×

Found 227 Documents (Results 1–100)

100
MathJax

Solubility of unsteady equations of the three-dimensional motion of two-component viscous compressible heat-conducting fluids. (English. Russian original) Zbl 1479.35688

Izv. Math. 85, No. 4, 755-812 (2021); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 85, No. 4, 147-204 (2021).
PDF BibTeX XML Cite
Full Text: DOI

Solvability of a problem for the equations of the dynamics of one-temperature mixtures of heat-conducting viscous compressible fluids. (English. Russian original) Zbl 1428.35386

Dokl. Math. 99, No. 3, 273-276 (2019); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 486, No. 2, 159-162 (2019).
PDF BibTeX XML Cite
Full Text: DOI

A maximal regularity approach to the analysis of some particulate flows. (English) Zbl 1387.35459

Bodnár, Tomáš (ed.) et al., Particles in flows. Based on the summer course and workshop, Prague, Czech Republic, August 2014. Cham: Birkhäuser/Springer (ISBN 978-3-319-60281-3/hbk; 978-3-319-60282-0/ebook). Advances in Mathematical Fluid Mechanics, 1-75 (2017).
PDF BibTeX XML Cite
Full Text: DOI

Heat convection of compressible viscous fluids. III. (English) Zbl 1366.35135

Shibata, Yoshihiro (ed.) et al., Mathematical fluid dynamics, present and future. Tokyo, Japan, November 11–14, 2014. Tokyo: Springer (ISBN 978-4-431-56455-3/hbk; 978-4-431-56457-7/ebook). Springer Proceedings in Mathematics & Statistics 183, 487-495 (2016).
MSC:  35Q35 76E06 76R10 76N10 80A20
PDF BibTeX XML Cite
Full Text: DOI

Solvability of a mixed boundary value problem for stationary equations of magnetohydrodynamics of a viscous heat-conducting liquid. (Russian, English) Zbl 1349.76882

Sib. Zh. Ind. Mat. 18, No. 2, 24-35 (2015); translation in J. Appl. Ind. Math. 9, No. 3, 306-316 (2015).
MSC:  76W05 35Q35 76N10
PDF BibTeX XML Cite
Full Text: DOI

Stability of two-dimensional heat-conducting incompressible motions in a cylinder. (English) Zbl 1326.35293

PDF BibTeX XML Cite
Full Text: DOI

Some new approaches to solving Navier-Stokes equations for viscous heat-conducting gas. (English) Zbl 1351.76266

Dimov, Ivan (ed.) et al., Numerical analysis and its applications. 5th international conference, NAA 2012, Lozenetz, Bulgaria, June 15–20, 2012. Revised selected papers. Berlin: Springer (ISBN 978-3-642-41514-2/pbk). Lecture Notes in Computer Science 8236, 122-131 (2013).
MSC:  76N15 76J20 76M10
PDF BibTeX XML Cite
Full Text: DOI

Differentially invariant solutions of equations of plane steady flows of a viscous heat-conducting perfect gas with a polytropic equation of state. (English. Russian original) Zbl 1298.76133

J. Appl. Mech. Tech. Phys. 53, No. 2, 156-161 (2012); translation from Prikl. Mekh. Tekh. Fiz. 53, No. 2, 14-20 (2012).
MSC:  76M60 76N15 80A20
PDF BibTeX XML Cite
Full Text: DOI

Identification problem for a stationary magnetohydrodynamic model of a viscous heat-conducting fluid. (Russian, English) Zbl 1224.76179

Zh. Vychisl. Mat. Mat. Fiz. 49, No. 10, 1796-1811 (2009); translation in Comput. Math., Math. Phys. 49, No. 10, 1717-1732 (2009).
MSC:  76W05
PDF BibTeX XML Cite
Full Text: DOI Link

Evolution of the joint motion of two viscous heat-conducting fluids in a plane layer under the action of an unsteady pressure gradient. (English. Russian original) Zbl 1272.76096

J. Appl. Mech. Tech. Phys. 49, No. 4, 598-609 (2008); translation from Prikl. Mekh. Tekh. Fiz. 49, No. 4, 94-107 (2008).
MSC:  76D50 80A20
PDF BibTeX XML Cite
Full Text: DOI

Coefficient inverse extremum problems for stationary heat and mass transfer equations. (English. Russian original) Zbl 1292.76031

Comput. Math. Math. Phys. 47, No. 6, 1007-1028 (2007); translation from Zh. Vychisl. Mat. Mat. Fiz. 47, No. 6, 1055-1076 (2007).
MSC:  76D05 76M30 76R99 80A20
PDF BibTeX XML Cite
Full Text: DOI

On numerical algorithm of modelling of dynamic process in Newtonian heat-conducting liquid. (Ukrainian. English summary) Zbl 1064.65527

PDF BibTeX XML Cite

Well-posedness of the Cauchy problem for one-dimensional equations of a viscous heat-conducting gas with initial data in Lebesgue spaces. (English. Russian original) Zbl 1146.76641

Math. Notes 73, No. 5, 730-735 (2003); translation from Mat. Zametki 73, No. 5, 779-783 (2003).
MSC:  76N10 35Q35
PDF BibTeX XML Cite
Full Text: DOI

On nonstationary motion of a fixed mass of a general fluid bounded by a free surface. (English) Zbl 1039.76056

Picard, Rainer (ed.) et al., Evolution equations. Propagation phenomena, global existence, influence on non-linearities. Based on the workshop, Warsaw, Poland, July 1–July 7, 2001. Warsaw: Polish Academy of Sciences, Institute of Mathematics. Banach Cent. Publ. 60, 253-266 (2003).
MSC:  76N10 35R35 35Q35
PDF BibTeX XML Cite

Unique solvability of a two-dimensional nonstationary problem for the convection equations with temperature-dependent viscosity. (English. Russian original) Zbl 1055.35090

Differ. Equ. 38, No. 2, 249-258 (2002); translation from Differ. Uravn. 38, No. 2, 234-242 (2002).
MSC:  35Q35 76N10 35R35
PDF BibTeX XML Cite
Full Text: DOI

Regular partially invariant solutions of rank 0 and defect 1 of equations of axisymmetric motions of a viscous heat-conducting perfect gas. (Russian, English) Zbl 1009.35065

Prikl. Mekh. Tekh. Fiz. 43, No. 6, 14-22 (2002); translation in J. Appl. Mech. Tech. Phys. 43, No. 6, 796-803 (2002).
PDF BibTeX XML Cite

Weak solutions to viscous heat-conducting gas 1D-equations with discontinuous data: Global existence, uniqueness, and regularity. (English) Zbl 1007.35081

Salvi, Rodolfo (ed.), The Navier-Stokes equations: theory and numerical methods. Proceedings of the international conference, Varenna, Lecco, Italy, 2000. New York, NY: Marcel Dekker. Lect. Notes Pure Appl. Math. 223, 141-158 (2002).
MSC:  35Q35 76N10 76M20 80A20
PDF BibTeX XML Cite

Variational inequalities for an operator of Navier-Stokes type, and one-sided problems for equations of a viscous heat-conducting fluid. (English. Russian original) Zbl 1140.35548

Math. Notes 70, No. 2, 264-274 (2001); translation from Mat. Zametki 70, No. 2, 296-307 (2001).
MSC:  35Q30 47J30 76D05
PDF BibTeX XML Cite
Full Text: DOI

Application of computer algebra for investigation of group properties of the Navier-Stokes equations for compressible viscous heat-conducting gas. (English) Zbl 1003.76071

Ganzha, Victor G. (ed.) et al., Computer algebra in scientific computing, CASC 2001. Proceedings of the 4th international workshop, Konstanz, Germany, September 22-26, 2001. Berlin: Springer. 83-89 (2001).
MSC:  76M60 76N10 80A20 68W30
PDF BibTeX XML Cite

Exact solutions of equations of plane motions of viscous heat-conducting perfect gas. (Russian) Zbl 0974.76070

Andreev, V. K. (ed.) et al., Symmetry and differential equations. Proceedings of the 2nd international conference, Krasnoyarsk, Russia, August 21-25, 2000. Krasnoyarsk: Institute of Computational Modelling, Krasnoyarsk State Univ., Krasnoyarsk State Academy of Architecture and Civil Engineering, International Academy of Sciences of High School, 56-59 (2000).
MSC:  76M60
PDF BibTeX XML Cite

Filter Results by …

Document Type

Reviewing State

all top 5

Author

all top 5

Serial

all top 5

Year of Publication

all top 3

Classification

all top 3

Software