 07312328) Full Text: DOI
Freidin, Brian; Zhang, Yingying A Liouville-type theorem and Bochner formula for harmonic maps into metric spaces. (English) Zbl 07309977 Commun. Anal. Geom. 28, No. 8, 1847-1862 (2021). MSC: 58E20 53C43 35B53 PDF BibTeX XML Cite \textit{B. Freidin} and \textit{Y. Zhang}, Commun. Anal. Geom. 28, No. 8, 1847--1862 (2021; Zbl 07309977) Full Text: DOI
Szczygielski, Krzysztof On the Floquet analysis of commutative periodic Lindbladians in finite dimension. (English) Zbl 07309796 Linear Algebra Appl. 609, 176-202 (2021). MSC: 60J25 42A99 47B65 34 PDF BibTeX XML Cite \textit{K. Szczygielski}, Linear Algebra Appl. 609, 176--202 (2021; Zbl 07309796) Full Text: DOI
Petersen, Carsten Lunde; Uhre, Eva Weak limits of the measures of maximal entropy for orthogonal polynomials. (English) Zbl 07303861 Potential Anal. 54, No. 2, 219-225 (2021). MSC: 42C05 37F10 31A15 PDF BibTeX XML Cite \textit{C. L. Petersen} and \textit{E. Uhre}, Potential Anal. 54, No. 2, 219--225 (2021; Zbl 07303861) Full Text: DOI
Hulett, Eduardo Surfaces immersed in \(\mathfrak{so}(n+1)\) associated to harmonic maps into the sphere \(S^n\). (English) Zbl 07302836 Mediterr. J. Math. 18, No. 2, Paper No. 36, 33 p. (2021). MSC: 53C42 53C43 PDF BibTeX XML Cite \textit{E. Hulett}, Mediterr. J. Math. 18, No. 2, Paper No. 36, 33 p. (2021; Zbl 07302836) Full Text: DOI
Polymerakis, Panagiotis Positive harmonic functions on groups and covering spaces. (English) Zbl 07300462 Adv. Math. 379, Article ID 107552, 9 p. (2021). MSC: 53C43 58J65 60G50 PDF BibTeX XML Cite \textit{P. Polymerakis}, Adv. Math. 379, Article ID 107552, 9 p. (2021; Zbl 07300462) Full Text: DOI
Davidov, Johann; Shakoor, Kamran Almost Hermitian structures defining harmonic maps of the unit tangent bundle. (English) Zbl 07299627 J. Geom. Phys. 160, Article ID 103988, 15 p. (2021). MSC: 53C43 58E20 PDF BibTeX XML Cite \textit{J. Davidov} and \textit{K. Shakoor}, J. Geom. Phys. 160, Article ID 103988, 15 p. (2021; Zbl 07299627) Full Text: DOI
Guan, Zhida; Li, Haizhong; Vrancken, Luc Four dimensional biharmonic hypersurfaces in nonzero space forms have constant mean curvature. (English) Zbl 07299625 J. Geom. Phys. 160, Article ID 103984, 16 p. (2021). Reviewer: Themistocles M. Rassias (Athína) MSC: 53C40 58E20 53C42 PDF BibTeX XML Cite \textit{Z. Guan} et al., J. Geom. Phys. 160, Article ID 103984, 16 p. (2021; Zbl 07299625) Full Text: DOI
Ghandour, Elsa; Gudmundsson, Sigmundur; Turner, Thomas B. Conformal foliations on Lie groups and complex-valued harmonic morphisms. (English) Zbl 07299389 J. Geom. Phys. 159, Article ID 103940, 12 p. (2021). MSC: 53C43 58E20 PDF BibTeX XML Cite \textit{E. Ghandour} et al., J. Geom. Phys. 159, Article ID 103940, 12 p. (2021; Zbl 07299389) Full Text: DOI
Chen, Min Stationary maps into the sphere omitting a totally geodesic subsphere of codimension two. (English) Zbl 07299127 Proc. Am. Math. Soc. 149, No. 2, 889-896 (2021). Reviewer: Anestis Fotiadis (Thessaloniki) MSC: 58E20 53C43 PDF BibTeX XML Cite \textit{M. Chen}, Proc. Am. Math. Soc. 149, No. 2, 889--896 (2021; Zbl 07299127) Full Text: DOI
Branding, Volker A structure theorem for polyharmonic maps between Riemannian manifolds. (English) Zbl 07289091 J. Differ. Equations 273, 14-39 (2021). MSC: 58E20 53C43 31B30 35J48 35J91 PDF BibTeX XML Cite \textit{V. Branding}, J. Differ. Equations 273, 14--39 (2021; Zbl 07289091) Full Text: DOI
Ou, Ye-Lin Some recent work on biharmonic conformal maps. (English) Zbl 07315988 Van der Veken, Joeri (ed.) et al., Geometry of submanifolds. AMS special session in honor of Bang-Yen Chen’s 75th birthday, University of Michigan, Ann Arbor, Michigan, October 20–21, 2018. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-5092-2/pbk; 978-1-4704-5666-5/ebook). Contemporary Mathematics 756, 195-205 (2020). MSC: 58E20 PDF BibTeX XML Cite \textit{Y.-L. Ou}, Contemp. Math. 756, 195--205 (2020; Zbl 07315988) Full Text: DOI
Hall, Stuart J.; Murphy, Thomas Bounding the invariant spectrum when the scalar curvature is non-negative. (English) Zbl 07315982 Van der Veken, Joeri (ed.) et al., Geometry of submanifolds. AMS special session in honor of Bang-Yen Chen’s 75th birthday, University of Michigan, Ann Arbor, Michigan, October 20–21, 2018. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-5092-2/pbk; 978-1-4704-5666-5/ebook). Contemporary Mathematics 756, 133-139 (2020). MSC: 53B35 53C25 53C40 53C42 53C43 PDF BibTeX XML Cite \textit{S. J. Hall} and \textit{T. Murphy}, Contemp. Math. 756, 133--139 (2020; Zbl 07315982) Full Text: DOI
Charalambous, Nelia; Leal, Helton; Lu, Zhiqin Spectral gaps on complete Riemannian manifolds. (English) Zbl 07315976 Van der Veken, Joeri (ed.) et al., Geometry of submanifolds. AMS special session in honor of Bang-Yen Chen’s 75th birthday, University of Michigan, Ann Arbor, Michigan, October 20–21, 2018. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-5092-2/pbk; 978-1-4704-5666-5/ebook). Contemporary Mathematics 756, 57-67 (2020). MSC: 53B35 53C25 53C40 53C42 53C43 PDF BibTeX XML Cite \textit{N. Charalambous} et al., Contemp. Math. 756, 57--67 (2020; Zbl 07315976) Full Text: DOI
Verstraelen, Leopold Submanifold theory – a contemplation of submanifolds. (English) Zbl 07315975 Van der Veken, Joeri (ed.) et al., Geometry of submanifolds. AMS special session in honor of Bang-Yen Chen’s 75th birthday, University of Michigan, Ann Arbor, Michigan, October 20–21, 2018. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-5092-2/pbk; 978-1-4704-5666-5/ebook). Contemporary Mathematics 756, 21-56 (2020). MSC: 01A60 01A61 53-03 53B20 53B25 53A15 53A30 53A55 53B35 53C15 53C25 53C35 53C40 53C42 53C43 53C55 53C80 53C99 PDF BibTeX XML Cite \textit{L. Verstraelen}, Contemp. Math. 756, 21--56 (2020; Zbl 07315975) Full Text: DOI
Chen, Bang-Yen My education in differential geometry and my indebtedness. (English) Zbl 07315974 Van der Veken, Joeri (ed.) et al., Geometry of submanifolds. AMS special session in honor of Bang-Yen Chen’s 75th birthday, University of Michigan, Ann Arbor, Michigan, October 20–21, 2018. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-5092-2/pbk; 978-1-4704-5666-5/ebook). Contemporary Mathematics 756, 13-19 (2020). MSC: 01A60 01A61 53-03 53B20 53B25 53A15 53A30 53A55 53B35 53C15 53C25 53C35 53C40 53C42 53C43 53C55 53C80 53C99 PDF BibTeX XML Cite \textit{B.-Y. Chen}, Contemp. Math. 756, 13--19 (2020; Zbl 07315974) Full Text: DOI
Van der Veken, Joeri; Carriazo, Alfonso; Dimitrić, Ivko; Oh, Yun Myung; Suceavă, Bogdan D.; Vrancken, Luc Reflections on some research work of Bang-Yen Chen. (English) Zbl 07315973 Van der Veken, Joeri (ed.) et al., Geometry of submanifolds. AMS special session in honor of Bang-Yen Chen’s 75th birthday, University of Michigan, Ann Arbor, Michigan, October 20–21, 2018. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-5092-2/pbk; 978-1-4704-5666-5/ebook). Contemporary Mathematics 756, 1-12 (2020). MSC: 53-03 53B20 53B25 53A15 53A30 53A55 53B35 53C15 53C25 53C35 53C40 53C42 53C43 53C55 53C80 53C99 91B99 PDF BibTeX XML Cite \textit{J. Van der Veken} et al., Contemp. Math. 756, 1--12 (2020; Zbl 07315973) Full Text: DOI
Aryanejad, Yadollah Some geometrical properties of the oscillator group. (English) Zbl 07314448 Casp. J. Math. Sci. 9, No. 2, 284-293 (2020). MSC: 53C50 53C15 53C25 PDF BibTeX XML Cite \textit{Y. Aryanejad}, Casp. J. Math. Sci. 9, No. 2, 284--293 (2020; Zbl 07314448) Full Text: DOI
Chen, Xingdi; Liu, Zhixue; Ru, Min Value distribution properties for the Gauss maps of the immersed harmonic surfaces. (English) Zbl 07307889 Pac. J. Math. 309, No. 2, 267-287 (2020). MSC: 53C42 53C43 30C65 32H25 PDF BibTeX XML Cite \textit{X. Chen} et al., Pac. J. Math. 309, No. 2, 267--287 (2020; Zbl 07307889) Full Text: DOI
Cherif, Ahmed Mohammed; Djaa, Mustapha Harmonic maps and torse-forming vector fields. (English) Zbl 07304394 Int. Electron. J. Geom. 13, No. 1, 87-93 (2020). MSC: 53C43 58E20 53A30 PDF BibTeX XML Cite \textit{A. M. Cherif} and \textit{M. Djaa}, Int. Electron. J. Geom. 13, No. 1, 87--93 (2020; Zbl 07304394) Full Text: DOI
Zhong, Penghong; Yang, Ganshan; Ma, Xuan Global existence of Landau-Lifshitz-Gilbert equation and self-similar blowup of harmonic map heat flow on \(\mathbb{S}^2\). (English) Zbl 07304329 Math. Comput. Simul. 174, 1-18 (2020). MSC: 35C06 35B44 58E20 53C43 PDF BibTeX XML Cite \textit{P. Zhong} et al., Math. Comput. Simul. 174, 1--18 (2020; Zbl 07304329) Full Text: DOI
Lin, Meirong; Gao, Xiaoman Application and extension of Forelli theorem. (Chinese. English summary) Zbl 07295356 J. Inn. Mong. Norm. Univ., Nat. Sci. 49, No. 4, 339-341, 352 (2020). MSC: 32U05 PDF BibTeX XML Cite \textit{M. Lin} and \textit{X. Gao}, J. Inn. Mong. Norm. Univ., Nat. Sci. 49, No. 4, 339--341, 352 (2020; Zbl 07295356) Full Text: DOI
Kortum, Joshua Concentration-cancellation in the Ericksen-Leslie model. (English) Zbl 07294610 Calc. Var. Partial Differ. Equ. 59, No. 6, Paper No. 189, 15 p. (2020). Reviewer: Prince Romeo Mensah (London) MSC: 35Q35 35Q56 35D30 35K55 76A15 58E20 PDF BibTeX XML Cite \textit{J. Kortum}, Calc. Var. Partial Differ. Equ. 59, No. 6, Paper No. 189, 15 p. (2020; Zbl 07294610) Full Text: DOI
Stern, Daniel \(p\)-harmonic maps to \(S^1\) and stationary varifolds of codimension two. (English) Zbl 07294608 Calc. Var. Partial Differ. Equ. 59, No. 6, Paper No. 187, 46 p. (2020). MSC: 53C43 58E20 PDF BibTeX XML Cite \textit{D. Stern}, Calc. Var. Partial Differ. Equ. 59, No. 6, Paper No. 187, 46 p. (2020; Zbl 07294608) Full Text: DOI
Pigati, Alessandro; Rivière, Tristan A proof of the multiplicity 1 conjecture for min-max minimal surfaces in arbitrary codimension. (English) Zbl 07292301 Duke Math. J. 169, No. 11, 2005-2044 (2020). MSC: 49Q05 49Q15 49Q20 58E20 53C42 PDF BibTeX XML Cite \textit{A. Pigati} and \textit{T. Rivière}, Duke Math. J. 169, No. 11, 2005--2044 (2020; Zbl 07292301) Full Text: DOI Euclid
Pashaie, Firooz On \(L_1\)-biharmonic timelike hypersurfaces in pseudo-Euclidean space \(\mathbb{E}_1^4\). (English) Zbl 07290770 Tamkang J. Math. 51, No. 4, 313-332 (2020). MSC: 53A35 53C43 53C42 53B30 PDF BibTeX XML Cite \textit{F. Pashaie}, Tamkang J. Math. 51, No. 4, 313--332 (2020; Zbl 07290770) Full Text: DOI
Remli, Embarka; Cherif, Ahmed Mohammed Some results on f-harmonic maps and f-biharmonic submanifolds. (English) Zbl 07289728 Acta Math. Univ. Comen., New Ser. 89, No. 2, 299-307 (2020). MSC: 53C43 58E20 53A30 PDF BibTeX XML Cite \textit{E. Remli} and \textit{A. M. Cherif}, Acta Math. Univ. Comen., New Ser. 89, No. 2, 299--307 (2020; Zbl 07289728)
Robertson, Craig; Rupflin, Melanie Finite-time degeneration for variants of Teichmüller harmonic map flow. (English) Zbl 07288967 J. Lond. Math. Soc., II. Ser. 102, No. 2, 535-556 (2020). Reviewer: Atsushi Fujioka (Osaka) MSC: 53A10 53C43 53E99 58E20 30F99 PDF BibTeX XML Cite \textit{C. Robertson} and \textit{M. Rupflin}, J. Lond. Math. Soc., II. Ser. 102, No. 2, 535--556 (2020; Zbl 07288967) Full Text: DOI
Van der Veken, Joeri (ed.); Carriazo, Alfonso (ed.); Dimitrić, Ivko (ed.); Oh, Yun Myung (ed.); Suceavă, Bogdan D. (ed.); Vrancken, Luc (ed.) Geometry of submanifolds. AMS special session in honor of Bang-Yen Chen’s 75th birthday, University of Michigan, Ann Arbor, Michigan, October 20–21, 2018. (English) Zbl 07286458 Contemporary Mathematics 756. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-5092-2/pbk; 978-1-4704-5666-5/ebook). xv, 269 p. (2020). MSC: 53-06 53B35 53C25 53C40 53C42 53C43 00B25 00B30 PDF BibTeX XML Cite \textit{J. Van der Veken} (ed.) et al., Geometry of submanifolds. AMS special session in honor of Bang-Yen Chen's 75th birthday, University of Michigan, Ann Arbor, Michigan, October 20--21, 2018. Providence, RI: American Mathematical Society (AMS) (2020; Zbl 07286458) Full Text: DOI
Naud, Frédéric Hyperbolic dynamics meet Fourier analysis, an Invitation to the book. Book review of: V. Baladi, Dynamical zeta functions and dynamical determinants for hyperbolic maps. A functional approach. (English) Zbl 1451.00044 Jahresber. Dtsch. Math.-Ver. 122, No. 4, 263-268 (2020). MSC: 00A17 37-02 37C30 37D20 37D35 37F15 37A46 46E35 PDF BibTeX XML Cite \textit{F. Naud}, Jahresber. Dtsch. Math.-Ver. 122, No. 4, 263--268 (2020; Zbl 1451.00044) Full Text: DOI
Dorfmeister, Josef; Wang, Peng Classification of homogeneous Willmore surfaces in \(S^n\). (English) Zbl 07285612 Osaka J. Math. 57, No. 4, 805-817 (2020). MSC: 53C43 53A31 53C35 58E20 PDF BibTeX XML Cite \textit{J. Dorfmeister} and \textit{P. Wang}, Osaka J. Math. 57, No. 4, 805--817 (2020; Zbl 07285612) Full Text: Euclid
Andrews, Ben; Hu, Yingxiang; Li, Haizhong Harmonic mean curvature flow and geometric inequalities. (English) Zbl 07281405 Adv. Math. 375, Article ID 107393, 28 p. (2020). MSC: 53E10 53C43 53A35 PDF BibTeX XML Cite \textit{B. Andrews} et al., Adv. Math. 375, Article ID 107393, 28 p. (2020; Zbl 07281405) Full Text: DOI
Gudmundsson, Sigmundur; Sobak, Marko \(r\)-harmonic and complex isoparametric functions on the Lie groups \(\mathbb{R}^m\ltimes\mathbb{R}^n\) and \(\mathbb{R}^m\times\text{H}^{2n+1}\). (English) Zbl 1453.31013 Ann. Global Anal. Geom. 58, No. 4, 477-496 (2020). Reviewer: Marius Ghergu (Dublin) MSC: 31B30 53C43 58E20 PDF BibTeX XML Cite \textit{S. Gudmundsson} and \textit{M. Sobak}, Ann. Global Anal. Geom. 58, No. 4, 477--496 (2020; Zbl 1453.31013) Full Text: DOI
Zagane, Abderrahim; El Hendi, Hichem Harmonic vector fields on vertical rescaled generalized Cheeger-Gromoll metrics. (English) Zbl 07276261 Balkan J. Geom. Appl. 25, No. 2, 140-156 (2020). MSC: 53C25 53C43 53C22 53A45 PDF BibTeX XML Cite \textit{A. Zagane} and \textit{H. El Hendi}, Balkan J. Geom. Appl. 25, No. 2, 140--156 (2020; Zbl 07276261) Full Text: Link
El Hendi, Hichem; Belarbi, Lakehal Naturally harmonic maps between tangent bundles. (English) Zbl 1453.53015 Balkan J. Geom. Appl. 25, No. 1, 34-46 (2020). MSC: 53A45 53C20 53C43 PDF BibTeX XML Cite \textit{H. El Hendi} and \textit{L. Belarbi}, Balkan J. Geom. Appl. 25, No. 1, 34--46 (2020; Zbl 1453.53015) Full Text: Link
Sommer, Stefan; Fletcher, Tom; Pennec, Xavier Introduction to differential and Riemannian geometry. (English) Zbl 07274038 Pennec, Xavier (ed.) et al., Riemannian geometric statistics in medical image analysis. Amsterdam: Elsevier/Academic Press (ISBN 978-0-12-814725-2/pbk; 978-0-12-814726-9/ebook). The Elsevier and Miccai Society Book Series, 3-37 (2020). Reviewer: Ludwig Paditz (Dresden) MSC: 53-01 53-02 53B20 53B21 53C05 53C20 53C21 53C22 53C25 53C56 58-01 58E20 PDF BibTeX XML Cite \textit{S. Sommer} et al., in: Riemannian geometric statistics in medical image analysis. Amsterdam: Elsevier/Academic Press. 3--37 (2020; Zbl 07274038) Full Text: DOI
Kumar, Sushil; Prasasd, Rajendra Semi-slant Riemannian maps from cosymplectic manifolds into Riemannian manifolds. (English) Zbl 1452.53027 Gulf J. Math. 9, No. 1, 62-80 (2020). MSC: 53C15 53C25 53D15 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{R. Prasasd}, Gulf J. Math. 9, No. 1, 62--80 (2020; Zbl 1452.53027) Full Text: Link
Mazowiecka, Katarzyna; Rodiac, Rémy; Schikorra, Armin Epsilon-regularity for \(p\)-harmonic maps at a free boundary on a sphere. (English) Zbl 1451.58006 Anal. PDE 13, No. 5, 1301-1331 (2020). MSC: 58E20 35B65 35R35 35J58 35J66 PDF BibTeX XML Cite \textit{K. Mazowiecka} et al., Anal. PDE 13, No. 5, 1301--1331 (2020; Zbl 1451.58006) Full Text: DOI
Gabdurakhmanov, Ravil Spaces of harmonic maps of the projective plane to the four-dimensional sphere. (English) Zbl 07271422 J. Geom. 111, No. 3, Paper No. 40, 23 p. (2020). Reviewer: Vladimir Balan (Bucureşti) MSC: 53C43 58E20 53C28 PDF BibTeX XML Cite \textit{R. Gabdurakhmanov}, J. Geom. 111, No. 3, Paper No. 40, 23 p. (2020; Zbl 07271422) Full Text: DOI
Han, Yingbo; Luo, Yong Nonexistence of proper \(p\)-biharmonic maps and Liouville type theorems. I: Case of \(p\ge 2\). (English) Zbl 07270555 J. Elliptic Parabol. Equ. 6, No. 2, 409-426 (2020). Reviewer: Gabjin Yun (Yongin) MSC: 53C43 53C24 PDF BibTeX XML Cite \textit{Y. Han} and \textit{Y. Luo}, J. Elliptic Parabol. Equ. 6, No. 2, 409--426 (2020; Zbl 07270555) Full Text: DOI
Lamm, Tobias; Malchiodi, Andrea; Micallef, Mario Limits of \(\alpha\)-harmonic maps. (English) Zbl 07269227 J. Differ. Geom. 116, No. 2, 321-348 (2020). MSC: 53C43 PDF BibTeX XML Cite \textit{T. Lamm} et al., J. Differ. Geom. 116, No. 2, 321--348 (2020; Zbl 07269227) Full Text: DOI Euclid
Breiner, Christine; Fraser, Ailana; Huang, Lan-Hsuan; Mese, Chikako; Sargent, Pam; Zhang, Yingying Existence of harmonic maps into CAT(1) spaces. (English) Zbl 07268914 Commun. Anal. Geom. 28, No. 4, 781-835 (2020). MSC: 53C43 58E20 PDF BibTeX XML Cite \textit{C. Breiner} et al., Commun. Anal. Geom. 28, No. 4, 781--835 (2020; Zbl 07268914) Full Text: DOI
Oliver, J. The index of harmonic maps from surfaces to complex projective spaces. (English) Zbl 1452.53061 Int. J. Math. 31, No. 9, Article ID 2050069, 13 p. (2020). MSC: 53C43 58E20 PDF BibTeX XML Cite \textit{J. Oliver}, Int. J. Math. 31, No. 9, Article ID 2050069, 13 p. (2020; Zbl 1452.53061) Full Text: DOI
Ransford, Thomas; Younsi, Malik; Ai, Wen-hui Continuity of capacity of a holomorphic motion. (English) Zbl 1451.30051 Adv. Math. 374, Article ID 107376, 15 p. (2020). Reviewer: Dmitri V. Prokhorov (Saratov) MSC: 30C85 30C62 31A15 37F44 PDF BibTeX XML Cite \textit{T. Ransford} et al., Adv. Math. 374, Article ID 107376, 15 p. (2020; Zbl 1451.30051) Full Text: DOI
Lytchak, Alexander; Stadler, Stephan Improvements of upper curvature bounds. (English) Zbl 1453.53043 Trans. Am. Math. Soc. 373, No. 10, 7153-7166 (2020). Reviewer: Stig-Olof Londen (Aalto) MSC: 53C20 53C23 58E20 PDF BibTeX XML Cite \textit{A. Lytchak} and \textit{S. Stadler}, Trans. Am. Math. Soc. 373, No. 10, 7153--7166 (2020; Zbl 1453.53043) Full Text: DOI
Park, Kwang Soon h-conformal anti-invariant submersions from almost quaternionic Hermitian manifolds. (English) Zbl 07250680 Czech. Math. J. 70, No. 3, 631-656 (2020). MSC: 53C15 53C26 53C43 PDF BibTeX XML Cite \textit{K. S. Park}, Czech. Math. J. 70, No. 3, 631--656 (2020; Zbl 07250680) Full Text: DOI
Fan, Zening; Zhao, Suo On sectional Newtonian graphs. (English) Zbl 07250679 Czech. Math. J. 70, No. 3, 605-629 (2020). MSC: 05C75 53C43 PDF BibTeX XML Cite \textit{Z. Fan} and \textit{S. Zhao}, Czech. Math. J. 70, No. 3, 605--629 (2020; Zbl 07250679) Full Text: DOI
Altuntas, Serdar; Scheven, Christoph Blow-up analysis and boundary regularity for variationally biharmonic maps. (English) Zbl 1448.53069 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 200, Article ID 111971, 35 p. (2020). MSC: 53C43 53A07 PDF BibTeX XML Cite \textit{S. Altuntas} and \textit{C. Scheven}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 200, Article ID 111971, 35 p. (2020; Zbl 1448.53069) Full Text: DOI
Carberry, Emma; Ogilvie, Ross The space of equivariant harmonic tori in the 3-sphere. (English) Zbl 1448.53071 J. Geom. Phys. 157, Article ID 103808, 22 p. (2020). MSC: 53C43 53C42 30F30 58D10 PDF BibTeX XML Cite \textit{E. Carberry} and \textit{R. Ogilvie}, J. Geom. Phys. 157, Article ID 103808, 22 p. (2020; Zbl 1448.53071) Full Text: DOI
Yang, Chao; Liu, Jiancheng Biharmonic hypersurfaces in pseudo-Riemannian space forms with at most two distinct principal curvatures. (English) Zbl 1448.53066 J. Funct. Spaces 2020, Article ID 2182975, 9 p. (2020). Reviewer: Andreas Arvanitoyeorgos (Patras) MSC: 53C40 53C42 53C43 53C50 PDF BibTeX XML Cite \textit{C. Yang} and \textit{J. Liu}, J. Funct. Spaces 2020, Article ID 2182975, 9 p. (2020; Zbl 1448.53066) Full Text: DOI
Ou, Ye-Lin A note on equivariant biharmonic maps and stable biharmonic maps. (English) Zbl 1450.58008 J. Math. Anal. Appl. 491, No. 1, Article ID 124301, 10 p. (2020). Reviewer: Gabjin Yun (Yongin) MSC: 58E20 53C43 PDF BibTeX XML Cite \textit{Y.-L. Ou}, J. Math. Anal. Appl. 491, No. 1, Article ID 124301, 10 p. (2020; Zbl 1450.58008) Full Text: DOI
Feehan, Paul M. N.; Maridakis, Manousos Łojasiewicz-Simon gradient inequalities for analytic and Morse-Bott functions on Banach spaces. (English) Zbl 1447.58018 J. Reine Angew. Math. 765, 35-67 (2020). MSC: 58E15 32H02 46B25 58E20 PDF BibTeX XML Cite \textit{P. M. N. Feehan} and \textit{M. Maridakis}, J. Reine Angew. Math. 765, 35--67 (2020; Zbl 1447.58018) Full Text: DOI
Zhang, Li; Huo, Sheng Jin; Guo, Hui; Feng, Xiao Gao Mapping of least \(\rho \)-Dirichlet energy between doubly connected Riemann surfaces. (English) Zbl 1447.58021 Acta Math. Sin., Engl. Ser. 36, No. 6, 663-672 (2020). MSC: 58E20 30A05 PDF BibTeX XML Cite \textit{L. Zhang} et al., Acta Math. Sin., Engl. Ser. 36, No. 6, 663--672 (2020; Zbl 1447.58021) Full Text: DOI
Branding, Volker Some analytic results on interpolating sesqui-harmonic maps. (English) Zbl 07243398 Ann. Mat. Pura Appl. (4) 199, No. 5, 2039-2059 (2020). Reviewer: Ye-Lin Ou (Commerce) MSC: 58E20 31B30 35B65 PDF BibTeX XML Cite \textit{V. Branding}, Ann. Mat. Pura Appl. (4) 199, No. 5, 2039--2059 (2020; Zbl 07243398) Full Text: DOI
Freidin, Brian; Gras Andreu, Victòria Harmonic maps between ideal 2-dimensional simplicial complexes. (English) Zbl 1453.53065 Geom. Dedicata 208, 129-155 (2020). Reviewer: John Urbas (Canberra) MSC: 53C43 32G15 57M50 PDF BibTeX XML Cite \textit{B. Freidin} and \textit{V. Gras Andreu}, Geom. Dedicata 208, 129--155 (2020; Zbl 1453.53065) Full Text: DOI
Luo, Yong; Sun, Linlin Complete Willmore Legendrian surfaces in \(\mathbb{S}^5\) are minimal Legendrian surfaces. (English) Zbl 1447.53056 Ann. Global Anal. Geom. 58, No. 2, 177-189 (2020). MSC: 53C42 53C43 53C24 PDF BibTeX XML Cite \textit{Y. Luo} and \textit{L. Sun}, Ann. Global Anal. Geom. 58, No. 2, 177--189 (2020; Zbl 1447.53056) Full Text: DOI
Koskela, Pekka; Koski, Aleksis; Onninen, Jani Sobolev homeomorphic extensions onto John domains. (English) Zbl 07242604 J. Funct. Anal. 279, No. 10, Article ID 108719, 17 p. (2020). MSC: 46E35 26B10 58E20 PDF BibTeX XML Cite \textit{P. Koskela} et al., J. Funct. Anal. 279, No. 10, Article ID 108719, 17 p. (2020; Zbl 07242604) Full Text: DOI
Fujioka, Hideaki An example of harmonic map into the spheres with the singularity of order 4. (English) Zbl 1446.53051 J. Geom. Phys. 156, Article ID 103810, 9 p. (2020). MSC: 53C43 PDF BibTeX XML Cite \textit{H. Fujioka}, J. Geom. Phys. 156, Article ID 103810, 9 p. (2020; Zbl 1446.53051) Full Text: DOI
Manca, Benedetto DPW potentials for compact symmetric CMC surfaces in \(\mathbb{S}^3\). (English) Zbl 1447.53057 J. Geom. Phys. 156, Article ID 103791, 15 p. (2020). MSC: 53C42 53C43 14H60 PDF BibTeX XML Cite \textit{B. Manca}, J. Geom. Phys. 156, Article ID 103791, 15 p. (2020; Zbl 1447.53057) Full Text: DOI
Jaracz, Jaroslaw S. The Penrose inequality and positive mass theorem with charge for manifolds with asymptotically cylindrical ends. (English) Zbl 1447.53059 Ann. Henri Poincaré 21, No. 8, 2581-2609 (2020). MSC: 53C50 83C22 58E20 58J99 PDF BibTeX XML Cite \textit{J. S. Jaracz}, Ann. Henri Poincaré 21, No. 8, 2581--2609 (2020; Zbl 1447.53059) Full Text: DOI
Waterman, James Identifying logarithmic tracts. (English) Zbl 07241189 Ann. Acad. Sci. Fenn., Math. 45, No. 2, 739-749 (2020). Reviewer: Konstantin Malyutin (Kursk) MSC: 30D05 37F10 30D35 PDF BibTeX XML Cite \textit{J. Waterman}, Ann. Acad. Sci. Fenn., Math. 45, No. 2, 739--749 (2020; Zbl 07241189) Full Text: DOI
Yeung, Sai-Kee Erratum to: “Foliations associated to harmonic maps on some complex two ball quotients”. (English) Zbl 1443.58012 Sci. China, Math. 63, No. 8, 1645 (2020). MSC: 58E20 53C22 53C24 PDF BibTeX XML Cite \textit{S.-K. Yeung}, Sci. China, Math. 63, No. 8, 1645 (2020; Zbl 1443.58012) Full Text: DOI
Breiner, Christine; Lakzian, Sajjad Bubble tree convergence for harmonic maps into compact locally CAT(1) spaces. (English) Zbl 1446.53050 Calc. Var. Partial Differ. Equ. 59, No. 5, Paper No. 144, 23 p. (2020). MSC: 53C43 58E20 PDF BibTeX XML Cite \textit{C. Breiner} and \textit{S. Lakzian}, Calc. Var. Partial Differ. Equ. 59, No. 5, Paper No. 144, 23 p. (2020; Zbl 1446.53050) Full Text: DOI
Kim, Inkang; Wan, Xueyuan; Zhang, Genkai Plurisuperharmonicity of reciprocal energy function on Teichmüller space and Weil-Petersson metric. (English. French summary) Zbl 1445.53049 J. Math. Pures Appl. (9) 141, 316-341 (2020). MSC: 53C43 53C21 53C25 PDF BibTeX XML Cite \textit{I. Kim} et al., J. Math. Pures Appl. (9) 141, 316--341 (2020; Zbl 1445.53049) Full Text: DOI
Xu, Na; Tan, Ju Harmonicity of vector fields on the oscillator groups with neutral signature. (English) Zbl 07236149 Differ. Geom. Appl. 72, Article ID 101662, 13 p. (2020). Reviewer: Viviana del Barco (Orsay) MSC: 53C25 53C30 53C43 53C80 PDF BibTeX XML Cite \textit{N. Xu} and \textit{J. Tan}, Differ. Geom. Appl. 72, Article ID 101662, 13 p. (2020; Zbl 07236149) Full Text: DOI
Arendt, Wolfgang; Bernhard, Manuel; Kreuter, Marcel Elliptic problems and holomorphic functions in Banach spaces. (English) Zbl 1447.35133 Ill. J. Math. 64, No. 3, 331-347 (2020). Reviewer: Alain Brillard (Riedisheim) MSC: 35J25 46B20 31C05 32K12 PDF BibTeX XML Cite \textit{W. Arendt} et al., Ill. J. Math. 64, No. 3, 331--347 (2020; Zbl 1447.35133) Full Text: DOI Euclid
Bittencourt, Fidelis; Fusieger, Pedro; Longa, Eduardo R.; Ripoll, Jaime Gauss map and the topology of constant mean curvature hypersurfaces of \(\mathbb{S}^7\) and \(\mathbb{CP}^3 \). (English) Zbl 07233352 Manuscr. Math. 163, No. 1-2, 279-290 (2020). MSC: 53C42 53C43 17A35 PDF BibTeX XML Cite \textit{F. Bittencourt} et al., Manuscr. Math. 163, No. 1--2, 279--290 (2020; Zbl 07233352) Full Text: DOI
Ai, Wanjun; Zhu, Miaomiao Regularity for Dirac-harmonic maps into certain pseudo-Riemannian manifolds. (English) Zbl 1450.58005 J. Funct. Anal. 279, No. 7, Article ID 108633, 27 p. (2020). Reviewer: Gabjin Yun (Yongin) MSC: 58E20 53C27 53C50 35J60 35B65 PDF BibTeX XML Cite \textit{W. Ai} and \textit{M. Zhu}, J. Funct. Anal. 279, No. 7, Article ID 108633, 27 p. (2020; Zbl 1450.58005) Full Text: DOI
Ignat, Radu; Nguyen, Luc; Slastikov, Valeriy; Zarnescu, Arghir On the uniqueness of minimisers of Ginzburg-Landau functionals. (English) Zbl 1445.35011 Ann. Sci. Éc. Norm. Supér. (4) 53, No. 3, 589-613 (2020). MSC: 35A02 35B06 35J50 35Q56 PDF BibTeX XML Cite \textit{R. Ignat} et al., Ann. Sci. Éc. Norm. Supér. (4) 53, No. 3, 589--613 (2020; Zbl 1445.35011) Full Text: DOI
Akagawa, Shinya The Cheng-Yau metrics on regular convex cones as harmonic immersions into the symmetric space of positive definite real symmetric matrices. (English) Zbl 1444.53033 Osaka J. Math. 57, No. 3, 507-519 (2020). MSC: 53C25 53C43 PDF BibTeX XML Cite \textit{S. Akagawa}, Osaka J. Math. 57, No. 3, 507--519 (2020; Zbl 1444.53033) Full Text: Euclid
Niedziałomski, Kamil Harmonic \(SU(3)\)- and \(G_2\)-structures via spinors. (English) Zbl 07220540 Result. Math. 75, No. 3, Paper No. 118, 18 p. (2020). MSC: 53C10 53C25 53C27 53C43 PDF BibTeX XML Cite \textit{K. Niedziałomski}, Result. Math. 75, No. 3, Paper No. 118, 18 p. (2020; Zbl 07220540) Full Text: DOI
Day, Stuart; Taheri, Ali Stability and local minimality of spherical harmonic twists \(u={\mathbf{Q}}(|x|) x|x|^{-1} \), positivity of second variations and conjugate points on \(\mathbf{SO}(n)\). (English) Zbl 1444.35050 J. Anal. 28, No. 2, 431-460 (2020). MSC: 35J47 35J50 53C43 49K30 22C05 53Z05 PDF BibTeX XML Cite \textit{S. Day} and \textit{A. Taheri}, J. Anal. 28, No. 2, 431--460 (2020; Zbl 1444.35050) Full Text: DOI
Crespo, Francisco; Ferrer, Sebastián Alternative reduction by stages of Keplerian systems. Positive, negative, and zero energy. (English) Zbl 07220179 SIAM J. Appl. Dyn. Syst. 19, No. 2, 1525-1539 (2020). MSC: 70F16 53D20 PDF BibTeX XML Cite \textit{F. Crespo} and \textit{S. Ferrer}, SIAM J. Appl. Dyn. Syst. 19, No. 2, 1525--1539 (2020; Zbl 07220179) Full Text: DOI
Perktaş, Selcen Y.; Acet, Bilal E.; Blaga, Adara M. A short note on \(f\)-biharmonic hypersurfaces. (English) Zbl 07217163 Commentat. Math. Univ. Carol. 61, No. 1, 119-126 (2020). Reviewer: Ye-Lin Ou (Commerce) MSC: 58E20 53C25 53C43 PDF BibTeX XML Cite \textit{S. Y. Perktaş} et al., Commentat. Math. Univ. Carol. 61, No. 1, 119--126 (2020; Zbl 07217163) Full Text: DOI
Yang, Dan; Zhang, Jingjing; Fu, Yu Linear Weingarten \(\lambda\)-biharmonic hypersurfaces in Euclidean space. (English) Zbl 1443.53038 Ann. Mat. Pura Appl. (4) 199, No. 4, 1533-1546 (2020). MSC: 53C42 53C40 53A07 53C43 PDF BibTeX XML Cite \textit{D. Yang} et al., Ann. Mat. Pura Appl. (4) 199, No. 4, 1533--1546 (2020; Zbl 1443.53038) Full Text: DOI
Li, Yuqiao The positive mass theorem for non-spin manifolds with distributional curvature. (English) Zbl 1447.53079 Ann. Henri Poincaré 21, No. 6, 2093-2114 (2020). Reviewer: Miguel Paternain (Montevideo) MSC: 53E20 83C99 53C20 58E20 58J99 PDF BibTeX XML Cite \textit{Y. Li}, Ann. Henri Poincaré 21, No. 6, 2093--2114 (2020; Zbl 1447.53079) Full Text: DOI
Struwe, Michael Normalized harmonic map heat flow. (English) Zbl 1445.58008 Commun. Pure Appl. Math. 73, No. 3, 664-686 (2020). Reviewer: Adnane Elmrabty (Guelmim) MSC: 58E20 PDF BibTeX XML Cite \textit{M. Struwe}, Commun. Pure Appl. Math. 73, No. 3, 664--686 (2020; Zbl 1445.58008) Full Text: DOI
Zhou, Jiuru Vanishing theorems for \(L^2\) harmonic \(p\)-forms on Riemannian manifolds with a weighted \(p\)-Poincaré inequality. (English) Zbl 1441.53054 J. Math. Anal. Appl. 490, No. 1, Article ID 124229, 9 p. (2020). MSC: 53C43 58A14 PDF BibTeX XML Cite \textit{J. Zhou}, J. Math. Anal. Appl. 490, No. 1, Article ID 124229, 9 p. (2020; Zbl 1441.53054) Full Text: DOI
Grama, Lino; Seco, Lucas Second homotopy group and invariant geometry of flag manifolds. (English) Zbl 1448.58014 Result. Math. 75, No. 3, Paper No. 94, 21 p. (2020). MSC: 58E20 53C22 53C30 14M15 22E46 17B20 PDF BibTeX XML Cite \textit{L. Grama} and \textit{L. Seco}, Result. Math. 75, No. 3, Paper No. 94, 21 p. (2020; Zbl 1448.58014) Full Text: DOI
Maeta, Shun; Ou, Ye-Lin Some classifications of biharmonic hypersurfaces with constant scalar curvature. (English) Zbl 1447.58019 Pac. J. Math. 306, No. 1, 281-290 (2020). Reviewer: Vladimir Yu. Rovenskij (Nesher) MSC: 58E20 53C12 PDF BibTeX XML Cite \textit{S. Maeta} and \textit{Y.-L. Ou}, Pac. J. Math. 306, No. 1, 281--290 (2020; Zbl 1447.58019) Full Text: DOI
Branding, V.; Montaldo, S.; Oniciuc, C.; Ratto, A. Higher order energy functionals. (English) Zbl 1441.58013 Adv. Math. 370, Article ID 107236, 59 p. (2020). MSC: 58E20 53C43 PDF BibTeX XML Cite \textit{V. Branding} et al., Adv. Math. 370, Article ID 107236, 59 p. (2020; Zbl 1441.58013) Full Text: DOI
Leschke, K.; Moriya, K. The \(\mu\)-Darboux transformation of minimal surfaces. (English) Zbl 07211744 Manuscr. Math. 162, No. 3-4, 537-558 (2020). Reviewer: Costache Apreutesei (Iaşi) MSC: 53A10 53C42 53C43 PDF BibTeX XML Cite \textit{K. Leschke} and \textit{K. Moriya}, Manuscr. Math. 162, No. 3--4, 537--558 (2020; Zbl 07211744) Full Text: DOI
Deschamps, G.; Loubeau, E.; Pantilie, R. Harmonic maps and twistorial structures. (English) Zbl 1440.53074 Mathematika 66, No. 1, 112-124 (2020). MSC: 53C43 53C28 53B21 PDF BibTeX XML Cite \textit{G. Deschamps} et al., Mathematika 66, No. 1, 112--124 (2020; Zbl 1440.53074) Full Text: DOI
Wilson, Scott O. Harmonic symmetries for Hermitian manifolds. (English) Zbl 1448.53076 Proc. Am. Math. Soc. 148, No. 7, 3039-3045 (2020). Reviewer: Gabriela Paola Ovando (Rosario) MSC: 53C55 53C43 PDF BibTeX XML Cite \textit{S. O. Wilson}, Proc. Am. Math. Soc. 148, No. 7, 3039--3045 (2020; Zbl 1448.53076) Full Text: DOI
Huang, Xian-Tao On the asymptotic behavior of the dimension of spaces of harmonic functions with polynomial growth. (English) Zbl 1439.53066 J. Reine Angew. Math. 762, 281-306 (2020). MSC: 53C43 PDF BibTeX XML Cite \textit{X.-T. Huang}, J. Reine Angew. Math. 762, 281--306 (2020; Zbl 1439.53066) Full Text: DOI
Ream, Robert The adjunction inequality for Weyl-harmonic maps. (English) Zbl 1439.32068 Complex Manifolds 7, 129-140 (2020). MSC: 32Q60 53C28 53C43 PDF BibTeX XML Cite \textit{R. Ream}, Complex Manifolds 7, 129--140 (2020; Zbl 1439.32068) Full Text: DOI
Lytchak, Alexander; Wenger, Stefan Canonical parameterizations of metric disks. (English) Zbl 1451.30118 Duke Math. J. 169, No. 4, 761-797 (2020). Reviewer: Thomas Zürcher (Katowice) MSC: 30L10 58E20 49Q05 30C65 PDF BibTeX XML Cite \textit{A. Lytchak} and \textit{S. Wenger}, Duke Math. J. 169, No. 4, 761--797 (2020; Zbl 1451.30118) Full Text: DOI Euclid
Lin, Longzhi; Sun, Ao; Zhou, Xin Min-max minimal disks with free boundary in Riemannian manifolds. (English) Zbl 1442.35560 Geom. Topol. 24, No. 1, 471-532 (2020). MSC: 35R35 49J35 49Q05 53C43 PDF BibTeX XML Cite \textit{L. Lin} et al., Geom. Topol. 24, No. 1, 471--532 (2020; Zbl 1442.35560) Full Text: DOI
Enoyoshi, Kanako; Tsukada, Kazumi Lagrangian submanifolds of \(S^6\) and the associative Grassmann manifold. (English) Zbl 1437.53060 Kodai Math. J. 43, No. 1, 170-192 (2020). MSC: 53D12 53B25 53C38 53C43 PDF BibTeX XML Cite \textit{K. Enoyoshi} and \textit{K. Tsukada}, Kodai Math. J. 43, No. 1, 170--192 (2020; Zbl 1437.53060) Full Text: DOI Euclid
Tkachev, Vladimir G. New explicit solutions to the \(p\)-Laplace equation based on isoparametric foliations. (English) Zbl 1440.53026 Differ. Geom. Appl. 70, Article ID 101629, 17 p. (2020). Reviewer: Andreas Arvanitoyeorgos (Patras) MSC: 53C12 53C42 53C43 PDF BibTeX XML Cite \textit{V. G. Tkachev}, Differ. Geom. Appl. 70, Article ID 101629, 17 p. (2020; Zbl 1440.53026) Full Text: DOI
Lopushansky, Oleh Weyl-Schrödinger representations of Heisenberg groups in infinite dimensions. (English) Zbl 1437.81034 Result. Math. 75, No. 2, Paper No. 73, 31 p. (2020). MSC: 81R10 43A65 46E50 35R03 PDF BibTeX XML Cite \textit{O. Lopushansky}, Result. Math. 75, No. 2, Paper No. 73, 31 p. (2020; Zbl 1437.81034) Full Text: DOI
Lee, Yong Hah Uniqueness of the boundary value problem of harmonic maps via harmonic boundary. (English) Zbl 1443.58011 Bull. Malays. Math. Sci. Soc. (2) 43, No. 3, 2733-2743 (2020). Reviewer: Gabjin Yun (Yongin) MSC: 58E20 53C43 PDF BibTeX XML Cite \textit{Y. H. Lee}, Bull. Malays. Math. Sci. Soc. (2) 43, No. 3, 2733--2743 (2020; Zbl 1443.58011) Full Text: DOI
Zhou, Xin; Zhu, Jonathan Existence of hypersurfaces with prescribed mean curvature I – generic min-max. (English) Zbl 1446.35272 Camb. J. Math. 8, No. 2, 311-362 (2020). Reviewer: Dorin Andrica (Riyadh) MSC: 35R35 49J35 49Q05 53C43 PDF BibTeX XML Cite \textit{X. Zhou} and \textit{J. Zhu}, Camb. J. Math. 8, No. 2, 311--362 (2020; Zbl 1446.35272)
Bédos, Erik; Conti, Roberto Corrigendum to “Fourier theory and \(C^\ast\)-algebras”. (English) Zbl 1440.22011 J. Geom. Phys. 150, Article ID 103609, 4 p. (2020). MSC: 22D10 22D25 46L55 43A07 43A65 PDF BibTeX XML Cite \textit{E. Bédos} and \textit{R. Conti}, J. Geom. Phys. 150, Article ID 103609, 4 p. (2020; Zbl 1440.22011) Full Text: DOI
Huang, Jia-Cheng; Wu, Guoqiang Convergence of harmonic maps between Alexandrov spaces. (English) Zbl 07190153 Calc. Var. Partial Differ. Equ. 59, No. 2, Paper No. 77, 21 p. (2020). MSC: 58E20 PDF BibTeX XML Cite \textit{J.-C. Huang} and \textit{G. Wu}, Calc. Var. Partial Differ. Equ. 59, No. 2, Paper No. 77, 21 p. (2020; Zbl 07190153) Full Text: DOI
Khomrutai, Sujin; Schikorra, Armin On \(C^{1, \alpha}\)-regularity for critical points of a geometric obstacle-type problem. (English) Zbl 1437.35249 J. Math. Pures Appl. (9) 136, 257-278 (2020). MSC: 35J46 35B65 53A10 PDF BibTeX XML Cite \textit{S. Khomrutai} and \textit{A. Schikorra}, J. Math. Pures Appl. (9) 136, 257--278 (2020; Zbl 1437.35249) Full Text: DOI
Ou, Ye-Lin; Chen, Bang-Yen Biharmonic submanifolds and biharmonic maps in Riemannian geometry. (English) Zbl 07184925 Hackensack, NJ: World Scientific (ISBN 978-981-12-1237-6/hbk; 978-981-12-1239-0/ebook). xii, 528 p. (2020). Reviewer: Nicolas Ginoux (Metz) MSC: 53-02 53C20 53C40 53C43 58E20 PDF BibTeX XML Cite \textit{Y.-L. Ou} and \textit{B.-Y. Chen}, Biharmonic submanifolds and biharmonic maps in Riemannian geometry. Hackensack, NJ: World Scientific (2020; Zbl 07184925) Full Text: DOI
Branding, Volker On the evolution of regularized Dirac-harmonic maps from closed surfaces. (English) Zbl 1436.53030 Result. Math. 75, No. 2, Paper No. 57, 30 p. (2020). Reviewer: Georges Habib (Fanar) MSC: 53C27 53C43 58E20 58J35 PDF BibTeX XML Cite \textit{V. Branding}, Result. Math. 75, No. 2, Paper No. 57, 30 p. (2020; Zbl 1436.53030) Full Text: DOI