Yang, Lixia; Zhu, Weisan A natural generalization of harmonious labelings. (Chinese. English summary) Zbl 1374.05200 Math. Pract. Theory 46, No. 12, 281-287 (2016). MSC: 05C78 PDF BibTeX XML Cite \textit{L. Yang} and \textit{W. Zhu}, Math. Pract. Theory 46, No. 12, 281--287 (2016; Zbl 1374.05200)
Gallian, Joseph A.; Stewart, Danielle Corrigendum to: “Even harmonious labelings of disjoint graphs with a small component”. (English) Zbl 1412.05175 AKCE Int. J. Graphs Comb. 13, No. 1, 101 (2016). MSC: 05C78 PDF BibTeX XML Cite \textit{J. A. Gallian} and \textit{D. Stewart}, AKCE Int. J. Graphs Comb. 13, No. 1, 101 (2016; Zbl 1412.05175) Full Text: DOI
Gallian, Joseph A.; Stewart, Danielle Corrigendum to: “Properly even harmonious labelings of disconnected graphs”. (English) Zbl 1412.05174 AKCE Int. J. Graphs Comb. 13, No. 1, 100 (2016). MSC: 05C78 PDF BibTeX XML Cite \textit{J. A. Gallian} and \textit{D. Stewart}, AKCE Int. J. Graphs Comb. 13, No. 1, 100 (2016; Zbl 1412.05174) Full Text: DOI
Gallian, Joseph A.; Stewart, Danielle Even harmonious labelings of disjoint graphs with a small component. (English) Zbl 1346.05253 AKCE Int. J. Graphs Comb. 12, No. 2-3, 204-215 (2015); corrigendum ibid. 13, No. 1, 101 (2016). MSC: 05C78 PDF BibTeX XML Cite \textit{J. A. Gallian} and \textit{D. Stewart}, AKCE Int. J. Graphs Comb. 12, No. 2--3, 204--215 (2015; Zbl 1346.05253) Full Text: DOI
Gallian, Joseph A.; Stewart, Danielle Properly even harmonious labelings of disconnected graphs. (English) Zbl 1346.05252 AKCE Int. J. Graphs Comb. 12, No. 2-3, 193-203 (2015); corrigendum ibid. 13, No. 1, 100 (2016). MSC: 05C78 PDF BibTeX XML Cite \textit{J. A. Gallian} and \textit{D. Stewart}, AKCE Int. J. Graphs Comb. 12, No. 2--3, 193--203 (2015; Zbl 1346.05252) Full Text: DOI
Gallian, Joseph A.; Stewart, Danielle Properly even harmonious labelings of disjoint unions with even sequential graphs. (English) Zbl 1334.05140 J. Graph Label. 1, No. 1, 1-10 (2015). MSC: 05C78 PDF BibTeX XML Cite \textit{J. A. Gallian} and \textit{D. Stewart}, J. Graph Label. 1, No. 1, 1--10 (2015; Zbl 1334.05140)
Gallian, Joseph A.; Schoenhard, Lori Ann Even harmonious graphs. (English) Zbl 1301.05290 AKCE Int. J. Graphs Comb. 11, No. 1, 27-49 (2014). MSC: 05C78 PDF BibTeX XML Cite \textit{J. A. Gallian} and \textit{L. A. Schoenhard}, AKCE Int. J. Graphs Comb. 11, No. 1, 27--49 (2014; Zbl 1301.05290)
Yao, Bing; Chen, Xiang’en; Yao, Ming; Cheng, Hui On \((k,\lambda)\)-magically total labeling of graphs. (English) Zbl 1293.05346 J. Comb. Math. Comb. Comput. 87, 237-253 (2013). MSC: 05C78 PDF BibTeX XML Cite \textit{B. Yao} et al., J. Comb. Math. Comb. Comput. 87, 237--253 (2013; Zbl 1293.05346)
Ichishima, R.; López, S. C.; Muntaner-Batle, F. A.; Rius-Font, M. The power of digraph products applied to labelings. (English) Zbl 1233.05111 Discrete Math. 312, No. 2, 221-228 (2012). MSC: 05C20 05C76 05C78 PDF BibTeX XML Cite \textit{R. Ichishima} et al., Discrete Math. 312, No. 2, 221--228 (2012; Zbl 1233.05111) Full Text: DOI
Li, Wuzhuang; Li, Guanghai; Yan, Qiantai Study on the some labelings of complete bipartite graphs. (English) Zbl 1226.05218 Lin, Song (ed.) et al., Advances in computer science, environment, ecoinformatics, and education. International conference, CSEE 2011, Wuhan, China, August 21–22, 2011. Proceedings, Part I. Berlin: Springer (ISBN 978-3-642-23320-3/pbk; 978-3-642-23321-0/ebook). Communications in Computer and Information Science 214, 297-301 (2011). MSC: 05C78 05C40 PDF BibTeX XML Cite \textit{W. Li} et al., Commun. Comput. Inf. Sci. 214, 297--301 (2011; Zbl 1226.05218) Full Text: DOI
Rao, S. B.; Germina, K. A. Graph labelings and complexity problems: a review. (English) Zbl 1284.05242 Panigrahi, Pratima (ed.) et al., Graph theory. Research directions. Papers mainly based on the presentations at the workshop on some recent research directions in graph theory, Kharagpur, India, May 26–30, 2008. New Delhi: Narosa Publishing House (ISBN 978-81-7319-997-4/hbk). 1-22 (2011). MSC: 05C78 05C85 68Q25 PDF BibTeX XML Cite \textit{S. B. Rao} and \textit{K. A. Germina}, in: Graph theory. Research directions. Papers mainly based on the presentations at the workshop on some recent research directions in graph theory, Kharagpur, India, May 26--30, 2008. New Delhi: Narosa Publishing House. 1--22 (2011; Zbl 1284.05242)
Seoud, M. A.; Youssef, M. Z. Families of harmonious and non-harmonious graphs. (English) Zbl 0965.05085 J. Egypt. Math. Soc. 7, No. 1, 117-125 (1999). Reviewer: Zsuzsanna Szaniszló (Vermillion) MSC: 05C78 PDF BibTeX XML Cite \textit{M. A. Seoud} and \textit{M. Z. Youssef}, J. Egypt. Math. Soc. 7, No. 1, 117--125 (1999; Zbl 0965.05085)
Yegnanarayanan, V. On some additive analog of graceful theme: Cycle-related graphs. (English) Zbl 0936.05076 Southeast Asian Bull. Math. 23, No. 2, 317-333 (1999). Reviewer: Zsuzsanna Szaniszló (Vermillion) MSC: 05C78 PDF BibTeX XML Cite \textit{V. Yegnanarayanan}, Southeast Asian Bull. Math. 23, No. 2, 317--333 (1999; Zbl 0936.05076)
Gallian, Joseph A. A dynamic survey of graph labeling. (English) Zbl 0953.05067 Electron. J. Comb. DS6, Dynamic Survey, 43 p. (1998). MSC: 05C78 05-02 PDF BibTeX XML Cite \textit{J. A. Gallian}, Electron. J. Comb. DS06, Research paper DS6, 43 p. (1998; Zbl 0953.05067) Full Text: EMIS
Cahit, I. On harmonious tree labelings. (English) Zbl 0846.05072 Ars Comb. 41, 311-317 (1995). Reviewer: R.Bodendiek (Kiel) MSC: 05C78 05C05 PDF BibTeX XML Cite \textit{I. Cahit}, Ars Comb. 41, 311--317 (1995; Zbl 0846.05072)
Sun, Rongguo On harmonious and sequential labelings of books \(B_ m\). (Chinese. English summary) Zbl 0811.05060 Appl. Math., Ser. A (Chin. Ed.) 9, No. 3, 335-337 (1994). MSC: 05C78 PDF BibTeX XML Cite \textit{R. Sun}, Appl. Math., Ser. A (Chin. Ed.) 9, No. 3, 335--337 (1994; Zbl 0811.05060)
Liu, Bolian; Zhang, Xiankun On harmonious labelings of graphs. (English) Zbl 0793.05102 Ars Comb. 36, 315-326 (1993). MSC: 05C78 PDF BibTeX XML Cite \textit{B. Liu} and \textit{X. Zhang}, Ars Comb. 36, 315--326 (1993; Zbl 0793.05102)
Gallian, Joseph A.; Prout, John; Winters, Steven Graceful and harmonious labelings of prism related graphs. (English) Zbl 0774.05086 Ars Comb. 34, 213-222 (1992). Reviewer: R.Bodendiek (Kiel) MSC: 05C78 PDF BibTeX XML Cite \textit{J. A. Gallian} et al., Ars Comb. 34, 213--222 (1992; Zbl 0774.05086)
Jungreis, Douglas S.; Reid, Michael Labeling grids. (English) Zbl 0774.05087 Ars Comb. 34, 167-182 (1992). Reviewer: R.Bodendiek (Kiel) MSC: 05C78 PDF BibTeX XML Cite \textit{D. S. Jungreis} and \textit{M. Reid}, Ars Comb. 34, 167--182 (1992; Zbl 0774.05087)
Liu, Bolian; Zhang, Xiankun On a conjecture of harmonious graph. (English) Zbl 0727.05054 Syst. Sci. Math. Sci. 2, No. 4, 325-328 (1989). Reviewer: R.Bodendiek (Kiel) MSC: 05C78 PDF BibTeX XML Cite \textit{B. Liu} and \textit{X. Zhang}, Syst. Sci. Math. Sci. 2, No. 4, 325--328 (1989; Zbl 0727.05054)
Liu, Bolian Strongly harmonious equation of graphs with applications. (Chinese. English summary) Zbl 0667.05059 J. Xinjiang Univ., Nat. Sci. 5, No. 1, 30-34 (1988). MSC: 05C99 PDF BibTeX XML Cite \textit{B. Liu}, J. Xinjiang Univ., Nat. Sci. 5, No. 1, 30--34 (1988; Zbl 0667.05059)
Liu, Bolian; Zhang, Xiankun A proof of the conjecture that coronas \(C_{2n} \bigodot{}K_ 1\) are sequential. Comments on harmonious labelings of wheels \(W_{2n+1}=C_{2n} \bigodot{}K_ 1\). (Chinese. English summary) Zbl 0761.05083 Appl. Math., J. Chin. Univ. 3, No. 4, 564-567 (1988). MSC: 05C78 PDF BibTeX XML Cite \textit{B. Liu} and \textit{X. Zhang}, Appl. Math., J. Chin. Univ. 3, No. 4, 564--567 (1988; Zbl 0761.05083)
Zhang, Bosheng Harmonious labelings of wheels \(W_{2n+1}=K_ 1 \odot{}C_{2n}\). (Chinese. English summary) Zbl 0761.05085 Appl. Math., J. Chin. Univ. 2, No. 1, 148-150 (1987). MSC: 05C78 PDF BibTeX XML Cite \textit{B. Zhang}, Appl. Math., J. Chin. Univ. 2, No. 1, 148--150 (1987; Zbl 0761.05085)
Grace, Thom On sequential labelings of graphs. (English) Zbl 0522.05063 J. Graph Theory 7, 195-201 (1983). MSC: 05C99 PDF BibTeX XML Cite \textit{T. Grace}, J. Graph Theory 7, 195--201 (1983; Zbl 0522.05063) Full Text: DOI